Depression Severity, Slow- versus Fast-Wave Neural Activity, and Symptoms of Melancholia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.2.1. Depression: Melancholia
2.2.2. EEG Data
2.3. Procedure
2.4. Statistical Analyses
3. Results
3.1. Data
3.2. EEG Ratio Data and MEL Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, S.; Mohsin, M.; Dewan, M.N.; Muyeed, A. The global prevalence of depression, anxiety, stress, and insomnia among general population during COVID-19 pandemic: A systematic review and meta-analysis. Trends Psychol. 2023, 31, 143–170. [Google Scholar] [CrossRef]
- APA. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; Text Revision; American Psychiatric Association: Washington DC, USA, 2022. [Google Scholar]
- Zung, W. A self-rating depression scale. Arch. Gen. Psychiatry 1965, 12, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.; Ward, C.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Ostergaard, S.; Jensen, S.; Bech, P. The heterogeneity of the depressive syndrome: When numbers get serious. Acta Psychiatr. Scand. 2011, 124, 495–496. [Google Scholar] [CrossRef] [PubMed]
- Beijers, L.; Wardenaar, K.; van Loo, H.; Schoevers, R. Data-driven biological subtypes of depression: Systematic review of biological approaches to depression subtyping. Mol. Psychiatry 2019, 24, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Buch, A.M.; Liston, C. Dissecting diagnostic heterogeneity in depression by integrating neuroimaging and genetics. Neuropsychopharmacology 2021, 46, 156–175. [Google Scholar] [CrossRef] [PubMed]
- Kessing, L. Epidemiology of subtypes of depression. Acta Psychiatr. Scand. 2007, 115, 85–89. [Google Scholar] [CrossRef]
- Ulbricht, C.M.; Chrysanthopoulou, S.A.; Levin, L.; Lapane, K.L. The use of latent class analysis for identifying subtypes of depression: A systematic review. Psychiatry Res. 2018, 266, 228–246. [Google Scholar] [CrossRef]
- Esposito, C.M.; Buoli, M. The biological face of melancholia: Are there any reliable biomarkers for this depression subtype? J. Affect. Disord. 2020, 266, 802–809. [Google Scholar] [CrossRef]
- Tondo, L.; Vázquez, G.; Baldessarini, R. Melancholic versus Nonmelancholic Major Depression Compared. J. Affect. Disord. 2020, 266, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.; Hadzi-Pavlovic, D.; Wilhelm, K.; Hickie, I.; Brodaty, H.; Boyce, P.; Mitchell, P.; Eyers, K. Defining melancholia: Properties of a refined sign-based measure. Br. J. Psychiatry 1994, 164, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.; McCraw, S. The properties and utility of the CORE measure of melancholia. J. Affect. Disord. 2017, 207, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.; Tavella, G.; Hadzi-Pavlovic, D. Identifying and differentiating melancholic depression in a non-clinical sample. J. Affect. Disord. 2019, 243, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, N.; Lisi, G.; Yahata, N.; Okada, G.; Takamura, M.; Hashimoto, R.-i.; Yamada, T.; Yamada, M.; Suhara, T.; Moriguchi, S. Primary functional brain connections associated with melancholic major depressive disorder and modulation by antidepressants. Sci. Rep. 2020, 10, 3542. [Google Scholar] [CrossRef] [PubMed]
- Bruun, C.; Arnbjerg, C.; Kessing, L. Electroencephalographic Parameters Differentiating Melancholic Depression, Non-melancholic Depression, and Healthy Controls. A Systematic Review. Front. Psychiatry 2021, 12, 648713. [Google Scholar] [CrossRef] [PubMed]
- Bruder, G.E.; Stewart, J.W.; McGrath, P.J. Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings. Neurosci. Biobehav. Rev. 2017, 78, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Başar, E.; Başar-Eroğlu, C.; Güntekin, B.; Yener, G.G. Chapter 2—Brain’s alpha, beta, gamma, delta, and theta oscillations in neuropsychiatric diseases: Proposal for biomarker strategies. In Supplements to Clinical Neurophysiology; Başar, E., Başar-Eroĝlu, C., Özerdem, A., Rossini, P.M., Yener, G.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 62, pp. 19–54. [Google Scholar]
- Palva, S.; Palva, J.M. New vistas for α-frequency band oscillations. Trends Neurosci. 2007, 30, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Putman, P.; Verkuil, B.; Arias-Garcia, E.; Pantazi, I.; van Schie, C. EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention. Cogn. Affect. Behav. Neurosci. 2014, 14, 782–791. [Google Scholar] [CrossRef]
- Clarke, A.R.; Barry, R.J.; Karamacoska, D.; Johnstone, S.J. The EEG theta/beta ratio: A marker of arousal or cognitive processing capacity? Appl. Psychophysiol. Biofeedback 2019, 44, 123–129. [Google Scholar] [CrossRef]
- Sharpley, C.F.; Bitsika, V.; Shadli, S.M.; Jesulola, E.; Agnew, L.L. Alpha wave asymmetry is associated with only one component of melancholia, and in different directions across brain regions. Psychiatry Res. Neuroimaging 2023, 334, 111687. [Google Scholar] [CrossRef] [PubMed]
- Desseilles, M.; Schwartz, S.; Dang-Vu, T.; Sterpenich, V.; Ansseau, M.; Maquet, P.; Phillips, C. Depression alters “top-down” visual attention: A dynamic causal modeling comparison between depressed and healthy subjects. NeuroImage 2011, 54, 1662–1668. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power for the Behavioural Sciences; Erlbaun: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Packheiser, J.; Schmitz, J.; Stein, C.; Pfeifer, L.; Berretz, G.; Papadatou-Pastou, M.; Peterburs, J.; Ocklenburg, S. Handedness and depression: A meta-analysis across 87 studies. J. Affect. Disord. 2021, 294, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Pierson, E.; Althoff, T.; Thomas, D.; Hillard, P.; Leskovec, J. Daily, weekly, seasonal and menstrual cycles in women’s mood, behaviour and vital signs. Nat. Hum. Behav. 2021, 5, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, R.; Hoshi, H.; Ichikawa, S.; Hanyu, M.; Nakamura, K.; Fukasawa, K.; Poza, J.; Rodríguez-González, V.; Gómez, C.; Shigihara, Y. The menstrual cycle alters resting-state cortical activity: A magnetoencephalography study. Front. Hum. Neurosci. 2021, 15, 652789. [Google Scholar] [CrossRef] [PubMed]
- Gaižauskaitė, R.; Gladutytė, L.; Zelionkaitė, I.; Čėsnaitė, E.; Busch, N.A.; Grikšienė, R. The search for the relationship between female hormonal status, alpha oscillations, and aperiodic features of resting state EEG. Int. J. Psychophysiol. 2024, 198, 112312. [Google Scholar] [CrossRef] [PubMed]
- Dubol, M.; Epperson, C.N.; Lanzenberger, R.; Sundström-Poromaa, I.; Comasco, E. Neuroimaging premenstrual dysphoric disorder: A systematic and critical review. Front. Neuroendocrinol. 2020, 57, 100838. [Google Scholar] [CrossRef]
- Kaltsouni, E.; Schmidt, F.; Zsido, R.G.; Eriksson, A.; Sacher, J.; Sundström-Poromaa, I.; Sumner, R.L.; Comasco, E. Electroencephalography findings in menstrually-related mood disorders: A critical review. Front. Neuroendocrinol. 2024, 72, 101120. [Google Scholar] [CrossRef]
- Zung, W. From art to science: The diagnosis and treatment of depression. Arch. Gen. Psychiatry 1973, 29, 328–337. [Google Scholar] [CrossRef]
- DeJonge, J.; Baneke, J. The Zung Self-rating Depression Scale: A replication study on reliability, validity and prediction. Psychol. Rep. 1989, 64, 833–834. [Google Scholar] [CrossRef]
- Gabrys, J.; Peters, K. Reliability, discriminant and predictive validity of the Zung Self-Rating Depression Scale. Psychol. Rep. 1985, 57, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.; Brown, J.; Watson, C.; Plenel, D.; DeMotts, J.; Howard, M.; Petrik, N.; Ballweg, B. Comparison of the validities of the Beck, Zung and MMPI depression scales. J. Consult. Clin. Psychol. 1985, 53, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Oostenveld, R.; Praamstra, P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin. Neurophysiol. 2001, 112, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Tabachnik, B.; Fidell, L. Using Multivariate Statistics, 6th ed.; Pearson Education: Boston, MA, USA, 2013. [Google Scholar]
- Streiner, D.; Norman, G. Correction for multiple testing. Chest 2011, 140, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Rothman, K. No adjustments are needed for multiple comparisons. Epidemiology 1990, 1, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Dunson, D.B.; Colombo, B.; Baird, D.D. Changes with age in the level and duration of fertility in the menstrual cycle. Hum. Reprod. 2002, 17, 1399–1403. [Google Scholar] [CrossRef] [PubMed]
- Gosseries, O.; Yu, Q.; LaRocque, J.; Starrett, M.; Rose, N.; Cowan, N.; Postle, B. Parietal-Occipital Interactions Underlying Control- and Representation-Related Processes in Working Memory for Nonspatial Visual Features. J. Neurosci. 2018, 38, 4357–4366. [Google Scholar] [CrossRef] [PubMed]
- Esposito, C.M.; Mancini, M.; Estradé, A.; Rosfort, R.; Fusar-Poli, P.; Stanghellini, G. How do depressed people feel perceived by others? A qualitative study from the patient’s perspective. J. Affect. Disord. Rep. 2024, 16, 100776. [Google Scholar] [CrossRef]
- Svenaeus, F. Depression and the self bodily resonance and attuned being-in-the-world. J. Conscious. Stud. 2013, 20, 15–32. [Google Scholar]
- Schlüter, H.; Bermeitinger, C. Emotional oddball: A review on variants, results, and mechanisms. Rev. Gen. Psychol. 2017, 21, 179–222. [Google Scholar] [CrossRef]
- Thut, G.; Nietzel, A.; Brandt, S.A.; Pascual-Leone, A. α-Band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J. Neurosci. 2006, 26, 9494–9502. [Google Scholar] [CrossRef] [PubMed]
- Sauseng, P.; Klimesch, W.; Stadler, W.; Schabus, M.; Doppelmayr, M.; Hanslmayr, S.; Gruber, W.R.; Birbaumer, N. A shift of visual spatial attention is selectively associated with human EEG alpha activity. Eur. J. Neurosci. 2005, 22, 2917–2926. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Shadlen, M.N.; Newsome, W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 2001, 86, 1916–1936. [Google Scholar] [CrossRef] [PubMed]
- Sestieri, C.; Shulman, G.L.; Corbetta, M. The contribution of the human posterior parietal cortex to episodic memory. Nat. Rev. Neurosci. 2017, 18, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Chen, C.; Zheng, S.; Yan, X.; Wang, C.; Wang, K.; Hu, Y. High-definition transcranial direct current stimulation of the dorsolateral prefrontal cortex modulates the electroencephalography rhythmic activity of parietal occipital lobe in patients with chronic disorders of consciousness. Front. Hum. Neurosci. 2022, 16, 889023. [Google Scholar] [CrossRef] [PubMed]
- Segrave, R.A.; Cooper, N.R.; Thomson, R.H.; Croft, R.J.; Sheppard, D.M.; Fitzgerald, P.B. Individualized Alpha Activity and Frontal Asymmetry in Major Depression. Clin. EEG Neurosci. 2011, 42, 45–52. [Google Scholar] [CrossRef]
- Zhang, D.; Allen, J.J.B. A comparison of nomothetic and individualized alpha frequency approaches to measuring frontal EEG alpha asymmetry. Psychophysiology 2023, 60, e14149. [Google Scholar] [CrossRef]
Melancholia Symptoms | Low Energy | Loss of Interest | Impaired Concentration | Lack of Improvement in Mood | Anhedonia | Impaired Concentration | Thoughts of Death/Suicide | Thoughts of Death/Suicide |
---|---|---|---|---|---|---|---|---|
Items 2 | Feel tired for no reason | Do not enjoy doing the things I used to | Mind is unclear | Do not feel better when good things happen | Do not enjoy sex | Hard to make decision | Others better off if I were dead | Feel useless and not needed |
Melancholia Symptoms and Items | Anhedonia Don’t Enjoy Sex | Impaired Concentration Hard to Make Decisions | Thoughts of Death/Suicide Others Better Off If I Were Dead | Thoughts of Death/Suicide Feel Useless and Not Needed | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EEG sites | Alpha:Beta | Theta:Beta | Alpha:Beta | Theta:Beta | Alpha:Beta | Theta:Beta | Alpha:Beta | Theta:Beta | ||||||||
Dep 4 | ND 5 | Dep | ND | Dep | ND | Dep | ND | Dep | ND | Dep | ND | Dep | ND | Dep | ND | |
PO1 PO2 | 0.030 −0.028 | −0.024 0.012 | −0.069 0.077 | −0.189 0.049 | 0.260 0.254 | −0.187 −0.233 | 0.145 0.254 | −0.329 −0.346 | 0.431 0.245 | −0.038 0.094 | 0.537 0.027 | −0.132 −0.120 | 0.150 0.014 | −0.109 −0.109 | 0.037 0.064 | −0.302 −0.357 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharpley, C.F.; Bitsika, V.; Evans, I.D.; Vessey, K.A.; Jesulola, E.; Agnew, L.L. Depression Severity, Slow- versus Fast-Wave Neural Activity, and Symptoms of Melancholia. Brain Sci. 2024, 14, 607. https://doi.org/10.3390/brainsci14060607
Sharpley CF, Bitsika V, Evans ID, Vessey KA, Jesulola E, Agnew LL. Depression Severity, Slow- versus Fast-Wave Neural Activity, and Symptoms of Melancholia. Brain Sciences. 2024; 14(6):607. https://doi.org/10.3390/brainsci14060607
Chicago/Turabian StyleSharpley, Christopher F., Vicki Bitsika, Ian D. Evans, Kirstan A. Vessey, Emmanuel Jesulola, and Linda L. Agnew. 2024. "Depression Severity, Slow- versus Fast-Wave Neural Activity, and Symptoms of Melancholia" Brain Sciences 14, no. 6: 607. https://doi.org/10.3390/brainsci14060607
APA StyleSharpley, C. F., Bitsika, V., Evans, I. D., Vessey, K. A., Jesulola, E., & Agnew, L. L. (2024). Depression Severity, Slow- versus Fast-Wave Neural Activity, and Symptoms of Melancholia. Brain Sciences, 14(6), 607. https://doi.org/10.3390/brainsci14060607