Expert and Novice Teachers’ Cognitive Neural Differences in Understanding Students’ Classroom Action Intentions
Abstract
:1. Introduction
1.1. Influence of Expertise Level on Individual Action Recognition
1.2. Research Paradigm of Action Intention Understanding
1.3. Theoretical Basis and Neural Mechanism of Action Intention Understanding
1.4. Study Hypotheses
2. Materials and Methods
2.1. Participants
2.1.1. Expert Teachers
2.1.2. Novice Teachers
2.2. Materials
2.3. Subjective Measurements
2.4. Experimental Procedure
2.5. Electrophysiological Recording and Analysis
3. Results
3.1. Subjective Measurements
3.2. Behavioral Results
3.3. Electrophysiological Results
3.3.1. N250 Component
3.3.2. P300 Component
3.3.3. Late Positive Component
3.3.4. N250 (A Second Repeated Measures ANOVA)
3.3.5. P300 (A Second Repeated Measures ANOVA)
3.3.6. LPC (A Second Repeated Measures ANOVA)
3.3.7. Topographical Map
4. Discussion
Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Experimental Materials
References
- Berliner, D.C. Describing the behavior and documenting the accomplishments of expert teachers. Bull. Sci. Technol. Soc. 2004, 24, 200–212. [Google Scholar] [CrossRef]
- Blakemore, S.-J.; Decety, J. From the perception of action to the understanding of intention. Nat. Rev. Neurosci. 2001, 2, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Den Ouden, H.E.M.; Frith, U.; Frith, C.; Blakemore, S.-J. Thinking about intentions. NeuroImage 2005, 28, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Grafton, S.T. Embodied cognition and the simulation of action to understand others. Ann. N. Y. Acad. Sci. 2009, 1156, 97–117. [Google Scholar] [CrossRef] [PubMed]
- Niedenthal, P.M. Embodying Emotion. Science 2007, 316, 1002–1005. [Google Scholar] [CrossRef]
- Ortigue, S.; Sinigaglia, C.; Rizzolatti, G.; Grafton, S.T. Understanding Actions of Others: The Electrodynamics of the Left and Right Hemispheres. A High-Density EEG Neuroimaging Study. PLoS ONE 2010, 5, e12160. [Google Scholar] [CrossRef]
- Wolff, C.E.; Jarodzka, H.; Boshuizen, H.P.A. See and tell: Differences between expert and novice teachers’ interpretations of problematic classroom management events. Teach. Teach. Educ. 2017, 66, 295–308. [Google Scholar] [CrossRef]
- Brophy, J. History of research on classroom management. In Handbook of Classroom Management: Research, Practice and Contemporary Issues; Evertson, C., Weinstein, C., Eds.; Erlbaum: Mahwah, NJ, USA, 2006; pp. 17–43. [Google Scholar]
- Freiberg, J.H. Classroom management and student achievement. In International Guide to Student Achievement; Hattie, J., Anderman, E.M., Eds.; Routledge: New York, NY, USA, 2013; pp. 228–231. [Google Scholar] [CrossRef]
- Kunter, M.; Klusmann, U.; Baumert, J.; Richter, D.; Voss, T.; Hachfeld, A. Professional competence of teachers: Effects on instructional quality and student development. J. Educ. Psychol. 2013, 105, 805–820. [Google Scholar] [CrossRef]
- Pelgrim, E.; Hissink, E.; Bus, L.; van der Schaaf, M.; Nieuwenhuis, L.; van Tartwijk, J.; Kuijer-Siebelink, W. Professionals’ adaptive expertise and adaptive performance in educational and workplace settings: An overview of reviews. Adv. Health Sci. Educ. Theory Pract. 2022, 27, 1245–1263. [Google Scholar] [CrossRef]
- van Tartwijk, J.; van Dijk, E.E.; Geertsema, J.; Kluijtmans, M.; van der Schaaf, M. Teacher expertise and how it develops during teachers’ professional lives. In International Encyclopedia of Education, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 170–179. [Google Scholar]
- Wieser, C. Teaching expertise in higher education: Constructive alignment and how an experienced university teacher maintained constructive alignment in practice. In Ethnography in Higher Education: Doing Higher Education; Wieser, C., Pilch Ortega, A., Eds.; Springer VS: Wiesbaden, Germany, 2020; pp. 33–52. [Google Scholar] [CrossRef]
- Küchelmann, T.; Velentzas, K.; Essig, K.; Koester, D.; Schack, T. Expertise-dependent perceptual performance in chess tasks with varying complexity. Front. Psychol. 2022, 13, 986787. [Google Scholar] [CrossRef]
- Sheridan, H.; Reingold, E.M. Chess players’ eye movements reveal rapid recognition of complex visual patterns: Evidence from a chess-related visual search task. J. Vis. 2017, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.J.; Gobet, F.; Chassy, P.; Ramchandani, P.N. ERP to chess stimuli reveal expert-novice differences in the am-plitudes of N2 and P3 components. Psychophysiology 2013, 50, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Villafaina, S.; Castro, M.A.; Pereira, T.; Carvalho Santos, A.; Fuentes-García, J.P. Neurophysiological and autonomic responses of high and low level chess players during difficult and easy chess endgames—A quantitative EEG and HRV study. Physiol. Behav. 2021, 237, 113454. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yan, A.; Deng, W.; Qi, C. Effect of Tennis Expertise on Motion-in-Depth Perception at Different Speeds: An Event-Related Potential Study. Brain Sci. 2022, 12, 1160. [Google Scholar] [CrossRef] [PubMed]
- Arbuckle, C.; Little, E. Teachers’ perceptions and management of disruptive classroom behaviour during the middle years (years five to nine). Aust. J. Educ. Dev. Psychol. 2004, 4, 59–70. [Google Scholar]
- Hattie, J. Visible Learning: A Synthesis of over 800 Meta-Analyses Relating to Achievement; Routledge: London, UK, 2009. [Google Scholar]
- Wang, F.; Lu, Y.; Duan, C.; Zhou, Z. Teacher’s perception of students’ classroom behavior: An eye movements Study. Psychol. Dev. Educ. 2013, 29, 391–399. (In Chinese) [Google Scholar]
- Wolff, C.E.; Jarodzka, H.; Boshuizen, H.P.A. Classroom management scripts: A theoretical model contrasting expert and novice teachers’ knowledge and awareness of classroom events. Educ. Psychol. Rev. 2021, 33, 131–148. [Google Scholar] [CrossRef]
- Star, J.R.; Strickland, S.K. Learning to observe: Using video to improve preservice mathematics teachers’ ability to notice. J. Math. Teach. Educ. 2008, 11, 107–125. [Google Scholar] [CrossRef]
- Spunt, R.P.; Falk, E.B.; Lieberman, M.D. Dissociable neural systems support retrieval of how and why action knowledge. Psychol. Sci. 2010, 21, 1593–1598. [Google Scholar] [CrossRef]
- Spunt, R.P.; Kemmerer, D.; Adolphs, R. The neural basis of conceptualizing the same action at different levels of ab-straction. Soc. Cogn. Affect. Neurosci. 2016, 11, 1141–1151. [Google Scholar] [CrossRef]
- Vezich, I.S.; Katzman, P.L.; Ames, D.L.; Falk, E.B.; Lieberman, M.D. Modulating the neural bases of persuasion: Why/how, gain/loss, and users/non-users. Soc. Cogn. Affect. Neurosci. 2017, 12, 283–297. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Song, J. A case study on the formation and sharing process of science classroom norms. Int. J. Sci. Educ. 2016, 38, 747–766. [Google Scholar] [CrossRef]
- Delafield-Butt, J.T.; Adie, J. The embodied narrative nature of learning: Nurture in school: Learning embodied narrative patterns. Mind Brain Educ. 2016, 10, 117–131. [Google Scholar] [CrossRef]
- Ke, F.; Lee, S.; Xu, X. Teaching training in a mixed-reality integrated learning environment. Comput. Hum. Behav. 2016, 62, 212–220. [Google Scholar] [CrossRef]
- Kemp, R. The embodied performance pedagogy of Jacques Lecoq. Connect. Sci. 2017, 29, 94–105. [Google Scholar] [CrossRef]
- Pennington, J.L.; Brock, C.H.; Salas, R.G.; Gavelek, J.R. Repositioning white monolingual English-speaking teachers’ conceptions of language: Counterstories and embodied Learning. Urban Educ. 2019, 58, 838–866. [Google Scholar] [CrossRef]
- Kosmas, P.; Zaphiris, P. Embodied cognition and its implications in education: An overview of recent literature. Int. J. Educ. Pedagog. Sci. 2018, 12, 946–950. [Google Scholar]
- Kiefer, M.; Trumpp, N.M. Embodiment theory and education: The foundations of cognition in perception and action. Trends Neurosci. Educ. 2012, 1, 15–20. [Google Scholar] [CrossRef]
- Huang, L.; Yang, X.; Huang, Z.; Wang, Y. Brain spatio-temporal dynamics of understanding kind versus hostile intentions based on dyadic body movements. Acta Psychol. Sin. 2019, 51, 557–570. [Google Scholar] [CrossRef]
- Folstein, J.R.; Monfared, S.S.; Maravel, T. The effect of category learning on visual attention and visual representation. Psychophysiology 2017, 54, 1855–1871. [Google Scholar] [CrossRef]
- Proverbio, A.M.; Riva, F. RP and N400 ERP components reflect semantic violations in visual processing of human actions. Neurosci. Lett. 2009, 459, 142–146. [Google Scholar] [CrossRef] [PubMed]
- San Martín, R.; Appelbaum, L.G.; Pearson, J.M.; Huettel, S.A.; Woldorff, M.G. Rapid Brain Responses Independently Predict Gain Maximization and Loss Minimization during Economic Decision Making. J. Neurosci. 2013, 33, 7011–7019. [Google Scholar] [CrossRef]
- Ullsperger, M.; Fischer, A.G.; Nigbur, R.; Endrass, T. Neural mechanisms and temporal dynamics of performance monitoring. Trends Cogn. Sci. 2014, 18, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Pauligk, S.; Kotz, S.A.; Kanske, P. Differential Impact of Emotion on Semantic Processing of Abstract and Concrete Words: ERP and fMRI Evidence. Sci. Rep. 2019, 9, 14439. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, L.; Lin, C.; Zhang, Z.; Liang, F.; Shen, D. Spatio-temporal Brain Dynamics of Understanding Social Versus Private Intentions: An Electrical Neuroimaging Study. Neuroquantology 2012, 10, 733–743. [Google Scholar] [CrossRef]
- Wang, J.; Li, H. Neural Correlates of the Attentional Bias Towards Subliminal Pornographic Cues in Individuals with Tendencies Toward Problematic Pornography Use: An ERP Study Using a Dot-Probe Task. Arch. Sex. Behav. 2024, 53, 3365–3378. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Leng, H.; Liu, Y.; Li, Q.; Wu, Q.; Li, D.; Jiang, Z. Outcome Evaluation Affects Facial Trustworthiness: An Event-Related Potential Study. Front. Hum. Neurosci. 2020, 14, 514142. [Google Scholar] [CrossRef]
- Qi, C.; Liang, H.; Zuo, S.; Li, R. Comparing competency-oriented student activities between expert and novice teachers in China: Insights from an epistemic network analysis (ENA). Educ. Inf. Technol. 2024, 29, 15375–15402. [Google Scholar] [CrossRef]
- Sun, B.; Xiao, W.; Feng, X.; Shao, Y.; Zhang, W.; Li, W. Behavioral and brain synchronization differences between expert and novice teachers when collaborating with students. Brain Cogn. 2020, 139, 105513. [Google Scholar] [CrossRef]
- Sun, B.; Xiao, W.; Lin, S.; Shao, Y.; Li, W.; Zhang, W. Cooperation with partners of differing social experience: An fNIRS-based hyperscanning study. Brain Cogn. 2020, 154, 105803. [Google Scholar] [CrossRef] [PubMed]
- Bahnemann, M.; Dziobek, I.; Prehn, K.; Wolf, I.; Heekeren, H.R. Sociotopy in the temporoparietal cortex: Common versus distinct processes. Soc. Cogn. Affect. Neurosci. 2010, 5, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Decety, J.; Cacioppo, S. The speed of morality: A high-density electrical neuroimaging study. J. Neurophysiol. 2012, 108, 3068–3072. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Lin, C.D.; Yuan, B.; Huang, L.; Zhang, W.X.; Shen, D.L. Person perception precedes theory of mind: An event related potential analysis. Neuroscience 2010, 170, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Li, Y.; Li, X.; Kulm, G. Chinese teachers’ perceptions of students’ classroom misbehaviour. Educ. Psychol. 2008, 28, 305–324. [Google Scholar] [CrossRef]
- Huang, X.; Li, W.; Sun, B.; Chen, H.; Davis, M.H. The validation of the Interpersonal Reactivity Index for Chinese teachers from primary and middle schools. J. Psychoeduc. Assess. 2012, 30, 194–204. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. Eeglab: An open source toolbox for analysis of single-trial eeg dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Lopez-Calderon, J.; Luck, S. ERPLAB: An open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci. 2014, 8, 213. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, L.; Zhang, Z.; Song, J.; Bai, L. Kindness or hostility? Brain dynamics of understanding interactive intentions of other people. Sci. Sin. Vitae 2014, 44, 736–746. [Google Scholar] [CrossRef]
- Duffy, G.G.; Miller, S.; Parsons, S.; Meloth, M. Teachers as metacognitive professionals. In Handbook of Metacognition in Education; Hacker, D.J., Dunlosky, J., Graesser, A.C., Eds.; Routledge: New York, NY, USA, 2009; pp. 240–256. [Google Scholar]
- Putnam, R.T. Structuring and adjusting content for students: A study of live and simulated tutoring of addition. Am. Educ. Res. J. 1987, 24, 13–48. [Google Scholar] [CrossRef]
- O’Keefe, P.; Johnston, M. Perspective taking and teacher effectiveness: A connecting thread through three developmental literatures. J. Teach. Educ. 1989, 40, 20–26. [Google Scholar] [CrossRef]
- Berliner, D.C. Learning about and learning from expert teachers. Int. J. Educ. Res. 2001, 35, 463–482. [Google Scholar] [CrossRef]
- Hutchinson, J.B.; Barrett, L.F. The Power of Predictions: An Emerging Paradigm for Psychological Research. Curr. Dir. Psychol. Sci. 2019, 28, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Pierce, L.J.; Scott, L.S.; Boddington, S.; Droucker, D.; Curran, T.; Tanaka, J.W. The N250 Brain Potential to Personally Familiar and Newly Learned Faces and Objects. Front. Hum. Neurosci. 2011, 5, 111. [Google Scholar] [CrossRef]
- Devue, C.; Brédart, S. Attention to self-referential stimuli: Can I ignore my own face? Acta Psychol. 2008, 128, 290–297. [Google Scholar] [CrossRef]
- Herzmann, G. Increased N250 amplitudes for other-race faces reflect more effortful processing at the individual level. Int. J. Psychophysiol. 2016, 105, 57–65. [Google Scholar] [CrossRef]
- Inagaki, K.; Wagatsuma, N.; Nobukawa, S. The effects of driving experience on the P300 event-related potential during the perception of traffic Scenes. Int. J. Environ. Res. Public Health 2021, 18, 10396. [Google Scholar] [CrossRef]
- Petruo, V.A.; Stock, A.-K.; Münchau, A.; Beste, C. A systems neurophysiology approach to voluntary event coding. Neuroimage 2016, 135, 324–332. [Google Scholar] [CrossRef]
- Tueting, P.; Sutton, S.; Zubin, J. Quantitative evoked potential correlates of the probability of events. Psychophysiology 1970, 7, 385–394. [Google Scholar] [CrossRef]
- Król, M.; El-Deredy, W. The clash of expectancies: Does the P300 amplitude reflect both passive and active ex-pectations? Q. J. Exp. Psychol. 2015, 68, 1723–1734. [Google Scholar] [CrossRef]
- Seidel, T.; Schnitzler, K.; Kosel, C.; Stürmer, K.; Holzberger, D. Student characteristics in the eyes of teachers: Differences between novice and expert teachers in judgment accuracy, observed behavioral cues, and gaze. Educ. Psychol. Rev. 2020, 33, 69–89. [Google Scholar] [CrossRef]
- Spunt, R.P.; Lieberman, M.D. The busy social brain: Evidence for automaticity and control in the neural systems supporting social cognition and action understanding. Psychol. Sci. 2013, 24, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Sellars, M. Teachers and change: The role of reflective practice. Procedia-Soc. Behav. Sci. 2012, 55, 461–469. [Google Scholar] [CrossRef]
- Vangrieken, K.; Dochy, F.; Raes, E.; Kyndt, E. Teacher collaboration: A systematic review. Educ. Res. Rev. 2015, 15, 17–40. [Google Scholar] [CrossRef]
Expert Teacher | Novice Teacher | |
---|---|---|
M ± SD | M ± SD | |
PT 1 | 21.05 ± 2.272 | 17.89 ± 2.923 |
FS | 22.32 ± 3.845 | 17.84 ± 2.794 |
EC | 24.37 ± 3.515 | 18.47 ± 1.775 |
PD | 15.74 ± 4.012 | 14.89 ± 3.588 |
Pre-test | 5.68 ± 0.946 | 4.74 ± 0.991 |
Post-test | 6.11 ± 0.737 | 5.11 ± 1.049 |
SS | df | MS | F | p | ηp2 | |
---|---|---|---|---|---|---|
Expertise level | 18.02 | 1 | 18.02 | 16.70 | 0.001 *** | 0.32 |
Test time | 2.96 | 1 | 2.96 | 4.34 | 0.044 * | 0.11 |
Expertise level × Test time | 0.01 | 1 | 0.01 | 0.02 | 0.894 | 0.001 |
Expert (M ± SD) | Novice (M ± SD) | |||
---|---|---|---|---|
Normative | Non-Normative | Normative | Non-Normative | |
how-RT | 717.03 ± 145.69 | 768.39 ± 145.74 | 722.98 ± 232.18 | 723.60 ± 247.07 |
why-RT | 754.28 ± 160.02 | 774.69 ± 144.69 | 744.68 ± 258.22 | 754.19 ± 261.54 |
how-ACC | 88.08 ± 13.28 | 83.34 ± 7.00 | 90.05 ± 8.78 | 97.70 ± 2.29 |
why-ACC | 84.95 ± 12.23 | 95.07 ± 6.32 | 87.50 ± 13.59 | 97.45 ± 3.13 |
how-comprehensibility | 6.67 ± 0.43 | 5.76 ± 0.94 | 6.37 ± 0.53 | 5.52 ± 1.27 |
why-comprehensibility | 6.56 ± 0.52 | 5.67 ± 1.02 | 6.21 ± 0.64 | 5.29 ± 1.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Li, R.; Ribosa, J.; Duran, D.; Sun, B. Expert and Novice Teachers’ Cognitive Neural Differences in Understanding Students’ Classroom Action Intentions. Brain Sci. 2024, 14, 1080. https://doi.org/10.3390/brainsci14111080
Lin Y, Li R, Ribosa J, Duran D, Sun B. Expert and Novice Teachers’ Cognitive Neural Differences in Understanding Students’ Classroom Action Intentions. Brain Sciences. 2024; 14(11):1080. https://doi.org/10.3390/brainsci14111080
Chicago/Turabian StyleLin, Yishan, Rui Li, Jesús Ribosa, David Duran, and Binghai Sun. 2024. "Expert and Novice Teachers’ Cognitive Neural Differences in Understanding Students’ Classroom Action Intentions" Brain Sciences 14, no. 11: 1080. https://doi.org/10.3390/brainsci14111080
APA StyleLin, Y., Li, R., Ribosa, J., Duran, D., & Sun, B. (2024). Expert and Novice Teachers’ Cognitive Neural Differences in Understanding Students’ Classroom Action Intentions. Brain Sciences, 14(11), 1080. https://doi.org/10.3390/brainsci14111080