Neural Mechanisms of Inhibition in Scientific Reasoning: Insights from fNIRS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Material
2.3. The Modified Version of Speeded-Reasoning Task
2.4. Task-Activated Brain Regions Associated with Inhibition
2.5. Types of Incongruent Statements
2.6. Task
2.7. Procedure
2.7.1. Task Behavior Measurements
2.7.2. Functional Near-Infrared Spectroscopy
- The original data were pre-processed with hemodynamic response function (HRF) [51] and wavelet minimum description length (wavelet MDL) to remove noise (such as action, heartbeat, and machine noise);
- The parameter estimation is performed using the general linear model (GLM) to obtain beta values, with a positive beta value indicating activation and a negative beta value indicating deactivation [57];
2.8. Statistical Analysis
3. Results
3.1. Behavioral Results
3.1.1. Response Time Results
3.1.2. Accuracy Results
3.2. fNIRS Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaitchik, D.; Iqbal, Y.; Carey, S. The effect of executive function on biological reasoning in young children: An individual differences study. Child Dev. 2014, 85, 160–175. [Google Scholar] [CrossRef] [PubMed]
- Carey, S. The Origin of Concepts; Oxford Scholarship: New York, NY, USA, 2009. [Google Scholar]
- Carey, S. Science education as conceptual change. J. Appl. Dev. Psychol. 2000, 21, 13–19. [Google Scholar] [CrossRef]
- Dunbar, K.N.; Fugelsang, J.A. Causal thinking in science: How scientists and students interpret the unexpected. In Scientific and Technological Thinking; Psychology Press: London, UK, 2004; pp. 57–79. [Google Scholar]
- Klahr, D. Exploring Science: The Cognition and Development of Discovery Processes; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Tweney, R.D.; Doherty, M.E.; Mynatt, C.R. On Scientific Thinking; Columbia University Press: New York, NY, USA, 1981. [Google Scholar]
- Dunbar, K.N.; Klahr, D. Scientific Thinking and Reasoning; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Heit, E.; Rotello, C.M. Relations between inductive reasoning and deductive reasoning. J. Exp. Psychol. Learn. Mem. Cogn. 2010, 36, 805. [Google Scholar] [CrossRef] [PubMed]
- Evans, J. Deductive reasoning. In The Cambridge Handbook of Thinking and Reasoning; Cambridge University Press: Cambridge, UK, 2005; pp. 169–184. [Google Scholar]
- Johnson-Laird, P. Deductive reasoning. Wiley Interdiscip. Rev. Cogn. Sci. 2010, 1, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Cox, J. A fundamental re-conceputalization of intelligence: Cognitive activity and the pursuit of advantage. Intell. Natl. Secur. 2022, 37, 197–215. [Google Scholar] [CrossRef]
- Klahr, D.; Dunbar, K. Dual space search during scientific reasoning. Cogn. Sci. 1988, 12, 1–48. [Google Scholar] [CrossRef]
- Peşman, H.; Eryılmaz, A. Development of a three-tier test to assess misconceptions about simple electric circuits. J. Educ. Res. 2010, 103, 208–222. [Google Scholar] [CrossRef]
- Gronchi, G.; Gavazzi, G.; Viggiano, M.P.; Giovannelli, F. Dual-Process Theory of Thought and Inhibitory Control: An ALE Meta-Analysis. Brain Sci. 2024, 14, 101. [Google Scholar] [CrossRef] [PubMed]
- Del Missier, F.; Mäntylä, T.; De Bruin, W.B. Decision-making competence, executive functioning, and general cognitive abilities. J. Behav. Decis. Mak. 2012, 25, 331–351. [Google Scholar] [CrossRef]
- Bari, A.; Robbins, T.W. Inhibition and impulsivity: Behavioral and neural basis of response control. Prog. Neurobiol. 2013, 108, 44–79. [Google Scholar] [CrossRef]
- Potvin, P.; Turmel, É.; Masson, S. Linking neuroscientific research on decision making to the educational context of novice students assigned to a multiple-choice scientific task involving common misconceptions about electrical circuits. Front. Hum. Neurosci. 2014, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Apšvalka, D.; Ferreira, C.S.; Schmitz, T.W.; Rowe, J.B.; Anderson, M.C. Dynamic targeting enables domain-general inhibitory control over action and thought by the prefrontal cortex. Nat. Commun. 2022, 13, 274. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, F.; Liefooghe, B.; Vandierendonck, A. The interaction between stop signal inhibition and distractor interference in the flanker and Stroop task. Acta Psychol. 2004, 116, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Brookman-Byrne, A.; Mareschal, D.; Tolmie, A.K.; Dumontheil, I. Inhibitory control and counterintuitive science and maths reasoning in adolescence. PLoS ONE 2018, 13, e0198973. [Google Scholar] [CrossRef] [PubMed]
- Coulanges, L.; Abreu-Mendoza, R.A.; Varma, S.; Uncapher, M.R.; Gazzaley, A.; Anguera, J.; Rosenberg-Lee, M. Linking inhibitory control to math achievement via comparison of conflicting decimal numbers. Cognition 2021, 214, 104767. [Google Scholar] [CrossRef] [PubMed]
- Mason, L.; Zaccoletti, S. Inhibition and conceptual learning in science: A review of studies. Educ. Psychol. Rev. 2021, 33, 181–212. [Google Scholar] [CrossRef]
- Jaffard, M.; Longcamp, M.; Velay, J.-L.; Anton, J.-L.; Roth, M.; Nazarian, B.; Boulinguez, P. Proactive inhibitory control of movement assessed by event-related fMRI. Neuroimage 2008, 42, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Criaud, M.; Boulinguez, P. Have we been asking the right questions when assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis and critical review. Neurosci. Biobehav. Rev. 2013, 37, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, D.J.; Pekar, J.J.; Mostofsky, S.H. Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 2008, 46, 224–232. [Google Scholar] [CrossRef]
- Gilmore, C.; Keeble, S.; Richardson, S.; Cragg, L. The role of cognitive inhibition in different components of arithmetic. ZDM 2015, 47, 771–782. [Google Scholar] [CrossRef]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643. [Google Scholar] [CrossRef]
- Parris, B.A.; Wadsley, M.G.; Hasshim, N.; Benattayallah, A.; Augustinova, M.; Ferrand, L. An fMRI study of response and semantic conflict in the Stroop task. Front. Psychol. 2019, 10, 2426. [Google Scholar] [CrossRef] [PubMed]
- Nee, D.E.; Wager, T.D.; Jonides, J. Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cogn. Affect. Behav. Neurosci. 2007, 7, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, D.; Rottman, J.; Seston, R. Professional physical scientists display tenacious teleological tendencies: Purpose-based reasoning as a cognitive default. J. Exp. Psychol. Gen. 2013, 142, 1074. [Google Scholar] [CrossRef] [PubMed]
- Stricker, J.; Vogel, S.E.; Schöneburg-Lehnert, S.; Krohn, T.; Dögnitz, S.; Jud, N.; Spirk, M.; Windhaber, M.-C.; Schneider, M.; Grabner, R.H. Interference between naïve and scientific theories occurs in mathematics and is related to mathematical achievement. Cognition 2021, 214, 104789. [Google Scholar] [CrossRef] [PubMed]
- Potvin, P.; Malenfant-Robichaud, G.; Cormier, C.; Masson, S. Coexistence of misconceptions and scientific conceptions in chemistry professors: A mental chronometry and fMRI study. Front. Educ. 2020, 5, 542458. [Google Scholar] [CrossRef]
- Meier, M.A.; Wambacher, D.; Vogel, S.E.; Grabner, R.H. Interference between naïve and scientific theories in mathematics and science: An fMRI study comparing mathematicians and non-mathematicians. Trends Neurosci. Educ. 2022, 29, 100194. [Google Scholar] [CrossRef] [PubMed]
- Laird, A.R.; McMillan, K.M.; Lancaster, J.L.; Kochunov, P.; Turkeltaub, P.E.; Pardo, J.V.; Fox, P.T. A comparison of label-based review and ALE meta-analysis in the Stroop task. Hum. Brain Mapp. 2005, 25, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Masson, S.; Potvin, P.; Riopel, M.; Foisy, L.M.B. Differences in brain activation between novices and experts in science during a task involving a common misconception in electricity. Mind Brain Educ. 2014, 8, 44–55. [Google Scholar] [CrossRef]
- Prado, J.; Noveck, I.A. Overcoming perceptual features in logical reasoning: A parametric functional magnetic resonance imaging study. J. Cogn. Neurosci. 2007, 19, 642–657. [Google Scholar] [CrossRef]
- Garavan, H.; Hester, R.; Murphy, K.; Fassbender, C.; Kelly, C. Individual differences in the functional neuroanatomy of inhibitory control. Brain Res. 2006, 1105, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Isoda, M.; Hikosaka, O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat. Neurosci. 2007, 10, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Balleine, B.W.; Delgado, M.R.; Hikosaka, O. The role of the dorsal striatum in reward and decision-making. J. Neurosci. 2007, 27, 8161–8165. [Google Scholar] [CrossRef]
- Sumner, P.; Nachev, P.; Morris, P.; Peters, A.M.; Jackson, S.R.; Kennard, C.; Husain, M. Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron 2007, 54, 697–711. [Google Scholar] [CrossRef]
- Shtulman, A.; Valcarcel, J. Scientific knowledge suppresses but does not supplant earlier intuitions. Cognition 2012, 124, 209–215. [Google Scholar] [CrossRef]
- Xiang, M.-Q.; Lin, L.; Song, Y.-T.; Hu, M.; Hou, X.-H. Reduced left dorsolateral prefrontal activation in problematic smartphone users during the Stroop task: An fNIRS study. Front. Psychiatry 2023, 13, 1097375. [Google Scholar] [CrossRef] [PubMed]
- Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Pavia, J.M.; Wolf, U.; Wolf, M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014, 85, 6–27. [Google Scholar] [CrossRef]
- Cui, X.; Bray, S.; Bryant, D.M.; Glover, G.H.; Reiss, A.L. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 2011, 54, 2808–2821. [Google Scholar] [CrossRef] [PubMed]
- Junior, A.d.S.A.; Machado-Pinheiro, W.; Osório, A.A.C.; Seabra, A.G.; Teixeira, M.C.T.V.; de Araújo Nascimento, J.; Carreiro, L.R.R. Association between ADHD symptoms and inhibition-related brain activity using functional near-infrared spectroscopy (fNIRS). Neurosci. Lett. 2023, 792, 136962. [Google Scholar] [CrossRef]
- Aron, A.R.; Robbins, T.W.; Poldrack, R.A. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 2004, 8, 170–177. [Google Scholar] [CrossRef]
- Jin, L.; Jia, H.; Li, H.; Yu, D. Differences in brain signal complexity between experts and novices when solving conceptual science problem: A functional near-infrared spectroscopy study. Neurosci. Lett. 2019, 699, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Manunure, K.; Delserieys, A.; Castéra, J. The effects of combining simulations and laboratory experiments on Zimbabwean students’ conceptual understanding of electric circuits. Res. Sci. Technol. Educ. 2020, 38, 289–307. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, L.; Leng, Y.; Pang, R.; Wang, X. Event-related potential evidence for persistence of an intuitive misconception about electricity. Mind Brain Educ. 2019, 13, 80–91. [Google Scholar] [CrossRef]
- Zohar, A.R.; Levy, S.T. Students’ reasoning about chemical bonding: The lacuna of repulsion. J. Res. Sci. Teach. 2019, 56, 881–904. [Google Scholar] [CrossRef]
- Ye, J.C.; Tak, S.; Jang, K.E.; Jung, J.; Jang, J. NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. Neuroimage 2009, 44, 428–447. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, J.L.; Woldorff, M.G.; Parsons, L.M.; Liotti, M.; Freitas, C.S.; Rainey, L.; Kochunov, P.V.; Nickerson, D.; Mikiten, S.A.; Fox, P.T. Automated Talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 2000, 10, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Kruppa, J.A.; Reindl, V.; Gerloff, C.; Oberwelland Weiss, E.; Prinz, J.; Herpertz-Dahlmann, B.; Konrad, K.; Schulte-Rüther, M. Brain and motor synchrony in children and adolescents with ASD—A fNIRS hyperscanning study. Soc. Cogn. Affect. Neurosci. 2021, 16, 103–116. [Google Scholar] [CrossRef]
- Nguyen, T.; Schleihauf, H.; Kayhan, E.; Matthes, D.; Vrtička, P.; Hoehl, S. The effects of interaction quality on neural synchrony during mother-child problem solving. Cortex 2020, 124, 235–249. [Google Scholar] [CrossRef]
- Baker, J.M.; Liu, N.; Cui, X.; Vrticka, P.; Saggar, M.; Hosseini, S.H.; Reiss, A.L. Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning. Sci. Rep. 2016, 6, 26492. [Google Scholar] [CrossRef]
- Tak, S.; Uga, M.; Flandin, G.; Dan, I.; Penny, W. Sensor space group analysis for fNIRS data. J. Neurosci. Methods 2016, 264, 103–112. [Google Scholar] [CrossRef]
- Rodrigo, A.H.; Di Domenico, S.I.; Ayaz, H.; Gulrajani, S.; Lam, J.; Ruocco, A.C. Differentiating functions of the lateral and medial prefrontal cortex in motor response inhibition. Neuroimage 2014, 85, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Babai, R.; Sekal, R.; Stavy, R. Persistence of the intuitive conception of living things in adolescence. J. Sci. Educ. Technol. 2010, 19, 20–26. [Google Scholar] [CrossRef]
- Babai, R.; Amsterdamer, A. The persistence of solid and liquid naive conceptions: A reaction time study. J. Sci. Educ. Technol. 2008, 17, 553–559. [Google Scholar] [CrossRef]
- Choo, Y.; Matzke, D.; Bowren, M.D., Jr.; Tranel, D.; Wessel, J.R. Right inferior frontal gyrus damage is associated with impaired initiation of inhibitory control, but not its implementation. eLife 2022, 11, e79667. [Google Scholar] [CrossRef]
- Gavazzi, G.; Giovannelli, F.; Noferini, C.; Cincotta, M.; Cavaliere, C.; Salvatore, M.; Mascalchi, M.; Viggiano, M.P. Subregional prefrontal cortex recruitment as a function of inhibitory demand: An fMRI metanalysis. Neurosci. Biobehav. Rev. 2023, 152, 105285. [Google Scholar] [CrossRef] [PubMed]
- Mason, L.; Zaccoletti, S.; Carretti, B.; Scrimin, S.; Diakidoy, I.-A.N. The role of inhibition in conceptual learning from refutation and standard expository texts. Int. J. Sci. Math. Educ. 2019, 17, 483–501. [Google Scholar] [CrossRef]
- Vosniadou, S.; Pnevmatikos, D.; Makris, N.; Lepenioti, D.; Eikospentaki, K.; Chountala, A.; Kyrianakis, G. The recruitment of shifting and inhibition in on-line science and mathematics tasks. Cogn. Sci. 2018, 42, 1860–1886. [Google Scholar] [CrossRef]
- Foisy, L.-M.B.; Potvin, P.; Riopel, M.; Masson, S. Is inhibition involved in overcoming a common physics misconception in mechanics? Trends Neurosci. Educ. 2015, 4, 26–36. [Google Scholar] [CrossRef]
- Vaughn, A.R.; Brown, R.D.; Johnson, M.L. Understanding conceptual change and science learning through educational neuroscience. Mind Brain Educ. 2020, 14, 82–93. [Google Scholar] [CrossRef]
- Friehs, M.A.; Klaus, J.; Singh, T.; Frings, C.; Hartwigsen, G. Perturbation of the right prefrontal cortex disrupts interference control. Neuroimage 2020, 222, 117279. [Google Scholar] [CrossRef]
- Derrfuss, J.; Brass, M.; Neumann, J.; Von Cramon, D.Y. Involvement of the inferior frontal junction in cognitive control: Meta-analyses of switching and Stroop studies. Hum. Brain Mapp. 2005, 25, 22–34. [Google Scholar] [CrossRef] [PubMed]
- van Veen, V.; Carter, C.S. Separating semantic conflict and response conflict in the Stroop task: A functional MRI study. Neuroimage 2005, 27, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Baumert, A.; Buchholz, N.; Zinkernagel, A.; Clarke, P.; MacLeod, C.; Osinsky, R.; Schmitt, M. Causal underpinnings of working memory and Stroop interference control: Testing the effects of anodal and cathodal tDCS over the left DLPFC. Cogn. Affect. Behav. Neurosci. 2020, 20, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.E.; D’Esposito, M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn. Sci. 2003, 7, 415–423. [Google Scholar] [CrossRef]
- Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef]
- Donati, G.; Meaburn, E.L.; Dumontheil, I. The specificity of associations between cognition and attainment in English, maths and science during adolescence. Learn. Individ. Differ. 2019, 69, 84–93. [Google Scholar] [CrossRef]
Type | Scientifically | Naïvely | Statement |
---|---|---|---|
TT | True | True | one liter of water weighs more than one liter of air |
FF | False | False | one kilogram of iron weighs more than one ton of iron |
TF | True | False | one liter of water weighs more than one liter of ice * |
FT | False | True | one pound of iron weighs more than one pound of feathers * |
Brodmann Areas | ROI | Number of Channels |
---|---|---|
BA 10 | Left lateral Frontopolar Cortex (lFPC) | 4 channels |
Medial Frontopolar Cortex (mFPC) | 6 channels | |
Right lateral Frontopolar Cortex (rFPC) | 4 channels | |
BA 9 and BA 46 | Left dorsolateral Prefrontal Cortex (lDLPFC) | 5 channels |
Right dorsolateral Prefrontal Cortex (rDLPFC) | 5 channels | |
BA 8 | Includes Frontal Eye Field | 7 channels |
BA 6 | Pre-supplementary Motor Area (pre-SMA) | 14 channels |
BA 4 | Primary Motor Cortex | 4 channels |
Condition | Go/Nogo Group | Stroop-like Group | ||||
---|---|---|---|---|---|---|
t | p | d | t | p | d | |
FT vs. TTFF | 3.613 | 0.003 * | 0.937 | 5.041 | <0.001 * | 0.980 |
TF vs. TTFF | 1.111 | 0.285 | 0.240 | 1.828 | 0.089 | 0.381 |
TF vs. FT | −2.292 | 0.038 * | 0.667 | −2.605 | 0.021 * | 0.564 |
Condition | Go/Nogo Group | Stroop-like Group | ||||
---|---|---|---|---|---|---|
t | p | d | t | p | d | |
FT vs. TTFF | 7.944 | <0.001 * | 3.520 | 12.224 | <0.001 * | 4.182 |
TF vs. TTFF | 5.717 | <0.001 * | 2.469 | 10.439 | <0.001 * | 3.224 |
TF vs. FT | 3.204 | 0.006 * | 0.959 | 2.929 | 0.011 * | 0.910 |
Condition | Pre-SMA | rDLPFC | lDLPFC | |||
---|---|---|---|---|---|---|
t | p | t | p | t | p | |
Nogo stimuli vs. TTFF | 2.882 | 0.012 * | 1.759 | 0.100 | 0.134 | 0.895 |
TF vs. TTFF | 0.132 | 0.897 | 3.024 | 0.009 * | 0.155 | 0.879 |
FT vs. TTFFF | 2.222 | 0.043 * | 0.354 | 0.728 | −0.201 | 0.844 |
Condition | Pre-SMA | rDLPFC | lDLPFC | |||
---|---|---|---|---|---|---|
t | p | t | p | t | p | |
Nogo stimuli vs. TTFF | 2.327 | 0.035 * | 4.432 | 0.001 * | 2.865 | 0.012 * |
TF vs. TTFF | 1.357 | 0.196 | 2.157 | 0.049 * | 2.410 | 0.030 * |
FT vs. TTFF | 2.240 | 0.042 * | 0.137 | 0.893 | −0.134 | 0.895 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Jamshaid, S.; Wang, L. Neural Mechanisms of Inhibition in Scientific Reasoning: Insights from fNIRS. Brain Sci. 2024, 14, 606. https://doi.org/10.3390/brainsci14060606
Liu D, Jamshaid S, Wang L. Neural Mechanisms of Inhibition in Scientific Reasoning: Insights from fNIRS. Brain Sciences. 2024; 14(6):606. https://doi.org/10.3390/brainsci14060606
Chicago/Turabian StyleLiu, Donglin, Samrah Jamshaid, and Lijuan Wang. 2024. "Neural Mechanisms of Inhibition in Scientific Reasoning: Insights from fNIRS" Brain Sciences 14, no. 6: 606. https://doi.org/10.3390/brainsci14060606
APA StyleLiu, D., Jamshaid, S., & Wang, L. (2024). Neural Mechanisms of Inhibition in Scientific Reasoning: Insights from fNIRS. Brain Sciences, 14(6), 606. https://doi.org/10.3390/brainsci14060606