Deciphering Post-Stroke Sleep Disorders: Unveiling Neurological Mechanisms in the Realm of Brain Science
Abstract
:1. Introduction
Method
2. Biological Mechanisms Underlying Sleep Disorders following Stroke
2.1. Changes in Sleep Staging
2.2. Circadian Disruption
2.3. Functional Changes in Brain Regions
2.4. Cerebral Vascular Hemodynamics
2.5. Neurological Deficits
2.6. Sleep Disruptions: Exploring Ions, Ion Channels and Kinases
2.6.1. Ions
2.6.2. Ion Channels
2.6.3. Kinases
2.7. Neurotransmitter Regulation
2.8. Inflammatory Cytokines
2.9. Challenges and Opportunities
3. Recent Treatment Progress
3.1. Drug Therapy
3.2. Non-Pharmacological Treatment
3.3. Combination Therapy
3.4. Emerging Therapies
4. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, R.; Liu, H.; Pu, L.; Zhao, T.; Zhang, S.; Han, K.; Han, L. Global Burden of Ischemic Stroke in Young Adults in 204 Countries and Territories. Neurology 2023, 100, e422–e434. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Zhu, G.; Xiao, W.; Gao, B.; Lu, W.; Wang, Y. Stroke burden and attributable risk factors in China, 1990–2019. Front. Neurol. 2023, 14, 1193056. [Google Scholar] [CrossRef] [PubMed]
- Guo, W. Research on the relationship of recurrence of cerebral infarction with total sleeping time. J. Med. Res. Combat. Trauma Care 2017, 30, 767–769. [Google Scholar] [CrossRef]
- McDermott, M.; Brown, D.L.; Chervin, R.D. Sleep disorders and the risk of stroke. Expert Rev. Neurother. 2018, 18, 523–531. [Google Scholar] [CrossRef]
- Gan, Q.; Zhao, L.; Chang, Y.; Sun, W.; Li, C. Sleep Status of Patients with Mild to Moderate Acute Cerebral lnfarction. World J. Sleep Med. 2018, 5, 396–398. [Google Scholar]
- Ferre, A.; Ribó, M.; Rodríguez-Luna, D.; Romero, O.; Sampol, G.; Molina, C.A.; Álvarez-Sabin, J. Strokes and their relationship with sleep and sleep disorders. Neurologia 2013, 28, 103–118. [Google Scholar] [CrossRef]
- Johnson, K.G.; Johnson, D.C. Frequency of sleep apnea in stroke and TIA patients: A meta-analysis. J. Clin. Sleep Med. 2010, 6, 131–137. [Google Scholar] [CrossRef]
- Chen, X.; Bi, H.; Zhang, M.; Liu, H.; Wang, X.; Zu, R. Research of Sleep Disorders in Patients with Acute Cerebral Infarction. J. Stroke Cerebrovasc. Dis. 2015, 24, 2508–2513. [Google Scholar] [CrossRef]
- Suh, M.; Choi-Kwon, S.; Kim, J.S. Sleep Disturbances at 3 Months after Cerebral Infarction. Eur. Neurol. 2016, 75, 75–81. [Google Scholar] [CrossRef]
- Leppävuori, A.; Pohjasvaara, T.; Vataja, R.; Kaste, M.; Erkinjuntti, T. Insomnia in ischemic stroke patients. Cerebrovasc. Dis. 2002, 14, 90–97. [Google Scholar] [CrossRef]
- Duss, S.B.; Brill, A.K.; Bargiotas, P.; Facchin, L.; Alexiev, F.; Manconi, M.; Bassetti, C.L. Sleep-Wake Disorders in Stroke-Increased Stroke Risk and Deteriorated Recovery An Evaluation on the Necessity for Prevention and Treatment. Curr. Neurol. Neurosci. Rep. 2018, 18, 72. [Google Scholar] [CrossRef]
- Duss, S.B.; Bauer-Gambelli, S.A.; Bernasconi, C.; Dekkers, M.P.J.; Gorban-Peric, C.; Kuen, D.; Seiler, A.; Oberholzer, M.; Alexiev, F.; Lippert, J.; et al. Frequency and evolution of sleep-wake disturbances after ischemic stroke: A 2-year prospective study of 437 patients. Sleep Med. 2023, 101, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Lisabeth, L.D.; Zhang, G.; Chervin, R.D.; Shi, X.; Morgenstern, L.B.; Campbell, M.; Tower, S.; Brown, D.L. Longitudinal Assessment of Sleep Apnea in the Year After Stroke in a Population-Based Study. Stroke 2023, 54, 2356–2365. [Google Scholar] [CrossRef] [PubMed]
- Faught, E. Current role of electroencephalography in cerebral ischemia. Stroke 1993, 24, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Burghaus, L.; Hilker, R.; Dohmen, C.; Bosche, B.; Winhuisen, L.; Galldiks, N.; Szelies, B.; Heiss, W.D. Early electroencephalography in acute ischemic stroke: Prediction of a malignant course? Clin. Neurol. Neurosurg. 2007, 109, 45–49. [Google Scholar] [CrossRef]
- Jordan, K.G. Emergency EEG and continuous EEG monitoring in acute ischemic stroke. J. Clin. Neurophysiol. 2004, 21, 341–352. [Google Scholar] [PubMed]
- Finnigan, S.P.; Walsh, M.; Rose, S.E.; Chalk, J.B. Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes. Clin. Neurophysiol. 2007, 118, 2525–2532. [Google Scholar] [CrossRef]
- Vock, J.; Achermann, P.; Bischof, M.; Milanova, M.; Müller, C.; Nirkko, A.; Roth, C.; Bassetti, C.L. Evolution of sleep and sleep EEG after hemispheric stroke. J. Sleep Res. 2002, 11, 331–338. [Google Scholar] [CrossRef]
- Körner, E.; Flooh, E.; Reinhart, B.; Wolf, R.; Ott, E.; Krenn, W.; Lechner, H. Sleep alterations in ischemic stroke. Eur. Neurol. 1986, 25 (Suppl. 2), 104–110. [Google Scholar] [CrossRef]
- Giubilei, F.; Iannilli, M.; Vitale, A.; Pierallini, A.; Sacchetti, M.L.; Antonini, G.; Fieschi, C. Sleep patterns in acute ischemic stroke. Acta Neurol. Scand. 1992, 86, 567–571. [Google Scholar] [CrossRef]
- Li, L.; Deng, L.; Zhou, X.; Liu, H.; Ding, Y. Sleep architecture in acute stroke. J. Apoplexy Nerv. Dis. 2011, 28, 488–492. [Google Scholar] [CrossRef]
- Li, N. Observation on the Change of Sleep Structure and Oxidative Stress Indexes of Patients. World J. Sleep Med. 2019, 6, 716–717. [Google Scholar]
- Wang, Y.; Lu, H.; Chen, J. Study on correlation between stroke patients with sleep structure and heart rate. Mod. J. Integr. Tradit. Chin. West. Med. 2014, 23, 478–480. [Google Scholar]
- Pace, M.; Camilo, M.R.; Seiler, A.; Duss, S.B.; Mathis, J.; Manconi, M.; Bassetti, C.L. Rapid eye movements sleep as a predictor of functional outcome after stroke: A translational study. Sleep 2018, 41, zsy138. [Google Scholar] [CrossRef]
- Hepburn, M.; Bollu, P.C.; French, B.; Sahota, P. Sleep Medicine: Stroke and Sleep. Mo. Med. 2018, 115, 527–532. [Google Scholar]
- Baumann, C.R.; Kilic, E.; Petit, B.; Werth, E.; Hermann, D.M.; Tafti, M.; Bassetti, C.L. Sleep EEG changes after middle cerebral artery infarcts in mice: Different effects of striatal and cortical lesions. Sleep 2006, 29, 1339–1344. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.; Zhao, X.; Yan, S.; Zeng, F.; Zhou, D. New insight into ischemic stroke: Circadian rhythm in post-stroke angiogenesis. Front. Pharmacol. 2022, 13, 927506. [Google Scholar] [CrossRef] [PubMed]
- Fodor, D.M.; Marta, M.M.; Perju-Dumbravă, L. Implications of Circadian Rhythm in Stroke Occurrence: Certainties and Possibilities. Brain Sci. 2021, 11, 865. [Google Scholar] [CrossRef]
- Lo, E.H.; Albers, G.W.; Dichgans, M.; Donnan, G.; Esposito, E.; Foster, R.; Howells, D.W.; Huang, Y.G.; Ji, X.; Klerman, E.B.; et al. Circadian Biology and Stroke. Stroke 2021, 52, 2180–2190. [Google Scholar] [CrossRef]
- Quan, S.F.; Howard, B.V.; Iber, C.; Kiley, J.P.; Nieto, F.J.; O’Connor, G.T.; Rapoport, D.M.; Redline, S.; Robbins, J.; Samet, J.M.; et al. The Sleep Heart Health Study: Design, rationale, and methods. Sleep 1997, 20, 1077–1085. [Google Scholar] [PubMed]
- Jain, S.; Namboodri, K.K.; Kumari, S.; Prabhakar, S. Loss of circadian rhythm of blood pressure following acute stroke. BMC Neurol. 2004, 4, 1. [Google Scholar] [CrossRef]
- Lu, H.; Wang, Y.; Fan, H.; Wang, Y.; Fan, S.; Hu, S.; Shen, H.; Li, H.; Xue, Q.; Ni, J.; et al. GluA1 Degradation by Autophagy Contributes to Circadian Rhythm Effects on Cerebral Ischemia Injury. J. Neurosci. 2023, 43, 2381–2397. [Google Scholar] [CrossRef] [PubMed]
- Arzt, M.; Young, T.; Finn, L.; Skatrud, J.B.; Bradley, T.D. Association of sleep-disordered breathing and the occurrence of stroke. Am. J. Respir. Crit. Care Med. 2005, 172, 1447–1451. [Google Scholar] [CrossRef]
- Beker, M.C.; Caglayan, B.; Caglayan, A.B.; Kelestemur, T.; Yalcin, E.; Caglayan, A.; Kilic, U.; Baykal, A.T.; Reiter, R.J.; Kilic, E. Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival. Sci. Rep. 2019, 9, 19082. [Google Scholar] [CrossRef] [PubMed]
- Karmarkar, S.W.; Tischkau, S.A. Influences of the circadian clock on neuronal susceptibility to excitotoxicity. Front. Physiol. 2013, 4, 313. [Google Scholar] [CrossRef]
- Koyanagi, S.; Kuramoto, Y.; Nakagawa, H.; Aramaki, H.; Ohdo, S.; Soeda, S.; Shimeno, H. A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res. 2003, 63, 7277–7283. [Google Scholar] [PubMed]
- Xu, L.; Liu, Y.; Cheng, Q.; Shen, Y.; Yuan, Y.; Jiang, X.; Li, X.; Guo, D.; Jiang, J.; Lin, C. Bmal1 Downregulation Worsens Critical Limb Ischemia by Promoting Inflammation and Impairing Angiogenesis. Front. Cardiovasc. Med. 2021, 8, 712903. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J. To analyze the characteristics and influencing factors of sleep disorders in stroke patients. Chin. J. Cerebrovasc. Dis. 2005, 04, 173–174. [Google Scholar]
- Chen, Y.K.; Lu, J.Y.; Mok, V.C.; Ungvari, G.S.; Chu, W.C.; Wong, K.S.; Tang, W.K. Clinical and radiologic correlates of insomnia symptoms in ischemic stroke patients. Int. J. Geriatr. Psychiatry 2011, 26, 451–457. [Google Scholar] [CrossRef]
- Tang, W.K.; Lu, J.Y.; Chen, Y.K.; Chu, W.C.; Mok, V.; Ungvari, G.S.; Wong, K.S. Association of frontal subcortical circuits infarcts in poststroke depression: A magnetic resonance imaging study of 591 Chinese patients with ischemic stroke. J. Geriatr. Psychiatry Neurol. 2011, 24, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Teng, F. The Related Factors and Analysis Study of Insomnia Disorder after Cerebral Infarction. Master’s Thesis, Dalian Medical University, Dalian, China, 2017. [Google Scholar]
- Palomäki, H.; Berg, A.; Meririnne, E.; Kaste, M.; Lönnqvist, R.; Lehtihalmes, M.; Lönnqvist, J. Complaints of poststroke insomnia and its treatment with mianserin. Cerebrovasc. Dis. 2003, 15, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Mao, A.; Zhang, M. Explore the Occurrence of Acute Stroke Lesion Site in Patients with Sleep Disorders. Syst. Med. 2016, 1, 30–32. [Google Scholar] [CrossRef]
- Wang, Y.; Lou, P.; Li, T.; Fan, Y. Clinical analysis of sleep disorders in stroke patients. Clin. Res. Pract. 2018, 3, 12–13. [Google Scholar] [CrossRef]
- Wen, S.; Duan, J.; Feng, Y. lmaging study of sleep-wake circadian rhythm disorder in stroke patients. Chin. J. Pract. Nerv. Dis. 2016, 19, 21–22. [Google Scholar]
- Jones, B.E.; Hassani, O.K. The role of Hcrt/Orx and MCH neurons in sleep-wake state regulation. Sleep 2013, 36, 1769–1772. [Google Scholar] [CrossRef] [PubMed]
- Szymusiak, R.; Gvilia, I.; McGinty, D. Hypothalamic control of sleep. Sleep Med. 2007, 8, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Zhi, J.; Hu, J.; Li, P.; Duan, B. Correlation among stroke position, inflammatory factors and after acute. J. Int. Psychiatry 2019, 46, 690–692+699. [Google Scholar] [CrossRef]
- Hermann, D.M.; Siccoli, M.; Brugger, P.; Wachter, K.; Mathis, J.; Achermann, P.; Bassetti, C.L. Evolution of neurological, neuropsychological and sleep-wake disturbances after paramedian thalamic stroke. Stroke 2008, 39, 62–68. [Google Scholar] [CrossRef]
- Da Rocha, P.C.; Barroso, M.T.; Dantas, A.A.; Melo, L.P.; Campos, T.F. Predictive factors of subjective sleep quality and insomnia complaint in patients with stroke: Implications for clinical practice. An. Acad. Bras. Ciências 2013, 85, 1197–1206. [Google Scholar] [CrossRef]
- Bassetti, C.L.; Aldrich, M.S. Sleep electroencephalogram changes in acute hemispheric stroke. Sleep Med. 2001, 2, 185–194. [Google Scholar] [CrossRef]
- Mihara, K.; Nakahara, H.; Iwashita, K.; Shigematsu, K.; Yamaura, K.; Akiyoshi, K. Cerebral hemorrhagic infarction was diagnosed subsequently after high-amplitude slow waves detected on processed electroencephalogram during sedation: A case report. JA Clin. Rep. 2021, 7, 79. [Google Scholar] [CrossRef]
- Mekky, J.; Hafez, N.; Kholy, O.E.; Elsalamawy, D.; Gaber, D. Impact of site, size and severity of ischemic cerebrovascular stroke on sleep in a sample of Egyptian patients a polysomnographic study. BMC Neurol. 2023, 23, 387. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.; Espinosa, M.; Arpa, J.; Barreiro, P.; Rodríguez-Albariño, A. Hypersomnia and thalamic and brain stem stroke: A study of seven patients. Neurologia 1999, 14, 307–314. [Google Scholar]
- Ahmed, S.; Meng, H.; Liu, T.; Sutton, B.C.; Opp, M.R.; Borjigin, J.; Wang, M.M. Ischemic stroke selectively inhibits REM sleep of rats. Exp. Neurol. 2011, 232, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Terzoudi, A.; Vorvolakos, T.; Heliopoulos, I.; Livaditis, M.; Vadikolias, K.; Piperidou, H. Sleep architecture in stroke and relation to outcome. Eur. Neurol. 2009, 61, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Perren, F.; Clarke, S.; Bogousslavsky, J. The syndrome of combined polar and paramedian thalamic infarction. Arch. Neurol. 2005, 62, 1212–1216. [Google Scholar] [CrossRef] [PubMed]
- Luigetti, M.; Di Lazzaro, V.; Broccolini, A.; Vollono, C.; Dittoni, S.; Frisullo, G.; Pilato, F.; Profice, P.; Losurdo, A.; Morosetti, R.; et al. Bilateral thalamic stroke transiently reduces arousals and NREM sleep instability. J. Neurol. Sci. 2011, 300, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, R.; Gupta, D.; Mehta, A.; Srinivasa, R.; Javali, M.; Acharya, P.T. Wake-Up Sleepyhead: Unilateral Diencephalic Stroke Presenting with Excessive Sleepiness. J. Neurosci. Rural Pract. 2019, 10, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Allan Hobson, J. Sleep and dream suppression following a lateral medullary infarct: A first-person account. Conscious. Cogn. 2002, 11, 377–390. [Google Scholar] [CrossRef]
- Sharma, R.; Chischolm, A.; Parikh, M.; Qureshi, A.I.; Sahota, P.; Thakkar, M.M. Ischemic Stroke Disrupts Sleep Homeostasis in Middle-Aged Mice. Cells 2022, 11, 2818. [Google Scholar] [CrossRef]
- Reivich, M.; Ginsberg, M.; Slater, R.; Jones, S.; Kovach, A.; Greenberg, J.; Goldberg, H. Alterations in regional cerebral hemodynamics and metabolism produced by focal cerebral ischemia. Eur. Neurol. 1978, 17 (Suppl. 1), 9–16. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Dai, Q.; Yang, J.; Zhang, Y.; Zhang, B.; Zhong, L. Zuogui Pill Attenuates Neuroinflammation and Improves Cognitive Function in Cerebral Ischemia Reperfusion-Injured Rats. Neuroimmunomodulation 2022, 29, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.F.; Wang, C.J.; Yu, K.W.; Wu, J.F.; Zhang, Q.Q. An Enriched Environment Promotes Motor Function through Neuroprotection after Cerebral Ischemia. BioMed Res. Int. 2023, 2023, 4143633. [Google Scholar] [CrossRef] [PubMed]
- Lauer, A.; Ay, H.; Bianchi, M.; Charidimou, A.; Boulouis, G.; Ayres, A.; Vashkevich, A.; Schwab, K.M.; Singhal, A.B.; Viswanathan, A.; et al. Cerebral Small Vessel Diseases and Sleep Related Strokes. J. Stroke Cerebrovasc. Dis. 2020, 29, 104606. [Google Scholar] [CrossRef] [PubMed]
- Duss, S.B.; Brill, A.K.; Baillieul, S.; Horvath, T.; Zubler, F.; Flügel, D.; Kägi, G.; Benz, G.; Bernasconi, C.; Ott, S.R.; et al. Effect of early sleep apnoea treatment with adaptive servo-ventilation in acute stroke patients on cerebral lesion evolution and neurological outcomes: Study protocol for a multicentre, randomized controlled, rater-blinded, clinical trial (eSATIS: Early Sleep Apnoea Treatment in Stroke). Trials 2021, 22, 83. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, S.J.; Prabhakaran, S. Diagnosis and Management of Transient Ischemic Attack and Acute Ischemic Stroke: A Review. JAMA 2021, 325, 1088–1098. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Z.; He, Q.; Guo, Z.N.; Yang, Y.; Liu, F.; Li, F.; Luo, Q.; Chang, J. Spatiotemporal lipidomics reveals key features of brain lipid dynamic changes after cerebral ischemia and reperfusion therapy. Pharmacol. Res. 2022, 185, 106482. [Google Scholar] [CrossRef]
- Gerashchenko, D.; Matsumura, H. Continuous recordings of brain regional circulation during sleep/wake state transitions in rats. Am. J. Physiol. 1996, 270, R855–R863. [Google Scholar] [CrossRef]
- Hofle, N.; Paus, T.; Reutens, D.; Fiset, P.; Gotman, J.; Evans, A.C.; Jones, B.E. Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J. Neurosci. 1997, 17, 4800–4808. [Google Scholar] [CrossRef]
- Tüshaus, L.; Omlin, X.; Tuura, R.O.; Federspiel, A.; Luechinger, R.; Staempfli, P.; Koenig, T.; Achermann, P. In human non-REM sleep, more slow-wave activity leads to less blood flow in the prefrontal cortex. Sci. Rep. 2017, 7, 14993. [Google Scholar] [CrossRef]
- Lewis, L.D. The interconnected causes and consequences of sleep in the brain. Science 2021, 374, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, R.; Ingvar, D.H. Cerebral blood flow and metabolism in sleep. Acta Neurol. Scand. 1989, 80, 481–491. [Google Scholar] [CrossRef]
- Tsai, C.J.; Nagata, T.; Liu, C.Y.; Suganuma, T.; Kanda, T.; Miyazaki, T.; Liu, K.; Saitoh, T.; Nagase, H.; Lazarus, M.; et al. Cerebral capillary blood flow upsurge during REM sleep is mediated by A2a receptors. Cell Rep. 2021, 36, 109558. [Google Scholar] [CrossRef] [PubMed]
- Kotajima, F.; Meadows, G.E.; Morrell, M.J.; Corfield, D.R. Cerebral blood flow changes associated with fluctuations in alpha and theta rhythm during sleep onset in humans. J. Physiol. 2005, 568, 305–313. [Google Scholar] [CrossRef]
- Park, S.; Hong, H.; Kim, R.Y.; Ma, J.; Lee, S.; Ha, E.; Yoon, S.; Kim, J. Firefighters Have Cerebral Blood Flow Reductions in the Orbitofrontal and Insular Cortices That are Associated with Poor Sleep Quality. Nat. Sci. Sleep 2021, 13, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Hanyu, H.; Inoue, Y.; Sakurai, H.; Kanetaka, H.; Nakamura, M.; Miyamoto, T.; Sasai, T.; Iwamoto, T. Regional cerebral blood flow changes in patients with idiopathic REM sleep behavior disorder. Eur. J. Neurol. 2011, 18, 784–788. [Google Scholar] [CrossRef]
- Tsai, P.S.; Kaufhold, J.P.; Blinder, P.; Friedman, B.; Drew, P.J.; Karten, H.J.; Lyden, P.D.; Kleinfeld, D. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J. Neurosci. 2009, 29, 14553–14570. [Google Scholar] [CrossRef] [PubMed]
- Miyata, S. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Front. Neurosci. 2015, 9, 390. [Google Scholar] [CrossRef]
- Wang, L.; Xiong, X.; Zhang, L.; Shen, J. Neurovascular Unit: A critical role in ischemic stroke. CNS Neurosci. Ther. 2021, 27, 7–16. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, Y.; Zhang, Z.; Liu, Q.; Wang, M.; Li, W.; Yang, G.Y. Engineering Neurovascular Unit and Blood-Brain Barrier for Ischemic Stroke Modeling. Adv. Healthc. Mater. 2023, 12, e2202638. [Google Scholar] [CrossRef]
- Zlokovic, B.V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 2011, 12, 723–738. [Google Scholar] [CrossRef] [PubMed]
- Armulik, A.; Genové, G.; Mäe, M.; Nisancioglu, M.H.; Wallgard, E.; Niaudet, C.; He, L.; Norlin, J.; Lindblom, P.; Strittmatter, K.; et al. Pericytes regulate the blood-brain barrier. Nature 2010, 468, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Ji, C.; Shao, A. Neurovascular Unit Dysfunction and Neurodegenerative Disorders. Front. Neurosci. 2020, 14, 334. [Google Scholar] [CrossRef]
- Claassen, J.; Thijssen, D.H.J.; Panerai, R.B.; Faraci, F.M. Regulation of cerebral blood flow in humans: Physiology and clinical implications of autoregulation. Physiol. Rev. 2021, 101, 1487–1559. [Google Scholar] [CrossRef] [PubMed]
- Kisler, K.; Nelson, A.R.; Montagne, A.; Zlokovic, B.V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 2017, 18, 419–434. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fu, C.; Chen, B.; Xu, Z.; Zeng, Z.; He, L.; Lu, Y.; Chen, Z.; Liu, X. Autophagy Induced by Oxygen-Glucose Deprivation Mediates the Injury to the Neurovascular Unit. Med. Sci. Monit. 2019, 25, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Florijn, B.W.; Bijkerk, R.; Kruyt, N.D.; van Zonneveld, A.J.; Wermer, M.J.H. Sex-Specific MicroRNAs in Neurovascular Units in Ischemic Stroke. Int. J. Mol. Sci. 2021, 22, 11888. [Google Scholar] [CrossRef]
- Wang, Q.S.; Ding, H.G.; Chen, S.L.; Liu, X.Q.; Deng, Y.Y.; Jiang, W.Q.; Li, Y.; Huang, L.Q.; Han, Y.L.; Wen, M.Y.; et al. Hypertonic saline mediates the NLRP3/IL-1β signaling axis in microglia to alleviate ischemic blood-brain barrier permeability by downregulating astrocyte-derived VEGF in rats. CNS Neurosci. Ther. 2020, 26, 1045–1057. [Google Scholar] [CrossRef]
- Lalancette-Hébert, M.; Gowing, G.; Simard, A.; Weng, Y.C.; Kriz, J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J. Neurosci. 2007, 27, 2596–2605. [Google Scholar] [CrossRef]
- Maher, C.O.; Anderson, R.E.; Martin, H.S.; McClelland, R.L.; Meyer, F.B. Interleukin-1beta and adverse effects on cerebral blood flow during long-term global hypoperfusion. J. Neurosurg. 2003, 99, 907–912. [Google Scholar] [CrossRef]
- Sibson, N.R.; Blamire, A.M.; Perry, V.H.; Gauldie, J.; Styles, P.; Anthony, D.C. TNF-α reduces cerebral blood volume and disrupts tissue homeostasis via an endothelin- and TNFR2-dependent pathway. Brain 2002, 125, 2446–2459. [Google Scholar] [CrossRef]
- Tureen, J. Effect of recombinant human tumor necrosis factor-alpha on cerebral oxygen uptake, cerebrospinal fluid lactate, and cerebral blood flow in the rabbit: Role of nitric oxide. J. Clin. Investig. 1995, 95, 1086–1091. [Google Scholar] [CrossRef]
- Li, W.; Xun, C.; Wang, Y.; Cao, L.; Jiag, Y. The prevalance and influential factors of insomnia after the first ever ischemic stroke. Proceeding Clin. Med. 2014, 23, 894–896. [Google Scholar]
- Li, W.; Taskin, T.; Gautam, P.; Gamber, M.; Sun, W. Is there an association among sleep duration, nap, and stroke? Findings from the China Health and Retirement Longitudinal Study. Sleep Breath. 2021, 25, 315–323. [Google Scholar] [CrossRef]
- Zhao, A.; Yang, Y. Clinical analysis on poststroke sleep disorder. Chin. J. Mod. Med. 2005, 17, 2702–2704+2707. [Google Scholar]
- Landolt, H.P.; Holst, S.C. NEUROSCIENCE. Ionic control of sleep and wakefulness. Science 2016, 352, 517–518. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, F.; Mu, Q.; Xu, K.; Yang, S.; Wang, P.; Wu, Y.; Wu, J.; Wang, W.; Li, H.; et al. Metal ions in cerebrospinal fluid: Associations with anxiety, depression, and insomnia among cigarette smokers. CNS Neurosci. Ther. 2022, 28, 2141–2147. [Google Scholar] [CrossRef]
- Arnold, E.C.; Soler-Llavina, G.; Kambara, K.; Bertrand, D. The importance of ligand gated ion channels in sleep and sleep disorders. Biochem. Pharmacol. 2023, 212, 115532. [Google Scholar] [CrossRef] [PubMed]
- Ko, G.Y.; Shi, L.; Ko, M.L. Circadian regulation of ion channels and their functions. J. Neurochem. 2009, 110, 1150–1169. [Google Scholar] [CrossRef]
- Crunelli, V.; David, F.; Leresche, N.; Lambert, R.C. Role for T-type Ca2+ channels in sleep waves. Pflug. Arch. 2014, 466, 735–745. [Google Scholar] [CrossRef]
- Zou, B.; Cao, W.S.; Guan, Z.; Xiao, K.; Pascual, C.; Xie, J.; Zhang, J.; Xie, J.; Kayser, F.; Lindsley, C.W.; et al. Direct activation of G-protein-gated inward rectifying K+ channels promotes nonrapid eye movement sleep. Sleep 2019, 42, zsy244. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, M.; Olsson, M.; Seth, H.; Wasling, P.; Zetterberg, H.; Hedner, J.; Hanse, E. Ion concentrations in cerebrospinal fluid in wakefulness, sleep and sleep deprivation in healthy humans. J. Sleep Res. 2022, 31, e13522. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Shi, S.; Ukai-Tadenuma, M.; Fujishima, H.; Ohno, R.I.; Ueda, H.R. Leak potassium channels regulate sleep duration. Proc. Natl. Acad. Sci. USA 2018, 115, E9459–E9468. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, E.A.; Wafford, K.A.; Brickley, S.G.; Franks, N.P.; Wisden, W. The role of K2p channels in anaesthesia and sleep. Pflügers Arch. 2015, 467, 907–916. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Y.; Ren, Q.; Zhou, H. The involvement of potassium channel ORK1 in short-term memory and sleep in Drosophila. Medicine 2017, 96, e7299. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; O’Donnell, J.; Xu, Q.; Kang, N.; Goldman, N.; Nedergaard, M. Changes in the composition of brain interstitial ions control the sleep-wake cycle. Science 2016, 352, 550–555. [Google Scholar] [CrossRef]
- Maurer, J.; Lin, A.; Jin, X.; Hong, J.; Sathi, N.; Cardis, R.; Osorio-Forero, A.; Lüthi, A.; Weber, F.; Chung, S. Homeostatic regulation of REM sleep by the preoptic area of the hypothalamus. bioRxiv 2023. [Google Scholar] [CrossRef]
- Miracca, G.; Anuncibay-Soto, B.; Tossell, K.; Yustos, R.; Vyssotski, A.L.; Franks, N.P.; Wisden, W. NMDA Receptors in the Lateral Preoptic Hypothalamus Are Essential for Sustaining NREM and REM Sleep. J. Neurosci. 2022, 42, 5389–5409. [Google Scholar] [CrossRef]
- Tomita, J.; Ueno, T.; Mitsuyoshi, M.; Kume, S.; Kume, K. The NMDA Receptor Promotes Sleep in the Fruit Fly, Drosophila melanogaster. PLoS ONE 2015, 10, e0128101. [Google Scholar] [CrossRef]
- Burgdorf, J.S.; Vitaterna, M.H.; Olker, C.J.; Song, E.J.; Christian, E.P.; Sørensen, L.; Turek, F.W.; Madsen, T.M.; Khan, M.A.; Kroes, R.A.; et al. NMDAR activation regulates the daily rhythms of sleep and mood. Sleep 2019, 42, zsz135. [Google Scholar] [CrossRef]
- Yanovsky, Y.; Zigman, J.M.; Kernder, A.; Bein, A.; Sakata, I.; Osborne-Lawrence, S.; Haas, H.L.; Sergeeva, O.A. Proton- and ammonium-sensing by histaminergic neurons controlling wakefulness. Front. Syst. Neurosci. 2012, 6, 23. [Google Scholar] [CrossRef]
- Mir, F.A.; Jha, S.K. Locus Coeruleus Acid-Sensing Ion Channels Modulate Sleep-Wakefulness and State Transition from NREM to REM Sleep in the Rat. Neurosci. Bull. 2021, 37, 684–700. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, Q. Ischemic/hypoxic cerebrovascular disease and neuronal ion channel function. World J. Med. Info. 2017, 17, 30–31. [Google Scholar]
- Liu, Y.; Meng, R. Research progress on the relationship between ion channels and cerebral ischemia-reperfusion injury. Chin. J. Cerebrovasc. Dis. 2009, 6, 553–557. [Google Scholar]
- Liu, Y.; Wu, X.; Wang, W.; Xie, M. Progress of TREK-1, a double-pore potassium channel, in nervous system diseases. Neural Inj. Funct. Reconstr. 2011, 6, 451–455. [Google Scholar]
- Shi, Y.; Ge, J. Research Progress of Calcium Channels in the Neuron after Cerebral lschemia. Med. Recapitul. 2014, 20, 2507–2509. [Google Scholar]
- Bae, C.Y.; Sun, H.S. TRPM7 in cerebral ischemia and potential target for drug development in stroke. Acta Pharmacol. Sin. 2011, 32, 725–733. [Google Scholar] [CrossRef]
- Li, D.; Wei, X.; Liu, X.; Yuan, W. Research Progress on the Role of Acid Sensitive lon Channels in Cerebral lschemia Stroke. Prog. Mod. Biomed. 2016, 16, 6966–6969. [Google Scholar] [CrossRef]
- Sun, D.; Yu, Y.; Xue, X.; Pan, M.; Wen, M.; Li, S.; Qu, Q.; Li, X.; Zhang, L.; Li, X.; et al. Cryo-EM structure of the ASIC1a-mambalgin-1 complex reveals that the peptide toxin mambalgin-1 inhibits acid-sensing ion channels through an unusual allosteric effect. Cell Discov. 2018, 4, 27. [Google Scholar] [CrossRef]
- Que, S.; Miu, Y.; Lu, X.; Lin, Y.; Zhang, J.; Sun, K.; Lan, J.; Zhang, W.; Qiu, Y. lschemic tolerance of ischemic preconditioning on global brain ischemia through upregulation of acid-sensing ion channel 2a. J. Clin. Neurosurg. 2010, 7, 169–172. [Google Scholar]
- Vanderheyden, W.M.; Gerstner, J.R.; Tanenhaus, A.; Yin, J.C.; Shaw, P.J. ERK phosphorylation regulates sleep and plasticity in Drosophila. PLoS ONE 2013, 8, e81554. [Google Scholar] [CrossRef]
- Su, X.; Wang, C.; Wang, X.; Han, F.; Lv, C.; Zhang, X. Sweet Dream Liquid Chinese Medicine Ameliorates Learning and Memory Deficit in a Rat Model of Paradoxical Sleep Deprivation through the ERK/CREB Signaling Pathway. J. Med. Food 2016, 19, 472–480. [Google Scholar] [CrossRef]
- Mikhail, C.; Vaucher, A.; Jimenez, S.; Tafti, M. ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness. Sci. Signal. 2017, 10, eaai9219. [Google Scholar] [CrossRef] [PubMed]
- Tatsuki, F.; Sunagawa, G.A.; Shi, S.; Susaki, E.A.; Yukinaga, H.; Perrin, D.; Sumiyama, K.; Ukai-Tadenuma, M.; Fujishima, H.; Ohno, R.; et al. Involvement of Ca2+-Dependent Hyperpolarization in Sleep Duration in Mammals. Neuron 2016, 90, 70–85. [Google Scholar] [CrossRef]
- Tone, D.; Ode, K.L.; Zhang, Q.; Fujishima, H.; Yamada, R.G.; Nagashima, Y.; Matsumoto, K.; Wen, Z.; Yoshida, S.Y.; Mitani, T.T.; et al. Distinct phosphorylation states of mammalian CaMKIIβ control the induction and maintenance of sleep. PLoS Biol. 2022, 20, e3001813. [Google Scholar] [CrossRef] [PubMed]
- Hayasaka, N.; Hirano, A.; Miyoshi, Y.; Tokuda, I.T.; Yoshitane, H.; Matsuda, J.; Fukada, Y. Correction: Salt-inducible kinase 3 regulates the mammalian circadian clock by destabilizing PER2 protein. eLife 2021, 10, e66683. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, M. Circadian Rhythm Sleep-Wake Disorders. Contin. Lifelong Learn. Neurol. 2017, 23, 1051–1063. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, J.; Miyoshi, C.; Li, Y.; Sato, M.; Ogawa, Y.; Lou, T.; Ma, C.; Gao, X.; Lee, C.; et al. Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 2018, 558, 435–439. [Google Scholar] [CrossRef]
- Tähkämö, L.; Partonen, T.; Pesonen, A.K. Systematic review of light exposure impact on human circadian rhythm. Chronobiol. Int. 2019, 36, 151–170. [Google Scholar] [CrossRef]
- Funato, H.; Miyoshi, C.; Fujiyama, T.; Kanda, T.; Sato, M.; Wang, Z.; Ma, J.; Nakane, S.; Tomita, J.; Ikkyu, A.; et al. Forward-genetics analysis of sleep in randomly mutagenized mice. Nature 2016, 539, 378–383. [Google Scholar] [CrossRef]
- Kim, S.J.; Hotta-Hirashima, N.; Asano, F.; Kitazono, T.; Iwasaki, K.; Nakata, S.; Komiya, H.; Asama, N.; Matsuoka, T.; Fujiyama, T.; et al. Kinase signalling in excitatory neurons regulates sleep quantity and depth. Nature 2022, 612, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Honda, T.; Fujiyama, T.; Miyoshi, C.; Ikkyu, A.; Hotta-Hirashima, N.; Kanno, S.; Mizuno, S.; Sugiyama, F.; Takahashi, S.; Funato, H.; et al. A single phosphorylation site of SIK3 regulates daily sleep amounts and sleep need in mice. Proc. Natl. Acad. Sci. USA 2018, 115, 10458–10463. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, R.; Yamashita, Y.; Suzuki, H.; Hatori, S.; Tomita, J.; Kume, K. rdgB knockdown in neurons reduced nocturnal sleep in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 2023, 643, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, L.; Wang, T.; Dong, Y. Relationship between expression of P-CaMKIin cerebral ischemic tissue and concentration of cytosolic free calcium after cerebral ischemic in rats. Chin. J. Crit. Care Med. 2006, 26, 436–438. [Google Scholar]
- Jayanthi, L.D.; Wilson, J.J.; Montalvo, J.; DeFelice, L.J. Differential regulation of mammalian brain-specific proline transporter by calcium and calcium-dependent protein kinases. Br. J. Pharmacol. 2000, 129, 465–470. [Google Scholar] [CrossRef]
- Wang, J.; Du, X.; Yuan, B.; Li, X.; Peng, X.; Jiang, H. Scalp acupuncture regulates hypothalamic V1aR/CaMKI/AQPAsignaling pathway rats with focal cerebral ischemia. Acupunct. Res. 2022, 47, 949–954. [Google Scholar] [CrossRef]
- Pei, L.; Wang, Y.; Fan, B.; Xu, F.; Jiang, Y.; Zhao, D. Effect of soybean isflavones on the expression of CaMKI in cerebral ischemia/reperfusion tissue in rats. J. Bengbu Med. Coll. 2017, 42, 1153–1155+1159. [Google Scholar] [CrossRef]
- Ning, F.; Zhang, X.; Li, J.; Wang, T.; Liu, X.; Mi, P.; Yang, S. Factors analysis related to vascular cognitive impairment after ischemic stroke ischemia/reperfusion tissue in rats. Chin. J. Clin. 2015, 9, 932–936. [Google Scholar]
- Ju, F.; Liu, J. The correlation between serum calmodulin, high-sensitivity C-reactive protein and acute ischemic stroke. Chin. J. Integr. Med. Cardio-Cerebrovasc. Dis. 2017, 15, 1106–1109. [Google Scholar]
- Fan, L.; Zhang, Y.; Wang, H.; Li, H.; Xu, W.; Chu, K.; Lin, Y. Effects of Gualou Guizhi Granules on Ca2+/CaMKI/CREB Signaling Pathway in Brain Tissue of Rats with Cerebral lschemia Reperfusion Injury. Chin. J. Inf. Tradit. Chin. Med. 2018, 25, 57–61. [Google Scholar]
- Rusciano, M.R.; Sommariva, E.; Douin-Echinard, V.; Ciccarelli, M.; Poggio, P.; Maione, A.S. CaMKII Activity in the Inflammatory Response of Cardiac Diseases. Int. J. Mol. Sci. 2019, 20, 4374. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, X. Effect of Electroacupuncture on VGLUT1 Expression and CaM/CaMKI Signal Pathway in Cerebral lschemia Reperfusion Rats. J. Liaoning Univ. Tradit. Chin. Med. 2022, 24, 116–120. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, Y.; Zhang, C.; Mang, M.; Li, S.; Hong, Y. Salt-inducible kinase 2 regulates energy metabolism in rats with cerebral ischemia-reperfusion. J. Zhejiang Univ. 2021, 50, 352–360. [Google Scholar] [CrossRef]
- Ma, L.; Manaenko, A.; Ou, Y.B.; Shao, A.W.; Yang, S.X.; Zhang, J.H. Bosutinib Attenuates Inflammation via Inhibiting Salt-Inducible Kinases in Experimental Model of Intracerebral Hemorrhage on Mice. Stroke 2017, 48, 3108–3116. [Google Scholar] [CrossRef]
- Roskoski, R., Jr. ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol. Res. 2012, 66, 105–143. [Google Scholar] [CrossRef]
- Li, F.; Omori, N.; Jin, G.; Wang, S.J.; Sato, K.; Nagano, I.; Shoji, M.; Abe, K. Cooperative expression of survival p-ERK and p-Akt signals in rat brain neurons after transient MCAO. Brain Res. 2003, 962, 21–26. [Google Scholar] [CrossRef]
- Shackelford, D.A.; Yeh, R.Y. Modulation of ERK and JNK activity by transient forebrain ischemia in rats. J. Neurosci. Res. 2006, 83, 476–488. [Google Scholar] [CrossRef]
- Ren, D.; Zheng, P.; Feng, J.; Duan, J.; Zhou, S.; Hong, T.; Zhao, L.; Chen, W. Protective effetc of inhbition of ERK1/2 on rats after cerebral ischemia-repufusion injury reperfusion. Chin. J. Clin. Neurosurg. 2019, 24, 295–298. [Google Scholar] [CrossRef]
- Li, H.; Yang, F.; Zhao, J.; Li, X.; Wei, S.; Wan, L. The Change and Clinical Significance of Serum 5-HT and NE in Patients with Post-Stroke Sleep Disorders. World J. Sleep Med. 2019, 6, 667–669. [Google Scholar]
- Tang, L.; Ma, C.; You, F.; Ding, L. lmpacts of the low-frequency electric stimulation at the acupoints on the content of plasma 5-HT and NE in the patients with post-stroke insomnia. Chin. Acupunct. Moxibust. 2015, 35, 763–767. [Google Scholar] [CrossRef]
- Wu, S.; Yang, G.; Jin, M.; Guo, J.; Yu, S. Melatonin rhythms and excessive daytime sleepiness in stroke patients. J. Apoplexy Nerv. Dis. 2004, 06, 58–60. [Google Scholar]
- Wang, C.; Wang, Q.; Ji, B.; Pan, Y.; Xu, C.; Cheng, B.; Bai, B.; Chen, J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front. Mol. Neurosci. 2018, 11, 220. [Google Scholar] [CrossRef]
- Hu, S.; Ren, L.; Wang, Y.; Lei, Z.; Cai, J.; Pan, S. The association between serum orexin A and short-term neurological improvement in patients with mild to moderate acute ischemic stroke. Brain Behav. 2023, 13, e2845. [Google Scholar] [CrossRef]
- Xu, W.; Wang, F.; Zhou, Y.; Qin, Y. A preliminary study on the etiological mechanism of post-stroke insomnia in traditional Chinese and western medicine. Shaanxi J. Tradit. Chin. Med. 2020, 41, 134–136. [Google Scholar]
- Zhang, T.; Xing, M.; Zhao, Z.; Wang, Y. Effect of serum orexin A on acute cerebral infarction. Chin. J. Gerontol. 2019, 39, 5436–5440. [Google Scholar]
- Tang, S.; Huang, W.; Lu, S.; Lu, L.; Li, G.; Chen, X.; Liu, X.; Lv, X.; Zhao, Z.; Duan, R.; et al. Increased plasma orexin-A levels in patients with insomnia disorder are not associated with prepro-orexin or orexin receptor gene polymorphisms. Peptides 2017, 88, 55–61. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.R.; Wu, X.J.; He, T.Z.; Miao, D.; Jiang, J.F.; Qiao, H.F.; Yeung, W.F.; Sun, Z.L. Additional value of auricular intradermal acupuncture alongside selective serotonin reuptake inhibitors: A single-blinded, randomized, sham-controlled preliminary clinical study. Acupunct. Med. 2021, 39, 596–602. [Google Scholar] [CrossRef]
- Kitamura, E.; Hamada, J.; Kanazawa, N.; Yonekura, J.; Masuda, R.; Sakai, F.; Mochizuki, H. The effect of orexin-A on the pathological mechanism in the rat focal cerebral ischemia. Neurosci. Res. 2010, 68, 154–157. [Google Scholar] [CrossRef]
- Sokołowska, P.; Urbańska, A.; Namiecińska, M.; Biegańska, K.; Zawilska, J.B. Orexins promote survival of rat cortical neurons. Neurosci. Lett. 2012, 506, 303–306. [Google Scholar] [CrossRef]
- Yuan, L.B.; Dong, H.L.; Zhang, H.P.; Zhao, R.N.; Gong, G.; Chen, X.M.; Zhang, L.N.; Xiong, L. Neuroprotective effect of orexin-A is mediated by an increase of hypoxia-inducible factor-1 activity in rat. Anesthesiology 2011, 114, 340–354. [Google Scholar] [CrossRef]
- Xiong, X.; White, R.E.; Xu, L.; Yang, L.; Sun, X.; Zou, B.; Pascual, C.; Sakurai, T.; Giffard, R.G.; Xie, X.S. Mitigation of murine focal cerebral ischemia by the hypocretin/orexin system is associated with reduced inflammation. Stroke 2013, 44, 764–770. [Google Scholar] [CrossRef]
- Ganjavi, H.; Shapiro, C.M. Hypocretin/Orexin: A molecular link between sleep, energy regulation, and pleasure. J. Neuropsychiatry Clin. Neurosci. 2007, 19, 413–419. [Google Scholar] [CrossRef]
- Yang, H.; Peng, K.; He, Y. Expression changes of orexin positive neurons after chronic cerebral ischemia and sleep deprivation in rats. Guangdong Med. J. 2011, 32, 2942–2944. [Google Scholar] [CrossRef]
- Yang, H.; Peng, K.; Fu, Z. Mechanism of sleep disorders in rats with chronic cerebral ischemia. J. Math. Med. 2011, 24, 270–272. [Google Scholar]
- Irwin, M.R. Sleep and inflammation: Partners in sickness and in health. Nat. Rev. Immunol. 2019, 19, 702–715. [Google Scholar] [CrossRef]
- Zielinski, M.R.; Gibbons, A.J. Neuroinflammation, Sleep, and Circadian Rhythms. Front. Cell Infect. Microbiol. 2022, 12, 853096. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, M.; Zhao, J.; Yu, W.; Dong, M.; Chen, Y. Effect of gypenosides on expression of NF-κB and TNF-α in mice with acute ischemic stroke. Mod. J. Integr. Tradit. Chin. West. Med. 2023, 32, 1473–1477+1483. [Google Scholar]
- Saito, K.; Suyama, K.; Nishida, K.; Sei, Y.; Basile, A.S. Early increases in TNF-α, IL-6 and IL-1 beta levels following transient cerebral ischemia in gerbil brain. Neurosci. Lett. 1996, 206, 149–152. [Google Scholar] [CrossRef]
- Irwin, M.R.; Olmstead, R.; Carroll, J.E. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation. Biol. Psychiatry 2016, 80, 40–52. [Google Scholar] [CrossRef]
- Xu, H.; Xu, G. Effect of serum PCT, IlL-6 and CRP levels on neurological damage in patients with acute ischaemic stroke. China Mod. Dr. 2023, 61, 33–36. [Google Scholar]
- Imeri, L.; Opp, M.R. How (and why) the immune system makes us sleep. Nat. Rev. Neurosci. 2009, 10, 199–210. [Google Scholar] [CrossRef]
- Zielinski, M.R.; Krueger, J.M. Sleep and innate immunity. Front. Biosci. 2011, 3, 632–642. [Google Scholar] [CrossRef]
- Timmons, G.A.; Carroll, R.G.; O’Siorain, J.R.; Cervantes-Silva, M.P.; Fagan, L.E.; Cox, S.L.; Palsson-McDermott, E.; Finlay, D.K.; Vincent, E.E.; Jones, N.; et al. The Circadian Clock Protein BMAL1 Acts as a Metabolic Sensor In Macrophages to Control the Production of Pro IL-1β. Front. Immunol. 2021, 12, 700431. [Google Scholar] [CrossRef] [PubMed]
- Latorre, D.; Sallusto, F.; Bassetti, C.L.A.; Kallweit, U. Correction to: Narcolepsy: A model interaction between immune system, nervous system, and sleep-wake regulation. Semin. Immunopathol. 2022, 44, 739. [Google Scholar] [CrossRef] [PubMed]
- Morrow, J.D.; Opp, M.R. Sleep-wake behavior and responses of interleukin-6-deficient mice to sleep deprivation. Brain Behav. Immun. 2005, 19, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Ranjbaran, Z.; Keefer, L.; Stepanski, E.; Farhadi, A.; Keshavarzian, A. The relevance of sleep abnormalities to chronic inflammatory conditions. Inflamm. Res. 2007, 56, 51–57. [Google Scholar] [CrossRef]
- Korostovtseva, L.; Bochkarev, M.; Sviryaev, Y. Sleep and Cardiovascular Risk. Sleep Med. Clin. 2021, 16, 485–497. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Bixler, E.O.; Lin, H.M.; Prolo, P.; Trakada, G.; Chrousos, G.P. IL-6 and its circadian secretion in humans. Neuroimmunomodulation 2005, 12, 131–140. [Google Scholar] [CrossRef]
- Mei, Y.; Xin, Y.; Han, H. Expression of Serum Hcy, Lp-PLA2,CRP and Thromboelastography in Patients with lschemic Stroke and Predictive Value for Prognosis. Henan Med. Res. 2023, 32, 2793–2797. [Google Scholar]
- Xu, D.; Mu, R.; Wei, X. The Roles of IL-1 Family Cytokines in the Pathogenesis of Systemic Sclerosis. Front. Immunol. 2019, 10, 2025. [Google Scholar] [CrossRef]
- Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 2018, 281, 8–27. [Google Scholar] [CrossRef]
- Berger, A.M.; Parker, K.P.; Young-McCaughan, S.; Mallory, G.A.; Barsevick, A.M.; Beck, S.L.; Carpenter, J.S.; Carter, P.A.; Farr, L.A.; Hinds, P.S.; et al. Sleep wake disturbances in people with cancer and their caregivers: State of the science. Oncol. Nurs. Forum 2005, 32, E98–E126. [Google Scholar] [CrossRef]
- Vexler, Z.S.; Tang, X.N.; Yenari, M.A. Inflammation in adult and neonatal stroke. Clin. Neurosci. Res. 2006, 6, 293–313. [Google Scholar] [CrossRef]
- Luheshi, N.M.; Kovács, K.J.; Lopez-Castejon, G.; Brough, D.; Denes, A. Interleukin-1α expression precedes IL-1β after ischemic brain injury and is localised to areas of focal neuronal loss and penumbral tissues. J. Neuroinflamm. 2011, 8, 186. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhou, Y.; Zhang, S.; Li, J.; Zheng, Y.; Fan, X. The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke. Eur. J. Pharmacol. 2022, 914, 174660. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, J.; Gao, F.; Cheng, W.; Zhang, Y.; Wei, C.; Zhang, S.; Gao, X. Engeletin alleviates cerebral ischemia reperfusion-induced neuroinflammation via the HMGB1/TLR4/NF-κB network. J. Cell Mol. Med. 2023, 27, 1653–1663. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Dai, Z.; Cao, Y.; Wang, L. Caspase-1 inhibition mediates neuroprotection in experimental stroke by polarizing M2 microglia/macrophage and suppressing NF-κB activation. Biochem. Biophys. Res. Commun. 2019, 513, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Yousefi-Manesh, H.; Rashidian, A.; Hemmati, S.; Shirooie, S.; Sadeghi, M.A.; Zarei, N.; Dehpour, A.R. Therapeutic effects of modafinil in ischemic stroke; possible role of NF-κB downregulation. Immunopharmacol. Immunotoxicol. 2019, 41, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Song, W.; Li, B.; Wang, Y.; Bai, D.; Zhao, X.; Song, J.; Zhang, Y.; Huo, Q. Therapeutic Effect of Yeyu Decoction on Post-stroke Insomnia Model Rats and Its lnfluence on NF-κB/NLRP3 Signaling Pathway. Guid. J. Tradit. Chin. Med. Pharm. 2022, 28, 11–16. [Google Scholar] [CrossRef]
- Li, Y.; Liang, W.; Guo, C.; Chen, X.; Huang, Y.; Wang, H.; Song, L.; Zhang, D.; Zhan, W.; Lin, Z.; et al. Renshen Shouwu extract enhances neurogenesis and angiogenesis via inhibition of TLR4/NF-κB/NLRP3 signaling pathway following ischemic stroke in rats. J. Ethnopharmacol. 2020, 253, 112616. [Google Scholar] [CrossRef]
- Zhu, S.; Tang, S.; Su, F. Dioscin inhibits ischemic stroke-induced inflammation through inhibition of the TLR4/MyD88/NF-κB signaling pathway in a rat model. Mol. Med. Rep. 2018, 17, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhang, Q.; Liang, X.; Xie, J.; Sun, Q. Quercetin reduces inflammation in a rat model of diabetic peripheral neuropathy by regulating the TLR4/MyD88/NF-κB signalling pathway. Eur. J. Pharmacol. 2021, 912, 174607. [Google Scholar] [CrossRef]
- Zielinski, M.R.; Systrom, D.M.; Rose, N.R. Fatigue, Sleep, and Autoimmune and Related Disorders. Front. Immunol. 2019, 10, 1827. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Song, Y.; Ning, P.; Zhang, L.; Wu, S.; Quan, J.; Li, Q. Association between tumor necrosis factor alpha and obstructive sleep apnea in adults: A meta-analysis update. BMC Pulm. Med. 2020, 20, 215. [Google Scholar] [CrossRef] [PubMed]
- Kuna, K.; Szewczyk, K.; Gabryelska, A.; Białasiewicz, P.; Ditmer, M.; Strzelecki, D.; Sochal, M. Potential Role of Sleep Deficiency in Inducing Immune Dysfunction. Biomedicines 2022, 10, 2159. [Google Scholar] [CrossRef]
- Kaushal, N.; Ramesh, V.; Gozal, D. TNF-α and temporal changes in sleep architecture in mice exposed to sleep fragmentation. PLoS ONE 2012, 7, e45610. [Google Scholar] [CrossRef]
- Deboer, T.; Fontana, A.; Tobler, I. Tumor necrosis factor (TNF) ligand and TNF receptor deficiency affects sleep and the sleep EEG. J. Neurophysiol. 2002, 88, 839–846. [Google Scholar] [CrossRef]
- Obal, F., Jr.; Krueger, J.M. Biochemical regulation of non-rapid-eye-movement sleep. Front. Biosci. 2003, 8, d520–d550. [Google Scholar] [CrossRef] [PubMed]
- Cavadini, G.; Petrzilka, S.; Kohler, P.; Jud, C.; Tobler, I.; Birchler, T.; Fontana, A. TNF-α suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proc. Natl. Acad. Sci. USA 2007, 104, 12843–12848. [Google Scholar] [CrossRef]
- Zhong, Z.G.; Tao, G.J.; Hao, S.M.; Ben, H.; Qu, W.M.; Sun, F.Y.; Huang, Z.L.; Qiu, M.H. Alleviating sleep disturbances and modulating neuronal activity after ischemia: Evidence for the benefits of zolpidem in stroke recovery. CNS Neurosci. Ther. 2024, 30, e14637. [Google Scholar] [CrossRef]
- Chen, P.; Ban, W.; Wang, W.; You, Y.; Yang, Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023, 5, 276–294. [Google Scholar] [CrossRef]
- Motamedi-Fakhr, S.; Moshrefi-Torbati, M.; Hill, M.; Hill, C.M.; White, P.R. Signal processing techniques applied to human sleep EEG signals-A review. Biomedical Signal Processing and Control. J. Med. Eng. Technol. 2014, 10, 21–33. [Google Scholar] [CrossRef]
- Pedroni, A.; Bahreini, A.; Langer, N. Automagic: Standardized preprocessing of big EEG data. Neuroimage 2019, 200, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Arnal, P.J.; Thorey, V.; Debellemaniere, E.; Ballard, M.E.; Bou Hernandez, A.; Guillot, A.; Jourde, H.; Harris, M.; Guillard, M.; Van Beers, P.; et al. The Dreem Headband compared to polysomnography for electroencephalographic signal acquisition and sleep staging. Sleep 2020, 43, zsaa097. [Google Scholar] [CrossRef] [PubMed]
- de Zambotti, M.; Rosas, L.; Colrain, I.M.; Baker, F.C. The Sleep of the Ring: Comparison of the ŌURA Sleep Tracker Against Polysomnography. Behav. Sleep Med. 2019, 17, 124–136. [Google Scholar] [CrossRef]
- Lavigne, G.J.; Khoury, S.; Abe, S.; Yamaguchi, T.; Raphael, K. Bruxism physiology and pathology: An overview for clinicians. J. Oral Rehabil. 2008, 35, 476–494. [Google Scholar] [CrossRef]
- Tayade, K.; Vibha, D.; Singh, R.K.; Pandit, A.K.; Ramanujam, B.; Das, A.; Elavarasi, A.; Agarwal, A.; Srivastava, A.K.; Tripathi, M. Prevalence and determinants of post-stroke sleep disorders: A cross-sectional hospital-based study. Sleep Breath. 2023, 27, 2429–2433. [Google Scholar] [CrossRef]
- Mao, X.; Li, M.; Li, W.; Niu, L.; Xian, B.; Zeng, M.; Chen, G. Progress in EEG-Based Brain Robot Interaction Systems. Comput. Intell. Neurosci. 2017, 2017, 1742862. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Lee, E.J.; Chang, D.I.; Park, J.H.; Ahn, S.H.; Cha, J.K.; Heo, J.H.; Sohn, S.I.; Lee, B.C.; Kim, D.E.; et al. Efficacy of early administration of escitalopram on depressive and emotional symptoms and neurological dysfunction after stroke: A multicentre, double-blind, randomised, placebo-controlled study. Lancet Psychiatry 2017, 4, 33–41. [Google Scholar] [CrossRef]
- Liu, L.; Li, D.; Xu, J.; Peng, Y. To observe the effect of zolpidem tartrate tablets on neurological function and sleep quality in patients with sleep disorders after acute stroke. Guizhou Med. J. 2017, 41, 1061–1063. [Google Scholar]
- Zhao, L.; Che, S.; Zhou, X. Effect of zolpidem tartrate tablets on patients with acute stroke and sleep disorders. Psychol. Mon. 2022, 17, 18–20. [Google Scholar] [CrossRef]
- Hiu, T.; Farzampour, Z.; Paz, J.T.; Wang, E.H.; Badgely, C.; Olson, A.; Micheva, K.D.; Wang, G.; Lemmens, R.; Tran, K.V.; et al. Enhanced phasic GABA inhibition during the repair phase of stroke: A novel therapeutic target. Brain 2016, 139, 468–480. [Google Scholar] [CrossRef]
- Oh, M.K.; Yoon, K.J.; Lee, Y.T.; Chae, S.W.; Choi, H.Y.; Shin, H.S.; Park, Y.H.; Chun, S.W.; Park, Y.S. Effect of zolpidem on functional recovery in a rat model of ischemic stroke. J. Int. Med. Res. 2018, 46, 249–257. [Google Scholar] [CrossRef]
- Monti, J.M.; Spence, D.W.; Buttoo, K.; Pandi-Perumal, S.R. Zolpidem’s use for insomnia. Asian J. Psychiatr. 2017, 25, 79–90. [Google Scholar] [CrossRef]
- Earl, D.C.; Van Tyle, K.M. New pharmacologic agents for insomnia and hypersomnia. Curr. Opin. Pulm. Med. 2020, 26, 629–633. [Google Scholar] [CrossRef]
- Meng, G.; Li, M.; Han, L.; Yang, Y.; Zhao, X. Effect of Zolpidem Tartrate on Actigraphy Parameters in Patients with lnsomnia. Prog. Mod. Biomed. 2014, 14, 1294–1296+1326. [Google Scholar] [CrossRef]
- Muehlan, C.; Roch, C.; Vaillant, C.; Dingemanse, J. The orexin story and orexin receptor antagonists for the treatment of insomnia. J. Sleep Res. 2023, 32, e13902. [Google Scholar] [CrossRef]
- Nie, T.; Blair, H.A. Daridorexant in Insomnia Disorder: A Profile of Its Use. CNS Drugs 2023, 37, 267–274. [Google Scholar] [CrossRef]
- Khazaie, H.; Sadeghi, M.; Khazaie, S.; Hirshkowitz, M.; Sharafkhaneh, A. Dual orexin receptor antagonists for treatment of insomnia: A systematic review and meta-analysis on randomized, double-blind, placebo-controlled trials of suvorexant and lemborexant. Front. Psychiatry 2022, 13, 1070522. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.S.; Muo, C.H.; Chang, S.N.; Chang, Y.J.; Tsai, C.H.; Kao, C.H. Benzodiazepine use and risk of stroke: A retrospective population-based cohort study. Psychiatry Clin. Neurosci. 2014, 68, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.G.; Meadows, R.; Alfonso-Miller, P.; Bastien, C.H. Partner Alliance to Enhance Efficacy and Adherence of CBT-I. Sleep Med. Clin. 2023, 18, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Zhang, H.; Rao, W. To evaluate the efficacy of Bailemian capsule combined with cognitive behavioral therapy in the treatment of sleep disorders after stroke. Jiangxi Med. J. 2022, 57, 1986–1989. [Google Scholar]
- Nguyen, S.; Wong, D.; McKay, A.; Rajaratnam, S.M.W.; Spitz, G.; Williams, G.; Mansfield, D.; Ponsford, J.L. Cognitive behavioural therapy for post-stroke fatigue and sleep disturbance: A pilot randomised controlled trial with blind assessment. Neuropsychol. Rehabil. 2019, 29, 723–738. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yin, X.; Soto-Aguilar, F.; Liu, Y.; Yin, P.; Wu, J.; Zhu, B.; Li, W.; Lao, L.; Xu, S. Effect of acupuncture on insomnia following stroke: Study protocol for a randomized controlled trial. Trials 2016, 17, 546. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Hu, X.; Yu, Z.; Yang, L.; Wan, R.; Liu, H.; Wang, Y. Efficacy and Safety of Acupuncture in the Treatment of Poststroke Insomnia: A Systematic Review and Meta-Analysis of Twenty-Six Randomized Controlled Trials. Evid. Based Complement. Altern. Med. 2022, 2022, 5188311. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Ji, Z.; Sun, T.; Hu, H.; Chen, Z.; Feng, C.; Zhang, J.; Zhao, M.; Yang, F. Efficacy and safety of acupuncture on sleep quality for post-stroke insomnia: A systematic review and meta-analysis. Front. Neurol. 2023, 14, 1164604. [Google Scholar] [CrossRef]
- Cheuk, D.K.; Yeung, W.F.; Chung, K.F.; Wong, V. Acupuncture for insomnia. Cochrane Database Syst. Rev. 2007, Cd005472. [Google Scholar] [CrossRef]
- Ren, R.; Zhang, J.; Zhang, T.; Peng, Y.; Tang, C.; Zhang, Q. Auriculotherapy for sleep quality in people with primary insomnia: A protocol for a systematic review and meta-analysis. Medicine 2019, 98, e14621. [Google Scholar] [CrossRef]
- Zhang, J.; He, Y.; Huang, X.; Liu, Y.; Yu, H. The effects of acupuncture versus sham/placebo acupuncture for insomnia: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Clin. Pract. 2020, 41, 101253. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, C.; Wu, X.; Nie, D.; Yu, H. Neuroplasticity of Acupuncture for Stroke: An Evidence-Based Review of MRI. Neural Plast. 2021, 2021, 2662585. [Google Scholar] [CrossRef]
- Wang, M. To explore the effect of acupuncture and moxibustion on sleep quality in patients with post-stroke sleep disorders. Doctor 2023, 8, 92–95. [Google Scholar]
- Yang, F.; Li, Y.; Hu, B.; Ma, Q.; Zhao, Y. Analysis of Clinical Efficacy of Acupuncture and Moxibustion in Treatment of Patients with Sleep Disorders After Stroke Based on Real-World Data. Chin. Rural Health 2023, 42, 602–607. [Google Scholar] [CrossRef]
- Lee, S.H.; Lim, S.M. Acupuncture for insomnia after stroke: A systematic review and meta-analysis. BMC Complement. Altern. Med. 2016, 16, 228. [Google Scholar] [CrossRef] [PubMed]
- Hua, M.; Chen, X.; Chen, S.; Liao, H.; Chen, C.; Zhao, C.; Ling, L. Clinical effect of hyperbaric oxygen in the treatment of insomnia after stroke. Henan Med. Res. 2016, 25, 934–935. [Google Scholar]
- Huang, X. Clinical effect of sertraline combined with hyperbaric oxygen in the treatment of sleep disorder after stroke. Clin. Res. Pract. 2018, 3, 17–18. [Google Scholar] [CrossRef]
- Zhou, Y.; Song, X. To investigate the clinical effect of flupentixol and melitracen tablets and hyperbaric oxygen in the treatment of sleep disorders and AIS score after stroke. China Rural. Health 2018, 13, 46–47. [Google Scholar]
- Sun, M. Effect of vitamin D combined with dexzopiclone and escitalopram oxalate in the treatment of post-stroke depression with sleep disorders. J. Med. Theory Pract. 2023, 36, 951–953. [Google Scholar] [CrossRef]
- Liu, D. Effects of hyperbaric oxygen combined with Flupentixol and Melitracen tablets in treatment of patients with post-stroke sleep disorders. Med. J. Chin. People’s Health 2023, 35, 54–56. [Google Scholar]
- Lin, J.; Zheng, M.; Ju, J. The Value of Acupuncture Combined with Huanglian Wendan Decoction in the Treatment of Sleep Disturbance in Stroke Patients with Phlegm-Heat Disturbing the Heart syndrome. J. Pract. Tradit. Chin. Intern. Med. 2023, 37, 107–109. [Google Scholar] [CrossRef]
- Su, G.; Zhong, H.; Wei, Y.; Wu, H.; Pan, J. Clinical Study on Acupuncture and Moxibustion Combined with Huanglian Wendan Decoction in the Treatment of Stroke Sleep Disorder with Phlegm Heat Disturbing Heart Syndrome. Hebei Med. 2022, 28, 694–698. [Google Scholar]
- Norman, J.L.; Anderson, S.L. Novel class of medications, orexin receptor antagonists, in the treatment of insomnia—Critical appraisal of suvorexant. Nat. Sci. Sleep 2016, 8, 239–247. [Google Scholar] [CrossRef]
- Rocha, R.B.; Bomtempo, F.F.; Nager, G.B.; Cenci, G.I.; Telles, J.P.M. Dual orexin receptor antagonists for the treatment of insomnia: Systematic review and network meta-analysis. Arq. Neuro-Psiquiatr. 2023, 81, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Onge, E.S.; Phillips, B.; Rowe, C. Daridorexant: A New Dual Orexin Receptor Antagonist for Insomnia. J. Pharm. Technol. 2022, 38, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Kishi, T.; Nishida, M.; Koebis, M.; Taninaga, T.; Muramoto, K.; Kubota, N.; Moline, M.; Sakuma, K.; Okuya, M.; Nomura, I.; et al. Evidence-based insomnia treatment strategy using novel orexin antagonists: A review. Neuropsychopharmacol. Rep. 2021, 41, 450–458. [Google Scholar] [CrossRef]
- Han, A.H.; Burroughs, C.R.; Falgoust, E.P.; Hasoon, J.; Hunt, G.; Kakazu, J.; Lee, T.; Kaye, A.M.; Kaye, A.D.; Ganti, L. Suvorexant, a Novel Dual Orexin Receptor Antagonist, for the Management of Insomnia. Health Psychol. Res. 2022, 10, 67898. [Google Scholar] [CrossRef]
- Muehlan, C.; Vaillant, C.; Zenklusen, I.; Kraehenbuehl, S.; Dingemanse, J. Clinical pharmacology, efficacy, and safety of orexin receptor antagonists for the treatment of insomnia disorders. Expert Opin. Drug Metab. Toxicol. 2020, 16, 1063–1078. [Google Scholar] [CrossRef]
- Arif, S.; Khan, M.J.; Naseer, N.; Hong, K.S.; Sajid, H.; Ayaz, Y. Vector Phase Analysis Approach for Sleep Stage Classification: A Functional Near-Infrared Spectroscopy-Based Passive Brain-Computer Interface. Front. Hum. Neurosci. 2021, 15, 658444. [Google Scholar] [CrossRef]
- Lambert-Beaudet, F.; Journault, W.G.; Rudziavic Provençal, A.; Bastien, C.H. Neurofeedback for insomnia: Current state of research. World J. Psychiatry 2021, 11, 897–914. [Google Scholar] [CrossRef]
- Shen, Q.R.; Hu, M.T.; Feng, W.; Li, K.P.; Wang, W. Narrative Review of Noninvasive Brain Stimulation in Stroke Rehabilitation. Med. Sci. Monit. 2022, 28, e938298. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C.; Song, P.; Sun, C.; Zhang, Y.; Zhao, X.; Du, J. Alpha rhythm of electroencephalography was modulated differently by three transcranial direct current stimulation protocols in patients with ischemic stroke. Front. Hum. Neurosis 2022, 16, 887849. [Google Scholar] [CrossRef]
- Su, Q.; Zou, D.; Gai, N.; Li, H.; Kuang, Z.; Ni, X. Traditional Chinese Medicine for Post-stroke Sleep Disorders: The Evidence Mapping of Clinical Studies. Front. Psychiatry 2022, 13, 865630. [Google Scholar] [CrossRef]
- Yanyu, S.; Ying, L.; Kexin, L.; Jin, W. Non-invasive brain stimulation for treating post-stroke depression: A network meta-analysis. Int. J. Geriatr. Psychiatry 2023, 38, e5941. [Google Scholar] [CrossRef]
- Lee, H.I.; Lee, S.W.; Kim, N.G.; Park, K.J.; Choi, B.T.; Shin, Y.I.; Shin, H.K. Low-level light emitting diode (LED) therapy suppresses inflammasome-mediated brain damage in experimental ischemic stroke. J. Bio Photonics 2017, 10, 1502–1513. [Google Scholar] [CrossRef]
- Li, J.; Xiong, M.; Liu, J.H.; Liao, C.L. Efficacy of virtual reality technology physical therapy on insomnia in stroke patients. J. Mod. Med. Health 2019, 35, 3758–3761. [Google Scholar]
- Wang, H.T. Status of Application of Virtual Reality Technique in Motor Rehabilitation in Stroke. J. Rehabil. Theory Pract. 2014, 20, 911–915. [Google Scholar]
- Xie, Y.T.; Liu, W.L.; Wu, J.S.; Tao, J. Application of Virtual Reality in Rehabilitation of Motor Function in Stroke Patients. Chin. J. Rehabil. Theory Pract. 2017, 23, 1294–1298. [Google Scholar]
Type of Lesion | Site of Lesion | Changes in Sleep Structure and Rhythm | References |
---|---|---|---|
stroke | anterior cerebral artery area infarctions | diminished β waves and increased δ waves increase slowing in θ ranges rhythms decreased overall amplitude | [14] |
stroke | preoptic | reduced NREM and REM | [47] |
stroke | thalamic | decreased sleep spindles increased N1 and decreased N2 | [49] |
stroke | supratentorial stroke | reduced NREM TST, low SE | [50] |
acute stroke | lenticulostriate arteries MCA cortical branches | reduced REM | [20] |
acute hemispheric stroke | hemispheric | TST, low SE, reduced N2 and decreased N3 and N4 NREM sleep | [51] |
raphe nucleus stroke | raphe nucleus | reduced NREM | [6] |
cerebral hemorrhagic infarction | frontal lobe | increased δ waves | [52] |
brain stem strokes | brainstem | highest REM and REM latency | [53] |
brain stem stroke | thalamus mesencephalic pontine tegmental reticular formation | diminished REM sleep increased NREM sleep | [54] |
ischemic stroke | cortex and striatum | inhibited REM sleep | [55] |
cerebellar stroke | brain stem and hemisphere | reduced NREM prolonged REM latency | [56] |
paramedian thalamic stroke | paramedian thalamic | increased N2 and N3 decreased N4 | [57] |
bilateral thalamic stroke | bilateral thalamic | NREM sleep instability reduced arousals | [58] |
unilateral diencephalic stroke | thalamus | excessive sleep decreased N2 and N3 sleep | [59] |
lateral medullary infarction | lateral medullary | complete sleep suppression | [60] |
middle-aged C57BL/6J mice, MCAO | frontoparietal cortex and lateral caudoputamen | reduced NREM and REM increased latency to sleep reduced NREM delta power | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Wang, W.; Ban, W.; Zhang, K.; Dai, Y.; Yang, Z.; You, Y. Deciphering Post-Stroke Sleep Disorders: Unveiling Neurological Mechanisms in the Realm of Brain Science. Brain Sci. 2024, 14, 307. https://doi.org/10.3390/brainsci14040307
Chen P, Wang W, Ban W, Zhang K, Dai Y, Yang Z, You Y. Deciphering Post-Stroke Sleep Disorders: Unveiling Neurological Mechanisms in the Realm of Brain Science. Brain Sciences. 2024; 14(4):307. https://doi.org/10.3390/brainsci14040307
Chicago/Turabian StyleChen, Pinqiu, Wenyan Wang, Weikang Ban, Kecan Zhang, Yanan Dai, Zhihong Yang, and Yuyang You. 2024. "Deciphering Post-Stroke Sleep Disorders: Unveiling Neurological Mechanisms in the Realm of Brain Science" Brain Sciences 14, no. 4: 307. https://doi.org/10.3390/brainsci14040307
APA StyleChen, P., Wang, W., Ban, W., Zhang, K., Dai, Y., Yang, Z., & You, Y. (2024). Deciphering Post-Stroke Sleep Disorders: Unveiling Neurological Mechanisms in the Realm of Brain Science. Brain Sciences, 14(4), 307. https://doi.org/10.3390/brainsci14040307