From Connectivity to Controllability: Unraveling the Brain Biomarkers of Major Depressive Disorder
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. MRI Data Acquisition
2.3. Data Processing
2.4. Average Controllability Analysis
2.5. Predictive Model
3. Results
3.1. Demographics and Clinical Characteristics
3.2. Brain Average Controllability in HC and MDD
3.3. Predictive Analysis of Average Controllability in Difference Brain Regions as Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Uher, R.; Payne, J.L.; Pavlova, B.; Perlis, R.H. Major depressive disorder in DSM-5: Implications for clinical practice and research of changes from DSM-IV. Depress. Anxiety 2014, 31, 459–471. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Huang, Y.; Wang, Y.; Wang, H.; Liu, Z.; Yu, X.; Yan, J.; Yu, Y.; Kou, C.; Xu, X.; Lu, J. Prevalence of mental disorders in China: A cross-sectional epidemiological study. Lancet Psychiatry 2019, 6, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Barge-Schaapveld, D.Q.; Nicolson, N.A.; Berkhof, J.; Marten, W.d. Quality of life in depression: Daily life determinants and variability. Psychiatry Res. 1999, 88, 173–189. [Google Scholar] [CrossRef]
- Whiteford, H.A.; Degenhardt, L.; Rehm, J.; Baxter, A.J.; Ferrari, A.J.; Erskine, H.E.; Charlson, F.J.; Norman, R.E.; Flaxman, A.D.; Johns, N. Global burden of disease attributable to mental and substance use disorders: Findings from the Global Burden of Disease Study 2010. Lancet 2013, 382, 1575–1586. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Global Burden of Disease: 2004 Update; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Koretz, D.; Merikangas, K.R.; Rush, A.J.; Walters, E.E.; Wang, P.S. The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003, 289, 3095–3105. [Google Scholar] [CrossRef]
- Trivedi, M.H.; Rush, A.J.; Wisniewski, S.R.; Nierenberg, A.A.; Warden, D.; Ritz, L.; Norquist, G.; Howland, R.H.; Lebowitz, B.; McGrath, P.J. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR* D: Implications for clinical practice. Am. J. Psychiatry 2006, 163, 28–40. [Google Scholar] [CrossRef]
- Greicius, M. Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 2008, 21, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Mayberg, H.S. Modulating dysfunctional limbic-cortical circuits in depression: Towards development of brain-based algorithms for diagnosis and optimised treatment. Br. Med. Bull. 2003, 65, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.D.; Greicius, M. Clinical applications of resting state functional connectivity. Front. Syst. Neurosci. 2010, 4, 1443. [Google Scholar] [CrossRef]
- Sheline, Y.I.; Barch, D.M.; Price, J.L.; Rundle, M.M.; Vaishnavi, S.N.; Snyder, A.Z.; Mintun, M.A.; Wang, S.; Coalson, R.S.; Raichle, M.E. The default mode network and self-referential processes in depression. Proc. Natl. Acad. Sci. USA 2009, 106, 1942–1947. [Google Scholar] [CrossRef] [PubMed]
- Drysdale, A.T.; Grosenick, L.; Downar, J.; Dunlop, K.; Mansouri, F.; Meng, Y.; Fetcho, R.N.; Zebley, B.; Oathes, D.J.; Etkin, A. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 2017, 23, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Berman, M.G.; Peltier, S.; Nee, D.E.; Kross, E.; Deldin, P.J.; Jonides, J. Depression, rumination and the default network. Soc. Cogn. Affect. Neurosci. 2011, 6, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.P.; Etkin, A.; Furman, D.J.; Lemus, M.G.; Johnson, R.F.; Gotlib, I.H. Functional Neuroimaging of Major Depressive Disorder: A Meta-Analysis and New Integration of Baseline Activation and Neural Response Data. Am. J. Psychiatry 2012, 169, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Mulders, P.C.; van Eijndhoven, P.F.; Schene, A.H.; Beckmann, C.F.; Tendolkar, I. Resting-state functional connectivity in major depressive disorder: A review. Neurosci. Biobehav. Rev. 2015, 56, 330–344. [Google Scholar] [CrossRef]
- Gu, S.; Pasqualetti, F.; Cieslak, M.; Telesford, Q.K.; Yu, A.B.; Kahn, A.E.; Medaglia, J.D.; Vettel, J.M.; Miller, M.B.; Grafton, S.T. Controllability of structural brain networks. Nat. Commun. 2015, 6, 8414. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Slotine, J.-J.; Barabási, A.-L. Controllability of complex networks. Nature 2011, 473, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Zhu, Y.; Yu, M.; Zhao, Y.; Zhang, C.; Zhang, X.; Yao, Y. Control analysis of protein-protein interaction network reveals potential regulatory targets for MYCN. Front. Oncol. 2021, 11, 633579. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Pan, C.; Zhang, X.; Zhang, W. Total network controllability analysis discovers explainable drugs for COVID-19 treatment. Biol. Direct 2023, 18, 55. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, C.; Wei, X.; Yu, M.; Liu, S.; An, J.; Yang, J.; Wei, B.; Hao, W.; Yao, Y. Cancer-keeper genes as therapeutic targets. Iscience 2023, 26, 107296. [Google Scholar] [CrossRef]
- Kim, J.Z.; Soffer, J.M.; Kahn, A.E.; Vettel, J.M.; Pasqualetti, F.; Bassett, D.S. Role of graph architecture in controlling dynamical networks with applications to neural systems. Nat. Phys. 2018, 14, 91–98. [Google Scholar] [CrossRef]
- Tang, E.; Bassett, D.S. Colloquium: Control of dynamics in brain networks. Rev. Mod. Phys. 2018, 90, 031003. [Google Scholar] [CrossRef]
- Lynn, C.W.; Bassett, D.S. The physics of brain network structure, function and control. Nat. Rev. Phys. 2019, 1, 318–332. [Google Scholar] [CrossRef]
- Cornblath, E.J.; Tang, E.; Baum, G.L.; Moore, T.M.; Adebimpe, A.; Roalf, D.R.; Gur, R.C.; Gur, R.E.; Pasqualetti, F.; Satterthwaite, T.D. Sex differences in network controllability as a predictor of executive function in youth. NeuroImage 2019, 188, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Muldoon, S.F.; Pasqualetti, F.; Gu, S.; Cieslak, M.; Grafton, S.T.; Vettel, J.M.; Bassett, D.S. Stimulation-based control of dynamic brain networks. PLoS Comput. Biol. 2016, 12, e1005076. [Google Scholar] [CrossRef] [PubMed]
- Rosenblau, G.; Sterzer, P.; Stoy, M.; Park, S.; Friedel, E.; Heinz, A.; Pilhatsch, M.; Bauer, M.; Ströhle, A. Functional neuroanatomy of emotion processing in major depressive disorder is altered after successful antidepressant therapy. J. Psychopharmacol. 2012, 26, 1424–1433. [Google Scholar] [CrossRef]
- Sliz, D.; Hayley, S. Major depressive disorder and alterations in insular cortical activity: A review of current functional magnetic imaging research. Front. Hum. Neurosci. 2012, 6, 323. [Google Scholar] [CrossRef] [PubMed]
- Insel, T.R.; Cuthbert, B.N. Brain disorders? precisely. Science 2015, 348, 499–500. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.M. Precision psychiatry: A neural circuit taxonomy for depression and anxiety. Lancet Psychiatry 2016, 3, 472–480. [Google Scholar] [CrossRef]
- Braun, U.; Muldoon, S.F.; Bassett, D.S. On human brain networks in health and disease. In Encyclopedia of Life Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1–9. [Google Scholar] [CrossRef]
- Fox, M.D.; Buckner, R.L.; White, M.P.; Greicius, M.D.; Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry 2012, 72, 595–603. [Google Scholar] [CrossRef]
- Fox, M.D.; Buckner, R.L.; Liu, H.; Chakravarty, M.M.; Lozano, A.M.; Pascual-Leone, A. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proc. Natl. Acad. Sci. USA 2014, 111, E4367–E4375. [Google Scholar] [CrossRef] [PubMed]
- Cole, E.J.; Stimpson, K.H.; Bentzley, B.S.; Gulser, M.; Cherian, K.; Tischler, C.; Nejad, R.; Pankow, H.; Choi, E.; Aaron, H. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am. J. Psychiatry 2020, 177, 716–726. [Google Scholar] [CrossRef] [PubMed]
- First, M.B. Structured clinical interview for DSM-IV-TR axis I disorders, research version, patient edition (SCID-I/P). Biom. Res. 2002. Available online: https://scholar.google.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=tructured+clinical+interview+for+DSM-IV-TR+axis+I+disorders%2C+research+version%2C+patient+edition+%28SCID-I%2FP%29&btnG= (accessed on 10 May 2024).
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J.; Williams, S.; Howard, R.; Frackowiak, R.S.; Turner, R. Movement-related effects in fMRI time-series. Magn. Reson. Med. 1996, 35, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Zang, Y. DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 2010, 4, 1377. [Google Scholar] [CrossRef] [PubMed]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Betzel, R.F.; Gu, S.; Medaglia, J.D.; Pasqualetti, F.; Bassett, D.S. Optimally controlling the human connectome: The role of network topology. Sci. Rep. 2016, 6, 30770. [Google Scholar] [CrossRef] [PubMed]
- Karrer, T.M.; Kim, J.Z.; Stiso, J.; Kahn, A.E.; Pasqualetti, F.; Habel, U.; Bassett, D.S. A practical guide to methodological considerations in the controllability of structural brain networks. J. Neural Eng. 2020, 17, 026031. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Han, J.; Moraga, C. The influence of the sigmoid function parameters on the speed of backpropagation learning. In Proceedings of the International Workshop on Artificial Neural Networks, Malaga-Torremolinos, Spain, 7–9 June 1995; Springer: Berlin/Heidelberg, Germany, 1995; pp. 195–201. [Google Scholar]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the Ijcai, Montreal, QC, Canada, 20–25 August 1995; Volume 14, pp. 1137–1145. [Google Scholar]
- Wang, Q.; Tian, S.; Tang, H.; Liu, X.; Yan, R.; Hua, L.; Shi, J.; Chen, Y.; Zhu, R.; Lu, Q. Identification of major depressive disorder and prediction of treatment response using functional connectivity between the prefrontal cortices and subgenual anterior cingulate: A real-world study. J. Affect. Disord. 2019, 252, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Baeken, C.; Marinazzo, D.; Wu, G.-R.; Van Schuerbeek, P.; De Mey, J.; Marchetti, I.; Vanderhasselt, M.-A.; Remue, J.; Luypaert, R.; De Raedt, R. Accelerated HF-rTMS in treatment-resistant unipolar depression: Insights from subgenual anterior cingulate functional connectivity. World J. Biol. Psychiatry 2014, 15, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Wang, X.; He, Z.; Sheng, W.; Zou, Q.; Li, L.; Yang, Y.; Guo, X.; Fan, Y.-S.; Guo, J. Decreased static and increased dynamic global signal topography in major depressive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 94, 109665. [Google Scholar] [CrossRef] [PubMed]
- Nazeri, A.; Mulsant, B.H.; Rajji, T.K.; Levesque, M.L.; Pipitone, J.; Stefanik, L.; Shahab, S.; Roostaei, T.; Wheeler, A.L.; Chavez, S. Gray matter neuritic microstructure deficits in schizophrenia and bipolar disorder. Biol. Psychiatry 2017, 82, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Kropf, E.; Syan, S.K.; Minuzzi, L.; Frey, B.N. From anatomy to function: The role of the somatosensory cortex in emotional regulation. Braz. J. Psychiatry 2018, 41, 261–269. [Google Scholar] [CrossRef]
- Phillips, M.L.; Drevets, W.C.; Rauch, S.L.; Lane, R. Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biol. Psychiatry 2003, 54, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, P.; Zhang, J.; Zhang, R.; Liu, J.; Duan, J.; Zhang, X.; Zhu, R.; Wang, F. Functional connectivity between the cerebellar vermis and cerebrum distinguishes early treatment response for major depressive episodes in adolescents. J. Affect. Disord. 2023, 339, 256–263. [Google Scholar] [CrossRef]
- Whitfield-Gabrieli, S.; Ford, J.M. Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 2012, 8, 49–76. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Lei, D.; Tallman, M.J.; Welge, J.A.; Blom, T.J.; Fleck, D.E.; Klein, C.C.; Adler, C.M.; Patino, L.R.; Strawn, J.R. Morphological abnormalities in youth with bipolar disorder and their relationship to clinical characteristics. J. Affect. Disord. 2023, 338, 312–320. [Google Scholar] [CrossRef]
- Fan, Y.-S.; Xu, Y.; Bayrak, Ş.; Shine, J.M.; Wan, B.; Li, H.; Li, L.; Yang, S.; Meng, Y.; Valk, S.L. Macroscale thalamic functional organization disturbances and underlying core cytoarchitecture in early-onset schizophrenia. Schizophr. Bull. 2023, 49, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Shine, J.M. The thalamus integrates the macrosystems of the brain to facilitate complex, adaptive brain network dynamics. Prog. Neurobiol. 2021, 199, 101951. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y. Development of the thalamus: From early patterning to regulation of cortical functions. Wiley Interdiscip. Rev. Dev. Biol. 2019, 8, e345. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wang, X.; Jia, L.; Sun, T.; Kang, J.; Zhou, Y.; Wei, S.; Wu, F.; Kong, L.; Wang, F. Structural and functional alterations in untreated patients with major depressive disorder and bipolar disorder experiencing first depressive episode: A magnetic resonance imaging study combined with follow-up. J. Affect. Disord. 2021, 279, 324–333. [Google Scholar] [CrossRef]
- Lai, C.-H. Promising neuroimaging biomarkers in depression. Psychiatry Investig. 2019, 16, 662. [Google Scholar] [CrossRef]
- Kennis, M.; Gerritsen, L.; van Dalen, M.; Williams, A.; Cuijpers, P.; Bockting, C. Prospective biomarkers of major depressive disorder: A systematic review and meta-analysis. Mol. Psychiatry 2020, 25, 321–338. [Google Scholar] [CrossRef]
- Anand, A.; Li, Y.; Wang, Y.; Wu, J.; Gao, S.; Bukhari, L.; Mathews, V.P.; Kalnin, A.; Lowe, M.J. Antidepressant effect on connectivity of the mood-regulating circuit: An FMRI study. Neuropsychopharmacology 2005, 30, 1334–1344. [Google Scholar] [CrossRef]
- Kotoula, V.; Evans, J.W.; Punturieri, C.E.; Zarate, C.A., Jr. The use of functional magnetic resonance imaging (fMRI) in clinical trials and experimental research studies for depression. Front. Neuroimaging 2023, 2, 1110258. [Google Scholar] [CrossRef]
ID | Name | Ave_control_HC | Ave_control_MDD | HC-MDD | p Value | T Value |
---|---|---|---|---|---|---|
33 | Cingulum_Mid_L | 1.155 | 1.131 | 0.024 | 0.0235 | 2.2778 |
40 | ParaHippocampal_R | 1.088 | 1.070 | 0.017 | 0.0161 | 2.4204 |
59 | Parietal_Sup_L | 1.091 | 1.070 | 0.020 | 0.0092 | 2.6217 |
69 | Paracentral_Lobule_L | 1.115 | 1.098 | 0.018 | 0.0428 | 2.0349 |
70 | Paracentral_Lobule_R | 1.087 | 1.070 | 0.017 | 0.0302 | 2.1778 |
77 | Thalamus_L | 1.126 | 1.108 | 0.018 | 0.0342 | 2.1276 |
78 | Thalamus_R | 1.130 | 1.108 | 0.022 | 0.014 | 2.4729 |
90 | Temporal_Inf_R | 1.103 | 1.075 | 0.028 | 0.0019 | 3.1404 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, C.; Ma, Y.; Wang, L.; Zhang, Y.; Wang, F.; Zhang, X. From Connectivity to Controllability: Unraveling the Brain Biomarkers of Major Depressive Disorder. Brain Sci. 2024, 14, 509. https://doi.org/10.3390/brainsci14050509
Pan C, Ma Y, Wang L, Zhang Y, Wang F, Zhang X. From Connectivity to Controllability: Unraveling the Brain Biomarkers of Major Depressive Disorder. Brain Sciences. 2024; 14(5):509. https://doi.org/10.3390/brainsci14050509
Chicago/Turabian StylePan, Chunyu, Ying Ma, Lifei Wang, Yan Zhang, Fei Wang, and Xizhe Zhang. 2024. "From Connectivity to Controllability: Unraveling the Brain Biomarkers of Major Depressive Disorder" Brain Sciences 14, no. 5: 509. https://doi.org/10.3390/brainsci14050509
APA StylePan, C., Ma, Y., Wang, L., Zhang, Y., Wang, F., & Zhang, X. (2024). From Connectivity to Controllability: Unraveling the Brain Biomarkers of Major Depressive Disorder. Brain Sciences, 14(5), 509. https://doi.org/10.3390/brainsci14050509