Multi-Threshold Recurrence Rate Plot: A Novel Methodology for EEG Analysis in Alzheimer’s Disease and Frontotemporal Dementia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. EEG Data Acquisition
2.3. EEG Data Preprocessing
2.4. Recurrence Plot
- (1)
- For a given time series, x1, x2, x3,…, x = n, reconstruct its phase space vectors X using time-delay methods, such as taken time delay, in which parameters m and τ for phase space reconstruction should be set. Immediately, we obtain phase space vectors Xi = (xi, xi + τ,…, xi + (m − 1) × τ).
- (2)
- Define the parameters of phase space reconstruction m and τ (as described in the first step above) and distance threshold r for judging whether a points-pair is close enough to take as a recurrence.
- (3)
- Calculate the distance of all point-pairs and generate an n × n distance matrix, and optionally visualize the matrix.
- (4)
- Plot all of the points-pairs closer than the threshold r, and we immediately obtain the so-called recurrence plot, shown in Figure 1.
- (5)
- Estimate various nonlinear dynamic features of the recurrence plot using recurrence quantification analysis (RQA) statistics [24], such as recurrence rate (RR), determinism (DET), entropy (ENTR), MaxLine, Trend, Laminarity, Trapping Time. Recurrence rate quantifies the density of recurrence points in a recurrence plot, that is, the rate of recurrence points divided by all points in the recurrence plot. This rate corresponds to the likelihood of a specific state reoccurring in the system and is closely related to the correlation sum concept.
2.5. Fractional Brownian Motion and Hurst Exponent
- (1)
- For a given time series, x(1), x(2), x(3),…, x(n), integrate it from a fractional Gaussian motion into a fractional Brownian motion by X(i) =
- (2)
- Fit the time series X(i) using the weighted time window W = 2n + 1, with the highest weight in the center point of the window, and the weights decaying linearly towards both left and right sides. Thus, we obtain the fitting curves under each fitting window.
- (3)
- Linearly fit the Log2(W) and Log2(F(W)), where F(W) is the variance of the magnitude of the residuals according to the following:
2.6. MTRRP and Recurrence Complexity
2.6.1. Methodology of MTRRP Construction
2.6.2. Calculation of Recurrence Rate Gradient
- By setting a uniform maximum threshold across the dataset that allows most data points to reach a recurrence rate plateau.
- By customizing the maximum threshold for each specific time series based on the stabilization point of its recurrence rate.
2.6.3. Recurrence Hurst Calculation
2.6.4. Definition of Recurrence Complexity
3. Results
3.1. ANOVA Analysis
3.2. SVM Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, M. World Alzheimer Report 2015. The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends; Research Report; Alzheimer’s Disease International: Lincolnshire, IL, USA, 2015; Available online: https://www.alzint.org/u/WorldAlzheimerReport2015.pdf (accessed on 15 May 2024).
- Perrin, R.J.; Fagan, A.M.; Holtzman, D.M. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 2009, 461, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Dubois, B.; Villain, N.; Frisoni, G.B.; Rabinovici, G.D.; Sabbagh, M.; Cappa, S.; Bejanin, A.; Bombois, S.; Epelbaum, S.; Teichmann, M.; et al. Clinical diagnosis of Alzheimer’s disease: Recommendations of the International Working Group. Lancet Neurol. 2021, 20, 484–496. [Google Scholar] [CrossRef] [PubMed]
- Lacalle-Aurioles, M.; Navas-Sánchez, F.J.; Alemán-Gómez, Y.; Olazarán, J.; Guzmán-De-Villoria, J.A.; Cruz-Orduña, I.; Mateos-Pérez, J.M.; Desco, M. The disconnection hypothesis in alzheimer’s disease studied through multimodal magnetic resonance imaging: Structural, perfusion, and diffusion tensor imaging. J. Alzheimer’s Dis. 2016, 50, 1051–1064. [Google Scholar] [CrossRef] [PubMed]
- Riederer, I.; Bohn, K.P.; Preibisch, C.; Wiedemann, E.; Zimmer, C.; Alexopoulos, P.; Förster, S. Alzheimer disease and mild cognitive impairment: Integrated pulsed arterial spin-labeling MRI and 18F-FDG PET. Radiology 2018, 288, 198–206. [Google Scholar] [CrossRef]
- Swift, I.J.; Sogorb-Esteve, A.; Heller, C.; Synofzik, M.; Otto, M.; Graff, C.; Galimberti, D.; Todd, E.; Heslegrave, A.J.; van der Ende, E.L.; et al. Fluid biomarkers in frontotemporal dementia: Past, present and future. J. Neurol. Neurosurg. Psychiatry 2021, 92, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Abásolo, D.; Hornero, R.; Gómez, C.; García, M.; López, M. Analysis of EEG background activity in Alzheimer’s disease patients with Lempel–Ziv complexity and central tendency measure. Med. Eng. Phys. 2006, 28, 315–322. [Google Scholar] [CrossRef]
- Puri, D.; Nalbalwar, S.; Nandgaonkar, A.; Wagh, A. EEG-based diagnosis of alzheimer’s disease using kolmogorov complexity. In Applied Information Processing Systems: Proceedings of ICCET 2021; Iyer, B., Ghosh, D., Balas, V.E., Eds.; Springer: Singapore, 2022; pp. 157–165. [Google Scholar] [CrossRef]
- Sun, J.; Wang, B.; Niu, Y.; Tan, Y.; Fan, C.; Zhang, N.; Xue, J.; Wei, J.; Xiang, J. Complexity analysis of EEG, MEG, and fMRI in mild cognitive impairment and Alzheimer’s disease: A Review. Entropy 2020, 22, 239. [Google Scholar] [CrossRef]
- Şeker, M.; Özbek, Y.; Yener, G.; Özerdem, M.S. Complexity of EEG dynamics for early diagnosis of Alzheimer’s disease using permutation entropy neuromarker. Comput. Methods Programs Biomed. 2021, 206, 106116. [Google Scholar] [CrossRef] [PubMed]
- Gurja, J.P.; Muthukrishnan, S.P.; Tripathi, M.; Sharma, R. Reduced Resting-State Cortical Alpha Connectivity Reflects Distinct Functional Brain Dysconnectivity in Alzheimer’s Disease and Mild Cognitive Impairment. Brain Connect. 2021, 12, 134–145. [Google Scholar] [CrossRef]
- Zorick, T.; Landers, J.; Leuchter, A.; Mandelkern, M.A. EEG multifractal analysis correlates with cognitive testing scores and clinical staging in mild cognitive impairment. J. Clin. Neurosci. 2020, 76, 195–200. [Google Scholar] [CrossRef]
- Hadiyoso, S.; Wijayanto, I.; Humairani, A. Entropy and Fractal Analysis of EEG Signals for Early Detection of Alzheimer’s Dementia. Trait. Signal 2023, 40, 1673–1679. [Google Scholar] [CrossRef]
- Lal, U.; Chikkankod, A.V.; Longo, L. A Comparative Study on Feature Extraction Techniques for the Discrimination of Frontotemporal Dementia and Alzheimer’s Disease with Electroencephalography in Resting-State Adults. Brain Sci. 2024, 14, 335. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, S.Y.; Han, S.-H. Non-linear dynamical analysis of the EEG in Alzheimer’s disease with optimal embedding dimension. Electroencephalogr. Clin. Neurophysiol. 1998, 106, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Smits, F.M.; Porcaro, C.; Cottone, C.; Cancelli, A.; Rossini, P.M.; Tecchio, F. Electroencephalographic fractal dimension in healthy ageing and Alzheimer’s disease. PLoS ONE 2016, 11, e0149587. [Google Scholar] [CrossRef] [PubMed]
- John, T.N.; Puthankattil, S.D.; Menon, R. Analysis of long range dependence in the EEG signals of Alzheimer patients. Cogn. Neurodyn. 2018, 12, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Nobukawa, S.; Yamanishi, T.; Nishimura, H.; Wada, Y.; Kikuchi, M.; Takahashi, T. Atypical temporal-scale-specific fractal changes in Alzheimer’s disease EEG and their relevance to cognitive decline. Cogn. Neurodyn. 2018, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.; Wang, L.; Chu, C.; Liu, C.; Zhu, X.; Shen, X.; Li, Z.; Wang, F.; Yang, M.; Wang, J. Analysis of complexity and dynamic functional connectivity based on resting-state EEG in early Parkinson’s disease patients with mild cognitive impairment. Cogn. Neurodyn. 2021, 16, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Lau, Z.J.; Pham, T.; Chen, S.H.A.; Makowski, D.; Lau, Z.J.; Pham, T.; Chen, S.H.A.; Makowski, D. Brain entropy, fractal dimensions and predictability: A review of complexity measures for EEG in healthy and neuropsychiatric populations. Eur. J. Neurosci. 2022, 56, 5047–5069. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Hu, J.; Tung, W.-W. Facilitating joint chaos and fractal analysis of biosignals through nonlinear adaptive filtering. PLoS ONE 2011, 6, e24331. [Google Scholar] [CrossRef]
- Díaz, M.H.; Córdova, F.M.; Cañete, L.; Palominos, F.; Cifuentes, F.; Sánchez, C.; Herrera, M. Order and Chaos in the Brain: Fractal time series analysis of the eeg activity during a cognitive problem solving task. Procedia Comput. Sci. 2015, 55, 1410–1419. [Google Scholar] [CrossRef]
- Long, Z.; Jing, B.; Guo, R.; Li, B.; Cui, F.; Wang, T.; Chen, H. A brainnetome atlas based mild cognitive impairment identification using hurst exponent. Front. Aging Neurosci. 2018, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Eckmann, J.-P.; Kamphorst, S.O.; Ruelle, D. Recurrence Plots of Dynamical Systems. Europhys. Lett. 1987, 4, 973–977. [Google Scholar] [CrossRef]
- Nunez, P.; Poza, J.; Gomez, C.; Barroso-Garcia, V.; Maturana-Candelas, A.; Tola-Arribas, M.A.; Cano, M.; Hornero, R. Characterization of the dynamic behavior of neural activity in Alzheimer’s disease: Exploring the non-stationarity and recurrence structure of EEG resting-state activity. J. Neural Eng. 2020, 17, 016071. [Google Scholar] [CrossRef] [PubMed]
- Timothy, L.T.; Krishna, B.M.; Nair, U. Classification of mild cognitive impairment EEG using combined recurrence and cross recurrence quantification analysis. Int. J. Psychophysiol. 2017, 120, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, T.; Qiu, S. Alzheimer’s Disease Analysis Algorithm Based on No-threshold Recurrence Plot Convolution Network. Front. Aging Neurosci. 2022, 14, 888577. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, H.; Guo, Y.; Gu, G.; Li, X.; Cui, D. A new EEG determinism analysis method based on multiscale dispersion recurrence plot. Biomed. Signal Process. Control 2023, 80, 104301. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, H. Multiscale recurrence analysis of long-term nonlinear and nonstationary time series. Chaos Solitons Fractals 2012, 45, 978–987. [Google Scholar] [CrossRef]
- Bai, D.; Yao, W.; Lv, Z.; Yan, W.; Wang, J. Multiscale multidimensional recurrence quantitative analysis for analysing MEG signals in patients with schizophrenia. Biomed. Signal Process Control 2021, 68, 102586. [Google Scholar] [CrossRef]
- Yin, Y.; Shang, P. Multiscale recurrence plot and recurrence quantification analysis for financial time series. Nonlinear Dyn. 2016, 85, 2309–2352. [Google Scholar] [CrossRef]
- He, Q.; Huang, J. A method for analyzing correlation between multiscale and multivariate systems-Multiscale multidimensional cross recurrence quantification (MMDCRQA). Chaos Solitons Fractals 2020, 139, 110066. [Google Scholar] [CrossRef]
- Huang, A.J.; Gu, B.D.; He, C.Q. Multiscale Cross-Recurrence Plot and Recurrence Quantification Analysis Based on Coarse-Grained. Fluct. Noise Lett. 2021, 20, 2150037. [Google Scholar] [CrossRef]
- Zhang, E.; Shan, D.; Li, Q. Nonlinear and Non-Stationary Detection for Measured Dynamic Signal from Bridge Structure Based on Adaptive Decomposition and Multiscale Recurrence Analysis. Appl. Sci. 2019, 9, 1302. [Google Scholar] [CrossRef]
- Gao, J.B.; Hu, J.; Tung, W.W.; Cao, Y.H. Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Phys. Rev. E 2006, 74, 066204. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Hu, J.; Tung, W.-W. Complexity measures of brain wave dynamics. Cogn. Neurodyn. 2011, 5, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Phys. D Nonlinear Phenom. 1983, 9, 189–208. [Google Scholar] [CrossRef]
- Vecchio, F.; Miraglia, F.; Alu, F.; Menna, M.; Judica, E.; Cotelli, M.; Rossini, P.M. Classification of Alzheimer’s disease with respect to physiological aging with innovative EEG biomarkers in a machine learning implementation. J. Alzheimer’s Dis. 2020, 75, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Gao, J.; Huang, Q.; Wu, Y.; Xu, B. Distinguishing epileptiform discharges from normal electroencephalograms using scale-dependent lyapunov exponent. Front. Bioeng. Biotechnol. 2020, 8, 1006. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Gao, J.; Zhang, Z.; Huang, Q.; Wu, Y.; Xu, B. Distinguishing epileptiform discharges from normal electroencephalograms using adaptive fractal and network analysis: A clinical perspective. Front. Physiol. 2020, 11, 828. [Google Scholar] [CrossRef] [PubMed]
- Miltiadous, A.; Tzimourta, K.D.; Afrantou, T.; Ioannidis, P.; Grigoriadis, N.; Tsalikakis, D.G.; Angelidis, P.; Tsipouras, M.G.; Glavas, E.; Giannakeas, N.; et al. A Dataset of Scalp EEG Recordings of Alzheimer’s Disease, Frontotemporal Dementia and Healthy Subjects from Routine EEG. Data 2023, 8, 95. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Peng, C.-K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef] [PubMed]
- Hogan, M.J.; Kilmartin, L.; Keane, M.; Collins, P.; Staff, R.T.; Kaiser, J.; Lai, R.; Upton, N. Electrophysiological entropy in younger adults, older controls and older cognitively declined adults. Brain Res. 2012, 1445, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Niu, Y.; Miao, L.; Cao, R.; Yan, P.; Guo, H.; Li, D.; Guo, Y.; Yan, T.; Wu, J.; et al. Decreased complexity in alzheimer’s disease: Resting-state fmri evidence of brain entropy mapping. Front. Aging Neurosci. 2017, 9, 378. [Google Scholar] [CrossRef] [PubMed]
- Morison, G.; Tieges, Z.; Kilborn, K. P3-191: Multiscale permutation entropy analysis of EEG in mild proba ble Alzheimer’s patients during an episodic memory paradigm. Alzheimer’s Dement. 2012, 8, P522. [Google Scholar] [CrossRef]
- Prado, P.; Mejía, J.A.; Sainz-Ballesteros, A.; Birba, A.; Moguilner, S.; Herzog, R.; Otero, M.; Cuadros, J.; Z-Rivera, L.; O’Byrne, D.F.; et al. Harmonized multi-metric and multi-centric assessment of EEG source space connectivity for dementia characterization. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2023, 15, e12455. [Google Scholar] [CrossRef]
Group | Gender (M/F) | Age | MMSE |
---|---|---|---|
AD | 12/24 | 66.39 ± 7.89 | 17.75 ± 4.50 |
FTD | 9/14 | 63.65 ± 8.22 | 22.17 ± 2.64 |
HC | 11/18 | 67.90 ± 5.40 | 30.00 ± 0.00 |
Accuracy (%) | Recall (%) | Specificity (%) | Null Distribution Accuracy (Mean ± sd) | |
---|---|---|---|---|
HC/AD | 87.69 | 97.22 | 75.86 | 66.50 ± 5.46 |
HC/FTD | 82.69 | 73.91 | 89.66 | 68.01 ± 5.48 |
AD/FTD | 72.88 | 94.44 | 39.13 | 68.53 ± 5.10 |
HC/AD&FTD | 86.36 | 93.22 | 72.41 | 70.78 ± 3.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Xiong, X.; Zhang, X. Multi-Threshold Recurrence Rate Plot: A Novel Methodology for EEG Analysis in Alzheimer’s Disease and Frontotemporal Dementia. Brain Sci. 2024, 14, 565. https://doi.org/10.3390/brainsci14060565
Zheng H, Xiong X, Zhang X. Multi-Threshold Recurrence Rate Plot: A Novel Methodology for EEG Analysis in Alzheimer’s Disease and Frontotemporal Dementia. Brain Sciences. 2024; 14(6):565. https://doi.org/10.3390/brainsci14060565
Chicago/Turabian StyleZheng, Huang, Xingliang Xiong, and Xuejun Zhang. 2024. "Multi-Threshold Recurrence Rate Plot: A Novel Methodology for EEG Analysis in Alzheimer’s Disease and Frontotemporal Dementia" Brain Sciences 14, no. 6: 565. https://doi.org/10.3390/brainsci14060565
APA StyleZheng, H., Xiong, X., & Zhang, X. (2024). Multi-Threshold Recurrence Rate Plot: A Novel Methodology for EEG Analysis in Alzheimer’s Disease and Frontotemporal Dementia. Brain Sciences, 14(6), 565. https://doi.org/10.3390/brainsci14060565