Environmental Affordance for Physical Activity, Neurosustainability, and Brain Health: Quantifying the Built Environment’s Ability to Sustain BDNF Release by Reaching Metabolic Equivalents (METs)
Abstract
:1. Introduction
2. Physical Activity Mechanisms for Plasticity
2.1. Neurotrophins and the Reliable Role of the Brain-Derived Neurotrophic Factor (BDNF)
2.2. Supportive Growth Factors: VEGF and IGF-1
3. From Physical Activity to Neurogenesis and Plasticity: BDNF Molecular Mechanisms
4. Methodological Feasibility
5. Environmental Affordance for Physical Activity: BDNF, METs, and Agents
5.1. Walking
5.2. Climbing Stairs
5.3. Environmental Agents
6. Assessment Tool
7. Future Research Directions
- Age differences correlate with neurogenesis rate variances and potentially variant impacts on BDNF change rates. For instance, several studies reported an age-related decline in adult hippocampal neurogenesis in humans despite the quantified rate per day, and that this decline varies between healthy individuals and patients with Alzheimer’s disease [109,125,126]. Therefore, controlling for age group variances should be considered in future research.
- BDNF does not solely respond to physical activity but to many biological and lifestyle confounding variables. Besides ageing and neurodegeneration, sleep [127], stress [128,129], and diet [130] are factors that can have confounding effects. In a recent study, participants were required to fast for 9 h before blood sampling prior to starting a 20 min gardening activity [6], which can be an appropriate way to control diet-related factors in addition to adequate sleep.
- Measuring BDNF in real-world settings may be sensitive to temperature, heat, and seasonal variations. Seasonality variations and heat exposure were reported to affect BDNF levels, as observed in several studies [114]. Therefore, it is essential to control for such external confounding effects.
- Salivary BDNF methods should be employed cautiously. BDNF results were not reliable in saliva in three different commercial ELISA kits [133].
- It is feasible to test changes in BDNF release in serum or plasma, with concentrations in the former about 100-fold higher than the latter [54].
- Ethical approvals for blood samples to test BDNF changes may only limit non-interdisciplinary experimental efforts without collaboration with at least one researcher with a background in biology or medicine. This encourages interdisciplinary collaborations or otherwise relies on proxy measures such as physical activity-dependent heart rate and skin conductance changes through wearable devices [134].
- This article highlights that while determining the factor (α) is a preliminary step before attempting to test the impact of spatial layouts with walking and climbing affordances, the factor itself for stairs, for instance, may vary depending on the type of staircase (i.e., straight, with intermediate landing, l-shaped, double l-shaped, u-shaped, 90 winder, 180 winder, curved, and spiral stairs), the number of flights, and the riser’s height. Such variability can affect the intensity that METs already acknowledge, but having a constant (α) for each staircase type may be a limitation that may be overcome to save time replicating the same experiment. The same concept applies to layouts with various areas and spatial division approaches. Unless no combined effect of walking and climbing is to be studied, the constant (α) may not pose a limitation.
- Individual differences, personality traits, and lifestyle variability may influence the interaction with a layout with environmental affordance for physical activity and the interaction with visual environment agents due to the meaning-making variability as part of any aesthetic experience [135]. Overcoming this limitation can be achieved through controlling cultural and social differences.
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- de Sousa Fernandes, M.S.; Ordônio, T.F.; Santos, G.C.J.; Santos, L.E.R.; Calazans, C.T.; Gomes, D.A.; Santos, T.M. Effects of physical exercise on neuroplasticity and brain function: A systematic review in human and animal studies. Neural Plast. 2020, 2020, 8856621. [Google Scholar] [CrossRef] [PubMed]
- Firth, J.; Stubbs, B.; Vancampfort, D.; Schuch, F.; Lagopoulos, J.; Rosenbaum, S.; Ward, P.B. Effect of aerobic exercise on hippocampal volume in humans: A systematic review and meta-analysis. Neuroimage 2018, 166, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Killgore, W.D.; Olson, E.A.; Weber, M. Physical exercise habits correlate with gray matter volume of the hippocampus in healthy adult humans. Sci. Rep. 2013, 3, 3457. [Google Scholar] [CrossRef] [PubMed]
- Lauretta, G.; Ravalli, S.; Maugeri, G.; D’Agata, V.; Rosa, M.D.; Musumeci, G. The impact of physical exercise on the hippocampus in physiological condition and ageing-related decline: Current evidence from animal and human studies. Curr. Pharm. Biotechnol. 2022, 23, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Håkansson, K.; Ledreux, A.; Daffner, K.; Terjestam, Y.; Bergman, P.; Carlsson, R.; Mohammed, A.K.H. BDNF responses in healthy older persons to 35 minutes of physical exercise, cognitive training, and mindfulness: Associations with working memory function. J. Alzheimer’s Dis. 2017, 55, 645–657. [Google Scholar] [CrossRef]
- Park, S.A.; Lee, A.Y.; Park, H.G.; Lee, W.L. Benefits of gardening activities for cognitive function according to measurement of brain nerve growth factor levels. Int. J. Environ. Res. Public Health 2019, 16, 760. [Google Scholar] [CrossRef]
- Berkemeier, L.R.; Winslow, J.W.; Kaplan, D.R.; Nikolics, K.; Goeddel, D.V.; Rosenthal, A. Neurotrophin-5: A novel neurotrophic factor that activates trk and trkB. Neuron 1991, 7, 857–866. [Google Scholar] [CrossRef]
- Hallböök, F.; Ibáñez, C.F.; Persson, H. Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 1991, 6, 845–858. [Google Scholar] [CrossRef]
- Bothwell, M.N.G.F. Ngf, bdnf, nt3, and nt4. Neurotrophic Factors 2014, 220, 3–15. [Google Scholar]
- Lippi, G.; Mattiuzzi, C.; Sanchis-Gomar, F. Updated overview on interplay between physical exercise, neurotrophins, and cognitive function in humans. J. Sport. Health Sci. 2020, 9, 74–81. [Google Scholar] [CrossRef]
- Ribeiro, D.; Petrigna, L.; Pereira, F.C.; Muscella, A.; Bianco, A.; Tavares, P. The impact of physical exercise on the circulating levels of BDNF and NT 4/5: A review. Int. J. Mol. Sci. 2021, 22, 8814. [Google Scholar] [CrossRef] [PubMed]
- Dadkhah, M.; Saadat, M.; Ghorbanpour, A.M.; Moradikor, N. Experimental and clinical evidence of physical exercise on BDNF and cognitive function: A comprehensive review from molecular basis to therapy. Brain Behav. Immun. Integr. 2023, 3, 100017. [Google Scholar] [CrossRef]
- Zarza-Rebollo, J.A.; López-Isac, E.; Rivera, M.; Gómez-Hernández, L.; Pérez-Gutiérrez, A.M.; Molina, E. The relationship between BDNF and physical activity on depression. Progress. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 134, 111033. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C. Physical activity modulates common neuroplasticity substrates in major depressive and bipolar disorder. Neural Plast. 2017, 2017, 7014146. [Google Scholar] [CrossRef]
- Deng, W.; Aimone, J.B.; Gage, F.H. New neurons and new memories: How does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci. 2010, 11, 339–350. [Google Scholar] [CrossRef]
- Babcock, K.R.; Page, J.S.; Fallon, J.R.; Webb, A.E. Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Stem Cell Rep. 2021, 16, 681–693. [Google Scholar] [CrossRef]
- Boldrini, M.; Santiago, A.N.; Hen, R.; Dwork, A.J.; Rosoklija, G.B.; Tamir, H.; John Mann, J. Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology 2013, 38, 1068–1077. [Google Scholar] [CrossRef]
- Lucassen, P.J.; Stumpel, M.W.; Wang, Q.; Aronica, E. Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology 2010, 58, 940–949. [Google Scholar] [CrossRef]
- Boldrini, M.; Underwood, M.D.; Hen, R.; Rosoklija, G.B.; Dwork, A.J.; John Mann, J.; Arango, V. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 2009, 34, 2376–2389. [Google Scholar] [CrossRef]
- Malberg, J.E.; Eisch, A.J.; Nestler, E.J.; Duman, R.S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 2000, 20, 9104–9110. [Google Scholar] [CrossRef]
- Milne, A.M.; MacQueen, G.M.; Hall, G.B. Abnormal hippocampal activation in patients with extensive history of major depression: An fMRI study. J. Psychiatry Neurosci. 2012, 37, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Déry, N.; Pilgrim, M.; Gibala, M.; Gillen, J.; Wojtowicz, J.M.; MacQueen, G.; Becker, S. Adult hippocampal neurogenesis reduces memory interference in humans: Opposing effects of aerobic exercise and depression. Front. Neurosci. 2013, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med. 2019, 25, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Numakawa, T.; Odaka, H.; Adachi, N. Actions of brain-derived neurotrophin factor in the neurogenesis and neuronal function, and its involvement in the pathophysiology of brain diseases. Int. J. Mol. Sci. 2018, 19, 3650. [Google Scholar] [CrossRef]
- Li, Y.; Wei, C.; Wang, W.; Li, Q.; Wang, Z.C. Tropomyosin receptor kinase B (TrkB) signalling: Targeted therapy in neurogenic tumours. J. Pathol. Clin. Res. 2023, 9, 89–99. [Google Scholar] [CrossRef]
- Zoladz, J.A.; Pilc, A. The effect of physical activity on the brain derived neurotrophic factor: From animal to human studies. J. Physiol. Pharmacol. 2010, 61, 533–541. [Google Scholar]
- Huang, T.; Larsen, K.T.; Ried-Larsen, M.; Møller, N.C.; Andersen, L.B. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scand. J. Med. Sci. Sports 2014, 24, 1–10. [Google Scholar] [CrossRef]
- Feter, N.; Alt, R.; Dias, M.G.; Rombaldi, A.J. How do different physical exercise parameters modulate brain-derived neurotrophic factor in healthy and non-healthy adults? A systematic review, meta-analysis and meta-regression. Sci. Sports 2019, 34, 293–304. [Google Scholar] [CrossRef]
- Walsh, E.I.; Smith, L.; Northey, J.; Rattray, B.; Cherbuin, N. Towards an understanding of the physical activity-BDNF-cognition triumvirate: A review of associations and dosage. Ageing Res. Rev. 2020, 60, 101044. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, Z.; Zhu, L.; Huang, G.; Li, B.; Chen, C.; Liu, T.C. Effects of different physical activities on brain-derived neurotrophic factor: A systematic review and bayesian network meta-analysis. Front. Aging Neurosci. 2022, 14, 981002. [Google Scholar] [CrossRef]
- Rotondo, R.; Proietti, S.; Perluigi, M.; Padua, E.; Stocchi, F.; Fini, M.; De Pandis, M.F. Physical activity and neurotrophic factors as potential drivers of neuroplasticity in Parkinson’s Disease: A systematic review and meta-analysis. Ageing Res. Rev. 2023, 92, 102089. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gutiérrez, E.; Torres-Costoso, A.; Pascual-Morena, C.; Pozuelo-Carrascosa, D.P.; Garrido-Miguel, M.; Martínez-Vizcaíno, V. Effects of resistance exercise on neuroprotective factors in middle and late life: A systematic review and meta-analysis. Aging Dis. 2023, 14, 1264. [Google Scholar] [CrossRef]
- Farrukh, S.; Habib, S.; Rafaqat, A.; Sarfraz, A.; Sarfraz, Z.; Tariq, H. Association of exercise, brain-derived neurotrophic factor, and cognition among older women: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2023, 114, 105068. [Google Scholar] [CrossRef] [PubMed]
- Herrera, S.G.R.; Leon-Rojas, J.E. The Effect of Aerobic Exercise in Neuroplasticity, Learning, and Cognition: A Systematic Review. Cureus 2024, 16, e54021. [Google Scholar]
- Balbim, G.M.; Boa Sorte Silva, N.C.; Ten Brinke, L.; Falck, R.S.; Hortobágyi, T.; Granacher, U.; Liu-Ambrose, T. Aerobic exercise training effects on hippocampal volume in healthy older individuals: A meta-analysis of randomized controlled trials. Geroscience 2024, 46, 2755–2764. [Google Scholar] [CrossRef]
- Frodl, T.; Strehl, K.; Carballedo, A.; Tozzi, L.; Doyle, M.; Amico, F.; O’Keane, V. Aerobic exercise increases hippocampal subfield volumes in younger adults and prevents volume decline in the elderly. Brain Imaging Behav. 2020, 14, 1577–1587. [Google Scholar] [CrossRef]
- Nauer, R.K.; Dunne, M.F.; Stern, C.E.; Storer, T.W.; Schon, K. Improving fitness increases dentate gyrus/CA3 volume in the hippocampal head and enhances memory in young adults. Hippocampus 2020, 30, 488–504. [Google Scholar] [CrossRef]
- Cherednichenko, A.; Miró-Padilla, A.; Adrián-Ventura, J.; Monzonís-Carda, I.; Beltran-Valls, M.R.; Moliner-Urdiales, D.; Ávila, C. Physical activity and hippocampal volume in young adults. Brain Imaging Behav. 2024, 1–10. [Google Scholar] [CrossRef]
- Firth, J.; Stubbs, B.; Rosenbaum, S.; Vancampfort, D.; Malchow, B.; Schuch, F.; Yung, A.R. Aerobic exercise improves cognitive functioning in people with schizophrenia: A systematic review and meta-analysis. Schizophr. Bull. 2017, 43, 546–556. [Google Scholar] [CrossRef]
- Feter, N.; Penny, J.C.; Freitas, M.P.; Rombaldi, A.J. Effect of physical exercise on hippocampal volume in adults: Systematic review and meta-analysis. Sci. Sports 2018, 33, 327–338. [Google Scholar] [CrossRef]
- Behrad, S.; Dezfuli, S.A.T.; Yazdani, R.; Hayati, S.; Shanjani, S.M. The effect of physical exercise on circulating neurotrophic factors in healthy aged subjects: A meta-analysis and meta-regression. Exp. Gerontol. 2024, 196, 112579. [Google Scholar] [CrossRef] [PubMed]
- Heemskerk, V.H.; Daemen, M.A.; Buurman, W.A. Insulin-like growth factor-1 (IGF-1) and growth hormone (GH) in immunity and inflammation. Cytokine Growth Factor. Rev. 1999, 10, 5–14. [Google Scholar] [CrossRef]
- Laron, Z. Insulin-like growth factor 1 (IGF-1): A growth hormone. Mol. Pathol. 2001, 54, 311. [Google Scholar] [CrossRef] [PubMed]
- Lewitt, M.S.; Boyd, G.W. The role of insulin-like growth factors and insulin-like growth factor–binding proteins in the nervous system. Biochem. Insights 2019, 12, 1178626419842176. [Google Scholar] [CrossRef]
- Dyer, A.H.; Vahdatpour, C.; Sanfeliu, A.; Tropea, D. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience 2016, 325, 89–99. [Google Scholar] [CrossRef]
- Williams, H.C.; Carlson, S.W.; Saatman, K.E. A Role for Insulin-Like Growth Factor-1 in Hippocampal Plasticity Following Traumatic Brain Injury. In Vitamins and Hormones; Academic Press: Cambridge, MA, USA, 2022; Volume 118, pp. 423–455. [Google Scholar]
- Yuan, T.; Ying, J.; Jin, L.; Li, C.; Gui, S.; Li, Z.; Zhang, Y. The role of serum growth hormone and insulin-like growth factor-1 in adult humans brain morphology. Aging 2020, 12, 1377. [Google Scholar] [CrossRef] [PubMed]
- Weissleder, C.; Webster, M.J.; Barry, G.; Shannon Weickert, C. Reduced insulin-like growth factor family member expression predicts neurogenesis marker expression in the subependymal zone in schizophrenia and bipolar disorder. Schizophr. Bull. 2021, 47, 1168–1178. [Google Scholar] [CrossRef]
- Nuñez, A.; Zegarra-Valdivia, J.; Fernandez de Sevilla, D.; Pignatelli, J.; Torres Aleman, I. The neurobiology of insulin-like growth factor I: From neuroprotection to modulation of brain states. Mol. Psychiatry 2023, 28, 3220–3230. [Google Scholar] [CrossRef]
- Jiang, Q.; Lou, K.; Hou, L.; Lu, Y.; Sun, L.; Tan, S.C.; Pang, S. The effect of resistance training on serum insulin-like growth factor 1 (IGF-1): A systematic review and meta-analysis. Complement. Ther. Med. 2020, 50, 102360. [Google Scholar] [CrossRef]
- de Alcantara Borba, D.; da Silva Alves, E.; Rosa, J.P.P.; Facundo, L.A.; Costa, C.M.A.; Silva, A.C.; de Mello, M.T. Can IGF-1 serum levels really be changed by acute physical exercise? A systematic review and meta-analysis. J. Phys. Act. Health 2020, 17, 575–584. [Google Scholar] [CrossRef]
- Berg, U.; Bang, P. Exercise and circulating insulin-like growth factor I. Horm. Res. 2004, 62, 50–58. [Google Scholar] [CrossRef]
- Polacchini, A.; Metelli, G.; Francavilla, R.; Baj, G.; Florean, M.; Mascaretti, L.G.; Tongiorgi, E. A method for reproducible measurements of serum BDNF: Comparison of the performance of six commercial assays. Sci. Rep. 2015, 5, 17989. [Google Scholar] [CrossRef] [PubMed]
- Steventon, J.J.; Chandler, H.L.; Foster, C.; Dingsdale, H.; Germuska, M.; Massey, T.; Murphy, K. Changes in white matter microstructure and MRI-derived cerebral blood flow after 1-week of exercise training. Sci. Rep. 2021, 11, 22061. [Google Scholar] [CrossRef] [PubMed]
- Colucci-D’Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int. J. Mol. Sci. 2020, 21, 7777. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Nie, Z.; Shu, H.; Kuang, Y.; Chen, X.; Cheng, J.; Liu, H. The role of BDNF on neural plasticity in depression. Front. Cell. Neurosci. 2020, 14, 82. [Google Scholar] [CrossRef]
- Gourgouvelis, J.; Yielder, P.; Murphy, B. Exercise promotes neuroplasticity in both healthy and depressed brains: An fMRI pilot study. Neural Plast. 2017, 2017, 8305287. [Google Scholar] [CrossRef]
- Fakhoury, M.; Eid, F.; El Ahmad, P.; Khoury, R.; Mezher, A.; El Masri, D.; Stephan, J.S. Exercise and dietary factors mediate neural plasticity through modulation of BDNF signaling. Brain Plast. 2022, 8, 121–128. [Google Scholar] [CrossRef]
- Cattaneo, A.; Cattane, N.; Begni, V.; Pariante, C.M.; Riva, M.A. The human BDNF gene: Peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl. Psychiatry 2016, 6, e958. [Google Scholar] [CrossRef]
- Pruunsild, P.; Kazantseva, A.; Aid, T.; Palm, K.; Timmusk, T. Dissecting the human BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters. Genomics 2007, 90, 397–406. [Google Scholar] [CrossRef]
- Je, H.S.; Yang, F.; Ji, Y.; Potluri, S.; Fu, X.Q.; Luo, Z.G.; Lu, B. ProBDNF and mature BDNF as punishment and reward signals for synapse elimination at mouse neuromuscular junctions. J. Neurosci. 2013, 33, 9957–9962. [Google Scholar] [CrossRef]
- Lu, B. Pro-region of neurotrophins: Role in synaptic modulation. Neuron 2003, 39, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.V. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat. Rev. Neurosci. 2003, 4, 299–309. [Google Scholar] [CrossRef]
- Hua, Z.; Gu, X.; Dong, Y.; Tan, F.; Liu, Z.; Thiele, C.J.; Li, Z. PI3K and MAPK pathways mediate the BDNF/TrkB-increased metastasis in neuroblastoma. Tumor Biol. 2016, 37, 16227–16236. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, W.Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. 2015, 35, 600–604. [Google Scholar] [CrossRef]
- Yu, J.S.; Cui, W. Proliferation, survival and metabolism: The role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2016, 143, 3050–3060. [Google Scholar] [CrossRef]
- Levy, M.J.; Boulle, F.; Steinbusch, H.W.; van den Hove, D.L.; Kenis, G.; Lanfumey, L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology 2018, 235, 2195–2220. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.W.; Futter, M.; Rosenblum, K.; Webber, M.J.; Hunt, S.P.; Bliss, T.V.; Bramham, C.R. Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: Requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci. 2002, 22, 1532–1540. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Banks, W.A.; Fasold, M.B.; Bluth, J.; Kastin, A.J. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology 1998, 37, 1553–1561. [Google Scholar] [CrossRef]
- Poduslo, J.F.; Curran, G.L. Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Mol. Brain Res. 1996, 36, 280–286. [Google Scholar] [CrossRef]
- Azevedo, K.P.M.D.; de Oliveira, V.H.; Medeiros, G.C.B.S.D.; Mata ÁND, S.; García, D.Á.; Martínez, D.G.; Piuvezam, G. The effects of exercise on BDNF levels in adolescents: A systematic review with meta-analysis. Int. J. Environ. Res. Public Health 2020, 17, 6056. [Google Scholar] [CrossRef]
- Tarassova, O.; Ekblom, M.M.; Moberg, M.; Lövdén, M.; Nilsson, J. Peripheral BDNF response to physical and cognitive exercise and its association with cardiorespiratory fitness in healthy older adults. Front. Physiol. 2020, 11, 1080. [Google Scholar] [CrossRef] [PubMed]
- Jetté, M.; Sidney, K.; Blümchen, G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin. Cardiol. 1990, 13, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Park, S.A.; Son, S.Y.; Lee, A.Y.; Park, H.G.; Lee, W.L.; Lee, C.H. Metabolite profiling revealed that a gardening activity program improves cognitive ability correlated with BDNF levels and serotonin metabolism in the elderly. Int. J. Environ. Res. Public Health 2020, 17, 541. [Google Scholar] [CrossRef]
- Varma, V.R.; Chuang, Y.F.; Harris, G.C.; Tan, E.J.; Carlson, M.C. Low-intensity daily walking activity is associated with hippocampal volume in older adults. Hippocampus 2015, 25, 605–615. [Google Scholar] [CrossRef]
- Sandroff, B.M.; Wylie, G.R.; Baird, J.F.; Jones, C.D.; Diggs, M.D.; Genova, H.; Motl, R.W. Effects of walking exercise training on learning and memory and hippocampal neuroimaging outcomes in MS: A targeted, pilot randomized controlled trial. Contemp. Clin. Trials 2021, 110, 106563. [Google Scholar] [CrossRef] [PubMed]
- Bergman, F.; Matsson-Frost, T.; Jonasson, L.; Chorell, E.; Sörlin, A.; Wennberg, P.; Boraxbekk, C.J. Walking time is associated with hippocampal volume in overweight and obese office workers. Front. Hum. Neurosci. 2020, 14, 307. [Google Scholar] [CrossRef]
- Cho, H.C.; Kim, J.; Kim, S.; Son, Y.H.; Lee, N.; Jung, S.H. The concentrations of serum, plasma and platelet BDNF are all increased by treadmill VO2max performance in healthy college men. Neurosci. Lett. 2012, 519, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.; Steemers, K. Healthy Homes: Designing with Light and Air for Sustainability and Wellbeing; Riba Publishing: London, UK, 2019. [Google Scholar]
- Gath-Morad, M.; OPlaut, P.; Kalay, Y.E. Attract or repel: How street features shape pedestrians’ leisure walks in cities. J. Urban. Des. 2024, 2019, 342–362. [Google Scholar] [CrossRef]
- Zhang, X.; Melbourne, S.; Sarkar, C.; Chiaradia, A.; Webster, C. Effects of green space on walking: Does size, shape and density matter? Urban. Stud. 2020, 57, 3402–3420. [Google Scholar] [CrossRef]
- Boldina, A.; Hanel, P.H.; Steemers, K. Active urbanism and choice architecture: Encouraging the use of challenging city routes for health and fitness. Landsc. Res. 2023, 48, 276–296. [Google Scholar] [CrossRef]
- Lu, Z.; Rodiek, S.; Shepley, M.M.; Tassinary, L.G. Environmental influences on indoor walking behaviours of assisted living residents. Build. Res. Inf. 2015, 43, 602–615. [Google Scholar] [CrossRef]
- Gharaveis, A. A systematic framework for understanding environmental design influences on physical activity in the elderly population: A review of literature. Facilities 2020, 38, 625–649. [Google Scholar] [CrossRef]
- Funabashi, D.; Tsuchida, R.; Matsui, T.; Kita, I.; Nishijima, T. Enlarged housing space and increased spatial complexity enhance hippocampal neurogenesis but do not increase physical activity in mice. Front. Sports Act. Living 2023, 5, 1203260. [Google Scholar] [CrossRef] [PubMed]
- Khajehzadeh, I.; Vale, B. How do people use large houses. In Living and Learning: Research for a Better Built Environment, Proceedings of the 49th International Conference of the Architectural Science Association, Melbourne, Australia (2–4 December 2015); StatsNZ: Wellington, New Zealand, 2015; pp. 153–162. [Google Scholar]
- Ezezue, A.; Ibem, E.; Uzuegbunam, F.; Odum, C.; Omatsone, M. Influence of Spatial Layout of Residential Buildings on Sedentary Behaviour of Residents in Enugu, Nigeria. Civil. Eng. Archit. 2021, 2015, 1123–1136. [Google Scholar] [CrossRef]
- Kaushal, N.; Rhodes, R.E. The home physical environment and its relationship with physical activity and sedentary behavior: A systematic review. Prev. Med. 2014, 67, 221–237. [Google Scholar] [CrossRef]
- Ali, J.S.; Mustafa, F.A. Active workplace–Association between workplace layout and physical activity among employees: A cross-sectional study. Al-Qadisiyah J. Eng. Sci. 2023, 16, 14–20. [Google Scholar] [CrossRef]
- Stenling, A.; Moylan, A.; Fulton, E.; Machado, L. Effects of a brief stair-climbing intervention on cognitive performance and mood states in healthy young adults. Front. Psychol. 2019, 10, 2300. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Quensell, J.; Machado, L. Effects of a brief stair-climbing intervention on cognitive functioning and mood states in older adults: A randomized controlled trial. J. Aging Phys. Act. 2021, 30, 455–465. [Google Scholar] [CrossRef]
- Islam, H.; Gibala, M.J.; Little, J.P. Exercise snacks: A novel strategy to improve cardiometabolic health. Exerc. Sport. Sci. Rev. 2022, 50, 31–37. [Google Scholar] [CrossRef]
- Stenling, A.; Quensell, J.; Kaur, N.; Machado, L. Stair Climbing Improves Cognitive Switching Performance and Mood in Healthy Young Adults: A Randomized Controlled Crossover Trial. J. Cogn. Enhanc. 2024, 8, 191–205. [Google Scholar] [CrossRef]
- Caballero, Y.; Ando, T.J.; Nakae, S.; Usui, C.; Aoyama, T.; Nakanishi, M.; Tanaka, S. Simple prediction of metabolic equivalents of daily activities using heart rate monitor without calibration of individuals. Int. J. Environ. Res. Public Health 2020, 17, 216. [Google Scholar] [CrossRef] [PubMed]
- Donath, L.; Faude, O.L.; Roth, R.A.; Zahner, L. Effects of stair-climbing on balance, gait, strength, resting heart rate, and submaximal endurance in healthy seniors. Scand. J. Med. Sci. Sports 2014, 24, e93–e101. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, M.; Izumi, S.; Nagayoshi, S.; Kawaguchi, H.; Yoshimoto, M.; Shiga, T.; Tanaka, S. Estimating metabolic equivalents for activities in daily life using acceleration and heart rate in wearable devices. Biomed. Eng. Online 2018, 17, 100. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Peng, M.; Zhou, T.; Wan, Z.; Liang, Z. Research on Safety Design Strategy of Evacuation Stairs in Deep Underground Station Based on Human Heart Rate and Ascending Evacuation Speed. Sustainability 2023, 15, 10670. [Google Scholar] [CrossRef]
- Gath-Morad, M.; Thrash, T.; Schicker, J.; Hölscher, C.; Helbing, D.; Aguilar Melgar, L.E. Visibility matters during wayfinding in the vertical. Sci. Rep. 2021, 11, 18980. [Google Scholar] [CrossRef]
- Gath-Morad, M.; Grübel, J.; Steemers, K.; Sailer, K.; Ben-Alon, L.; Hölscher, C.; Aguilar, L. The role of strategic visibility in shaping wayfinding behavior in multilevel buildings. Sci. Rep. 2024, 14, 3735. [Google Scholar] [CrossRef]
- Zimring, C.; Joseph, A.; Nicoll, G.L.; Tsepas, S. Influences of building design and site design on physical activity: Research and intervention opportunities. Am. J. Prev. Med. 2005, 28, 186–193. [Google Scholar] [CrossRef]
- Coburn, A.; Vartanian, O.; Kenett, Y.N.; Nadal, M.; Hartung, F.; Hayn-Leichsenring, G.; Chatterjee, A. Psychological and neural responses to architectural interiors. Cortex 2020, 126, 217–241. [Google Scholar] [CrossRef]
- Gregorians, L.; Velasco, P.F.; Zisch, F.; Spiers, H.J. Architectural experience: Clarifying its central components and their relation to core affect with a set of first-person-view videos. J. Environ. Psychol. 2022, 82, 101841. [Google Scholar] [CrossRef]
- Djebbara, Z.; Fich, L.B.; Gramann, K. The brain dynamics of architectural affordances during transition. Sci. Rep. 2021, 11, 2796. [Google Scholar] [CrossRef]
- Ladouce, S.; Mustile, M.; Ietswaart, M.; Dehais, F. Capturing cognitive events embedded in the real world using mobile electroencephalography and eye-tracking. J. Cogn. Neurosci. 2022, 34, 2237–2255. [Google Scholar] [CrossRef] [PubMed]
- Ren, J. A study on visual perception of traditional residential architectural decoration using eye tracking and electroencephalogram (EEG) experiments. Evol. Stud. Imaginative Cult. 2024, 8, 731–739. [Google Scholar]
- Ergan, S.; Radwan, A.; Zou, Z.; Tseng, H.A.; Han, X. Quantifying human experience in architectural spaces with integrated virtual reality and body sensor networks. J. Comput. Civil. Eng. 2019, 33, 04018062. [Google Scholar] [CrossRef]
- Taherysayah, F.; Malathouni, C.; Liang, H.N.; Westermann, C. Virtual reality and electroencephalography in architectural design: A systematic review of empirical studies. J. Build. Eng. 2024, 85, 108611. [Google Scholar] [CrossRef]
- Boldrini, M.; Fulmore, C.A.; Tartt, A.N.; Simeon, L.R.; Pavlova, I.; Poposka, V.; Mann, J.J. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 2018, 22, 589–599. [Google Scholar] [CrossRef]
- Tobin, M.K.; Musaraca, K.; Disouky, A.; Shetti, A.; Bheri, A.; Honer, W.G.; Lazarov, O. Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell 2019, 24, 974–982. [Google Scholar] [CrossRef]
- Liu, P.Z.; Nusslock, R. Exercise-mediated neurogenesis in the hippocampus via BDNF. Front. Neurosci. 2018, 12, 52. [Google Scholar] [CrossRef]
- Rossi, C.; Angelucci, A.; Costantin, L.; Braschi, C.; Mazzantini, M.; Babbini, F.; Caleo, M. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur. J. Neurosci. 2006, 24, 1850–1856. [Google Scholar] [CrossRef] [PubMed]
- Júdice, P.B.; Magalhães, J.P.; Hetherington-Rauth, M.; Correia, I.R.; Sardinha, L.B. Sedentary patterns are associated with BDNF in patients with type 2 diabetes mellitus. Eur. J. Appl. Physiol. 2021, 121, 871–879. [Google Scholar] [CrossRef]
- de Oliveira Segundo, V.H.; de Azevedo, K.P.M.; de Medeiros, G.C.B.S.; Mata ÁND, S.; Piuvezam, G. Association between sedentary behavior and Brain-Derived Neurotrophic Factor (BDNF) in children and adolescents: A protocol for systematic review and meta-analysis. PLoS ONE 2024, 19, e0299024. [Google Scholar] [CrossRef]
- Khalil, M.H. Neurosustainability. Front. Human. Neurosci. 2024, 18, 1436179. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.M.; Molina-Hidalgo, C.; Aghjayan, S.L.; Fanning, J.; Erlenbach, E.D.; Gothe, N.P.; Erickson, K.I. Differentiating the influence of sedentary behavior and physical activity on brain health in late adulthood. Exp. Gerontol. 2023, 180, 112246. [Google Scholar] [CrossRef]
- Falck, R.S.; Hsu, C.L.; Best, J.R.; Li, L.C.; Egbert, A.R.; Liu-Ambrose, T. Not just for joints: The associations of moderate-to-vigorous physical activity and sedentary behavior with brain cortical thickness. Med. Sci. Sports Exerc. 2020, 52, 2217–2223. [Google Scholar] [CrossRef]
- Khalil, M.H. From Cave to Cage? The Evolution of Housing Complexity and the Contemporary Dead End for the Human Brain. Hous. Theory Soc. 2024, 1–19. [Google Scholar] [CrossRef]
- Khalil, M.H. Environmental enrichment: A systematic review on the effect of a changing spatial complexity on hippocampal neurogenesis and plasticity in rodents, with considerations for translation to urban and built environments for humans. Front. Neurosci. 2024, 18, 1368411. [Google Scholar] [CrossRef] [PubMed]
- Maasakkers, C.M.; Weijs, R.W.; Dekkers, C.; Gardiner, P.A.; Ottens, R.; Rikkert, M.G.O.; Claassen, J.A. Sedentary behaviour and brain health in middle-aged and older adults: A systematic review. Neurosci. Biobehav. Rev. 2022, 140, 104802. [Google Scholar] [CrossRef]
- Maharjan, R.; Bustamante, L.D.; Ghattas, K.N.; Ilyas, S.; Al-Refai, R.; Khan, S. Role of lifestyle in neuroplasticity and neurogenesis in an aging brain. Cureus 2020, 12, e10639. [Google Scholar] [CrossRef]
- Voss, M.W.; Carr, L.J.; Clark, R.; Weng, T. Revenge of the “sit” II: Does lifestyle impact neuronal and cognitive health through distinct mechanisms associated with sedentary behavior and physical activity? Ment. Health Phys. Act. 2014, 7, 9–24. [Google Scholar] [CrossRef]
- Zavala-Crichton, J.P.; Esteban-Cornejo, I.; Solis-Urra, P.; Mora-Gonzalez, J.; Cadenas-Sanchez, C.; Rodriguez-Ayllon, M.; Ortega, F.B. Association of sedentary behavior with brain structure and intelligence in children with overweight or obesity: The ActiveBrains project. J. Clin. Med. 2020, 9, 1101. [Google Scholar] [CrossRef]
- Zou, L.; Herold, F.; Cheval, B.; Wheeler, M.J.; Pindus, D.M.; Erickson, K.I.; Owen, N. Sedentary behavior and lifespan brain health. Trends Cogn. Sci. 2024, 28, 369–382. [Google Scholar] [CrossRef]
- Peter, S.; Ibrahim, B. Intuitive Innovation: Unconventional Modeling and Systems Neurology. Mathematics 2024, 12, 3308. [Google Scholar] [CrossRef]
- Mathews, K.J.; Allen, K.M.; Boerrigter, D.; Ball, H.; Shannon Weickert, C.; Double, K.L. Evidence for reduced neurogenesis in the aging human hippocampus despite stable stem cell markers. Aging Cell 2017, 16, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Spalding, K.L.; Bergmann, O.; Alkass, K.; Bernard, S.; Salehpour, M.; Huttner, H.B.; Frisén, J. Dynamics of hippocampal neurogenesis in adult humans. Cell 2013, 153, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, K.; Holsboer-Trachsler, E.; Eckert, A. BDNF in sleep, insomnia, and sleep deprivation. Ann. Med. 2016, 48, 42–51. [Google Scholar] [CrossRef]
- Giese, M.; Unternaehrer, E.; Brand, S.; Calabrese, P.; Holsboer-Trachsler, E.; Eckert, A. The interplay of stress and sleep impacts BDNF level. PLoS ONE 2013, 8, e76050. [Google Scholar] [CrossRef]
- Notaras, M.; van den Buuse, M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol. Psychiatry 2020, 25, 2251–2274. [Google Scholar] [CrossRef]
- Gravesteijn, E.; Mensink, R.P.; Plat, J. Effects of nutritional interventions on BDNF concentrations in humans: A systematic review. Nutr. Neurosci. 2022, 25, 1425–1436. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.P.; Terreros-Roncal, J.; Flor-García, M.; Rábano, A.; Llorens-Martín, M. Evidences for adult hippocampal neurogenesis in humans. J. Neurosci. 2021, 41, 2541–2553. [Google Scholar] [CrossRef]
- Terstege, D.J.; Addo-Osafo, K.; Campbell Teskey, G.; Epp, J.R. New neurons in old brains: Implications of age in the analysis of neurogenesis in post-mortem tissue. Mol. Brain 2022, 15, 38. [Google Scholar] [CrossRef]
- Vrijen, C.; Schenk, H.M.; Hartman, C.A.; Oldehinkel, A.J. Measuring BDNF in saliva using commercial ELISA: Results from a small pilot study. Psychiatry Res. 2017, 254, 340–346. [Google Scholar] [CrossRef]
- Fuller, D.; Colwell, E.; Low, J.; Orychock, K.; Tobin, M.A.; Simango, B.; Taylor, N.G. Reliability and validity of commercially available wearable devices for measuring steps, energy expenditure, and heart rate: Systematic review. JMIR Mhealth Uhealth 2020, 8, e18694. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Vartanian, O. Neuroaesthetics. Trends Cogn. Sci. 2014, 18, 370–375. [Google Scholar] [CrossRef] [PubMed]
- McCormick, B.P.; Brusilovskiy, E.; Snethen, G.; Klein, L.; Townley, G.; Salzer, M.S. Getting out of the house: The relationship of venturing into the community and neurocognition among adults with serious mental illness. Psychiatr. Rehabil. J. 2022, 45, 18. [Google Scholar] [CrossRef] [PubMed]
- Sudimac, S.; Sale, V.; Kühn, S. How nature nurtures: Amygdala activity decreases as the result of a one-hour walk in nature. Mol. Psychiatry 2022, 27, 4446–4452. [Google Scholar] [CrossRef]
- Sudimac, S.; Kühn, S. Can a nature walk change your brain? Investigating hippocampal brain plasticity after one hour in a forest. Environ. Res. 2024, 262, 119813. [Google Scholar] [CrossRef] [PubMed]
- Kühn, S.; Gallinat, J. Environmental neuroscience unravels the pathway from the physical environment to mental health. Nat. Ment. Health 2024, 2, 263–269. [Google Scholar] [CrossRef]
Structural Enrichment | METs per Intensity | Built Environmental Agents | |||
---|---|---|---|---|---|
Light | Moderate | High | Architectural | Urban | |
Walking 3 km/h | 3 | 4 | 5 | e.g., division of space, zoning, long corridors, linear layouts,…, etc. | e.g., street features, green space, routes. |
Climbing stairs | 4 | 6 | 8 | e.g., staircase type, floor visibility, novelty. | N/A |
Combined METsmean | 3.5 | 5 | 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, M.H. Environmental Affordance for Physical Activity, Neurosustainability, and Brain Health: Quantifying the Built Environment’s Ability to Sustain BDNF Release by Reaching Metabolic Equivalents (METs). Brain Sci. 2024, 14, 1133. https://doi.org/10.3390/brainsci14111133
Khalil MH. Environmental Affordance for Physical Activity, Neurosustainability, and Brain Health: Quantifying the Built Environment’s Ability to Sustain BDNF Release by Reaching Metabolic Equivalents (METs). Brain Sciences. 2024; 14(11):1133. https://doi.org/10.3390/brainsci14111133
Chicago/Turabian StyleKhalil, Mohamed Hesham. 2024. "Environmental Affordance for Physical Activity, Neurosustainability, and Brain Health: Quantifying the Built Environment’s Ability to Sustain BDNF Release by Reaching Metabolic Equivalents (METs)" Brain Sciences 14, no. 11: 1133. https://doi.org/10.3390/brainsci14111133
APA StyleKhalil, M. H. (2024). Environmental Affordance for Physical Activity, Neurosustainability, and Brain Health: Quantifying the Built Environment’s Ability to Sustain BDNF Release by Reaching Metabolic Equivalents (METs). Brain Sciences, 14(11), 1133. https://doi.org/10.3390/brainsci14111133