The Androgen Dehydroepiandrosterone Sulfate Shows a Greater Relationship with Impulsivity than Testosterone in a Healthy Male Sample
Abstract
:1. Introduction
2. Method
2.1. Participants and Procedure
2.2. Impulsive Personality Traits Measures
2.2.1. The Barratt Impulsiveness Scale (BIS-11) Is a 30-Item Questionnaire Comprising Three Scales: Attention (AI), Motor (MI), and Non-Planning (NPI) Impulsiveness [18]
2.2.2. The Impulsive Behavior Scale (UPPS-P) Shortened Version Was Originally Developed by Whiteside and Lynam [11]
2.2.3. The Short Version of Sensitivity to Reward Questionnaire (SR) Is Part of the Sensitivity to Reward and Sensitivity to Punishment, Shortened 20-Item Version (SPSRQ-20) [20]
2.3. Hormone Assays
2.4. Data Analysis Strategy
3. Results
3.1. Age Group Comparison, Frequencies, Distribution Values, and Internal Consistency
3.2. Partial Empirical Network Analysis
3.3. Principal Component Analysis
3.4. Impulsivity and Age as a Hormonal Prediction Power
3.5. Non-Parametric Local LOESS Graphic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buss, A.H.; Plomin, R.A. Temperament Theory of Personality Development; Wiley: New York, NY, USA, 1975. [Google Scholar]
- Costa, P.T.; McCrae, R.R. The NEO Personality Inventory Manual; Psychological Assessment Resources: Odessa, FL, USA, 1985. [Google Scholar]
- Zuckerman, M.; Kuhlman, D.M.; Joireman, J.; Teta, P.; Kraft, M. A comparison of three structural models for personality: The Big Three, the Big Five, and the Alternative Five. J. Personal. Soc. Psychol. 1993, 65, 757–768. [Google Scholar] [CrossRef]
- Barratt, E.S. Impulsivity: Integrating cognitive, behavioral, biological, and environmental data. In The Impulsive Client: Theory, Research, and Treatment; McCown, W.G., Johnson, J.L., Shure, M.B., Eds.; American Psychological Association: Washington, DC, USA, 1993; pp. 39–56. [Google Scholar] [CrossRef]
- Dickman, S.J. Functional and dysfunctional impulsivity: Personality and cognitive correlates. J. Personal. Soc. Psychol. 1990, 58, 95–102. [Google Scholar] [CrossRef]
- Eysenck, S.B.; Eysenck, H.J. The place of impulsiveness in a dimensional system of personality description. Br. J. Soc. Clin. Psychol. 1977, 16, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Eysenck, M.W. Personality, and Individual Differences: A Natural Science Approach; Plenum: New York, NY, USA, 1985. [Google Scholar]
- Gray, J.A. The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septohippocampal System; Oxford University Press: Oxford, UK, 1982. [Google Scholar]
- Gray, J.R. The Psychology of Fear and Stress; Cambridge University Press: New York, NY, USA, 1987. [Google Scholar]
- Costa, P.T.; McCrae, R.R. Normal personality assessment in clinical practice: The NEO Personality Inventory. Psychol. Assess. 1992, 4, 5–13. [Google Scholar] [CrossRef]
- Whiteside, S.P.; Lynam, D.R. The Five Factor Model and impulsivity: Using a structural model of personality to understand impulsivity. Personal. Individ. Differ. 2001, 30, 669–689. [Google Scholar] [CrossRef]
- Cyders, M.A.; Smith, G.T. Mood-based rash action and its components: Positive and negative urgency and their relations with other impulsivity-like constructs. Personal. Individ. Differ. 2007, 43, 839–850. [Google Scholar] [CrossRef]
- Cyders, M.A.; Smith, G.T.; Spillane, N.S.; Fischer, S.; Annus, A.M.; Peterson, C. Integration of impulsivity and positive mood to predict risky behavior: Development and validation of a measure of positive urgency. Psychol. Assess. 2007, 19, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Bakhshani, N.M. Impulsivity: A predisposition toward risky behaviors. Int. J. High Risk Behav. Addict. 2014, 3, e20428. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, B.W.; Basso, M.R.; Miller, A.K.; Whiteside, D.M.; Combs, D. Executive function, impulsivity, and risky behaviors in young adults. Neuropsychology 2019, 33, 212–221. [Google Scholar] [CrossRef]
- Bresin, K. Impulsivity and aggression: A meta-analysis using the UPPS model of impulsivity. Aggress. Violent Behav. 2019, 48, 124–140. [Google Scholar] [CrossRef]
- O’Connor, B.P. Graphical analyses of personality disorders in five-factor model space. Eur. J. Personal. 2005, 19, 287–305. [Google Scholar] [CrossRef]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor structure of the Barratt Impulsiveness Scale. J. Clin. Psychol. 1995, 51, 768–774. [Google Scholar] [CrossRef]
- Torrubia, R.; Avila, C.; Moltó, J.; Caseras, X. The Sensitivity to Punishment and Sensitivity Reward Questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Personal. Individ. Differ. 2001, 31, 837–862. [Google Scholar] [CrossRef]
- Aluja, A.; Blanch, A. Neuropsychological behavioral inhibition system (BIS) and behavioral approach system (BAS) assessment: A shortened sensitivity to punishment and sensitivity to reward questionnaire version (SPSRQ–20). J. Personal. Assess. 2011, 93, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Aluja, A.; García, L.F.; Blanch, A.; Fibla, J. Association of Androgen Receptor Gene, CAG, and GGN Repeat Length Polymorphism and Impulsive-Disinhibited Personality Traits in Inmates: The Role of Short–Long Haplotype. Psychiatr. Genet. 2011, 21, 229–239. [Google Scholar] [CrossRef]
- Aluja, A.; Blanch, A. Comparison of Impulsiveness, Venturesomeness, and Empathy (I7) Structure in English and Spanish Samples: Analysis of Different Structural Equation Models. Personal. Individ. Differ. 2007, 43, 2294–2305. [Google Scholar] [CrossRef]
- Barrós-Loscertales, A.; Ventura-Campos, N.; Sanjuán-Tomás, A.; Belloch, V.; Parcet, M.A.; Ávila, C. Behavioral Activation System Modulation on Brain Activation During Appetitive and Aversive Stimulus Processing. Soc. Cogn. Affect. Neurosci. 2010, 5, 18–28. [Google Scholar] [CrossRef]
- Pine, A.; Shiner, T.; Seymour, B.; Dolan, R.J. Dopamine, Time, and Impulsivity in Humans. J. Neurosci. 2010, 30, 8888–8896. [Google Scholar] [CrossRef]
- Bezdjian, S.; Baker, L.A.; Tuvblad, C. Genetic and Environmental Influences on Impulsivity: A Meta-Analysis of Twin, Family, and Adoption Studies. Clin. Psychol. Rev. 2011, 31, 1209–1223. [Google Scholar] [CrossRef]
- Gustavson, D.E.; Miyake, A.; Hewitt, J.K.; Friedman, N.P. Genetic Relations Among Procrastination, Impulsivity, and Goal-Management Ability: Implications for the Evolutionary Origin of Procrastination. Psychol. Sci. 2014, 25, 1178–1188. [Google Scholar] [CrossRef]
- Sánchez-Roige, S.; Fontanillas, P.; Elson, S.L.; Gray, J.C.; de Wit, H.; MacKillop, J.; Palmer, A.A. Genome-Wide Association Studies of Impulsive Personality Traits (BIS-11 and UPPS-P) and Drug Experimentation in up to 22,861 Adult Research Participants Identify Loci in the CACNA1I and CADM2 Genes. J. Neurosci. 2019, 39, 2562–2572. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.C.; MacKillop, K.J.; Weafer, J.; Hernandez, K.M.; Gao, J.; Palmer, A.A.; de Wit, H. Genetic Analysis of Impulsive Personality Traits: Examination of A Priori Candidates and Genome-Wide Variation. Psychiatry Res. 2018, 259, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Aluja, A.; García, L.F.; Martí-Guiu, M.; Blanco, E.; García, O.; Fibla, J.; Blanch, A. Interactions Among Impulsiveness, Testosterone, Sex Hormone-Binding Globulin, and Androgen Receptor Gene CAG Repeat Length. Physiol. Behav. 2015, 147, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, K.A.; Chistiakov, D.A.; Chekhonin, V.P. Genetic Determinants of Aggression and Impulsivity in Humans. J. Appl. Genet. 2012, 53, 61–82. [Google Scholar] [CrossRef] [PubMed]
- Whetzel, C.A.; Klein, L.C. Measuring DHEA-S in Saliva: Time of Day Differences and Positive Correlations Between Two Different Types of Collection Methods. BMC Res. Notes 2010, 3, 204. [Google Scholar] [CrossRef] [PubMed]
- Rotter, I.; Kosik-Bogacka, D.; Dołęgowska, B.; Skonieczna-Żydecka, K.; Pawlukowska, W.; Laszczyńska, M. Analysis of Relationships Between the Concentrations of Total Testosterone and Dehydroepiandrosterone Sulfate and the Occurrence of Selected Metabolic Disorders in Aging Men. Aging Male 2015, 18, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Do Vale, S.; Martins, J.M.; Fagundes, M.J.; do Carmo, I. Plasma Dehydroepiandrosterone-Sulphate is Related to Personality and Stress Response. Neuro Endocrinol. Lett. 2011, 32, 442–448. [Google Scholar]
- Hathaway, S.R.; McKinley, J.C. A Multiphasic Personality Schedule (Minnesota): I. Construction of the Schedule. J. Psychol. 1940, 10, 249–254. [Google Scholar] [CrossRef]
- Greene, R.L. The MMPI-2/MMPI: An Interpretive Manual; Allyn and Bacon: Boston, MA, USA, 1991. [Google Scholar]
- Sebastian, A.; Jacob, G.; Lieb, K.; Tüscher, O. Impulsivity in Borderline Personality Disorder: A Matter of Disturbed Impulse Control or a Facet of Emotional Dysregulation? Curr. Psychiatry Rep. 2013, 15, 339. [Google Scholar] [CrossRef]
- Wang, L.J.; Huang, Y.S.; Hsiao, C.C.; Chiang, Y.L.; Wu, C.C.; Shang, Z.Y.; Chen, C.K. Salivary Dehydroepiandrosterone, but Not Cortisol, Is Associated with Attention Deficit Hyperactivity Disorder. World J. Biol. Psychiatry 2011, 12, 99–109. [Google Scholar] [CrossRef]
- Jogems-Kosterman, B.J.; De Knijff, D.W.; Kusters, R.; van Hoof, J.J. Basal Cortisol and DHEA Levels in Women with Borderline Personality Disorder. J. Psychiatr. Res. 2007, 41, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Dutheil, F.; de Saint Vincent, S.; Pereira, B.; Schmidt, J.; Moustafa, F.; Charkhabi, M.; Clinchamps, M. DHEA as a Biomarker of Stress: A Systematic Review and Meta-Analysis. Front. Psychiatry 2021, 12, 688367. [Google Scholar] [CrossRef] [PubMed]
- Demiryürek, E.Ö.; Tekin, A.; Çakmak, E.; Temizkan, O.; Karamustafalıoğlu, O.; Gökova, S.; Demiryürek, E. Correlations Between Impulsiveness and Biochemical Parameters in Women with Polycystic Ovary Syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 207, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Handelsman, D.J. Testosterone and Other Androgens: Physiology, Pharmacology, and Therapeutic Use. In Endocrinology, 3rd ed.; DeGroot, L.J., Ed.; W.B. Saunders Company: Philadelphia, PA, USA, 1995; pp. 2351–2361. [Google Scholar]
- Zirkin, B.R.; Tenover, J.L. Aging and Declining Testosterone: Past, Present, and Hopes for the Future. J. Androl. 2012, 33, 1111–1118. [Google Scholar] [CrossRef]
- Feldman, H.A.; Longcope, C.; Derby, C.A.; Johannes, C.B.; Araujo, A.B.; Coviello, A.D.; McKinlay, J.B. Age Trends in the Level of Serum Testosterone and Other Hormones in Middle-Aged Men: Longitudinal Results from the Massachusetts Male Aging Study. J. Clin. Endocrinol. Metab. 2002, 87, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Allan, C.A.; McLachlan, R.I. Testosterone Deficiency in Men: Diagnosis and Management. Aust. Fam. Physician 2003, 32, 422–427. [Google Scholar] [PubMed]
- Campbell, B.C.; Dreber, A.; Apicella, C.L.; Eisenberg, D.T.; Gray, P.B.; Little, A.C.; Lum, J.K. Testosterone Exposure, Dopaminergic Reward, and Sensation-Seeking in Young Men. Physiol. Behav. 2010, 99, 451–456. [Google Scholar] [CrossRef]
- Gerra, G.; Avanzini, P.; Zaimovic, A.; Sartori, R.; Bocchi, C.; Timpano, M.; Zambelli, U.; Delsignore, R.; Gardini, F.; Talarico, E.; et al. Neurotransmitters, Neuroendocrine Correlates of Sensation-Seeking Temperament in Normal Humans. Neuropsychobiology 1999, 39, 207–213. [Google Scholar] [CrossRef]
- Aluja, A.; García, L.F.; García, O.; Blanco, E. Testosterone and Disinhibited Personality in Healthy Males. Physiol. Behav. 2016, 164, 227–232. [Google Scholar] [CrossRef]
- Aluja, A.; Torrubia, R. Hostility-Aggressiveness, Sensation Seeking, and Sex Hormones in Men: Re-Exploring Their Relationship. Neuropsychobiology 2004, 50, 102–107. [Google Scholar] [CrossRef]
- Daitzman, R.J.; Zuckerman, M.; Sammelwitz, M.P.; Ganjam, V. Sensation Seeking and Gonadal Hormones. J. Biosoc. Sci. 1978, 10, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Daitzman, R.J.; Zuckerman, M. Disinhibitory Sensation Seeking, Personality, and Gonadal Hormones. Personal. Individ. Differ. 1980, 1, 103–110. [Google Scholar] [CrossRef]
- Zuckerman, M. Psychobiology of Personality, 2nd ed.; Rev. and Updated; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- Carré, J.M.; Geniole, S.N.; Ortiz, T.L.; Bird, B.M.; Videto, A.; Bonin, P.L. Exogenous Testosterone Rapidly Increases Aggressive Behavior in Dominant and Impulsive Men. Biol. Psychiatry 2017, 82, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, Z. Extended Bayesian Information Criteria for Model Selection with Large Model Spaces. Biometrika 2008, 95, 759–771. [Google Scholar] [CrossRef]
- Bird, B.M.; Geniole, S.N.; Procyshyn, T.L.; Ortiz, T.L.; Carré, J.M.; Watson, N.V. Effect of Exogenous Testosterone on Cooperation Depends on Personality and Time Pressure. Neuropsychopharmacology 2019, 44, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Iribarren, M.M.; Jiménez-Giménez, M.; García-de Cecilia, J.M.; Rubio-Valladolid, G. Validation and Psychometric Properties of the State Impulsivity Scale (SIS). Actas Esp. Psiquiatr. 2011, 39, 49–60. [Google Scholar] [PubMed]
- Billieux, J.; Rochat, L.; Ceschi, G.; Carré, A.; Offerlin-Meyer, I.; Defeldre, A.C.; Van der Linden, M. Validation of a Short French Version of the UPPS-P Impulsive Behavior Scale. Comp. Psychiatry 2012, 53, 609–615. [Google Scholar] [CrossRef]
- Cándido, A.; Orduña, E.; Perales, J.C.; Verdejo-García, A.; Billieux, J. Validation of a Short Spanish Version of the UPPS-P Impulsive Behaviour Scale. Trastor. Adic. 2012, 14, 73–78. [Google Scholar] [CrossRef]
- Muthén, B.; Kaplan, D. A Comparison of Some Methodologies for the Factor Analysis of Nonnormal Likert Variables. Br. J. Math. Stat. Psychol. 1985, 38, 171–189. [Google Scholar] [CrossRef]
- West, S.G.; Finch, J.F.; Curran, P.J. Structural Equation Models with Non-Normal Variables: Problems and Remedies. In Structural Equation Modeling: Concepts, Issues, and Applications; Hoyle, R.H., Ed.; Sage: Thousand Oaks, CA, USA, 1995; pp. 56–75. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: A Global Perspective; Pearson Education International: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Friedman, J.H.; Hastie, T.; Tibshirani, R. Glasso: Graphical Lasso—Estimation of Gaussian Graphical Models; R Package Version 1.8. 2014. Available online: https://CRAN.R-project.org/package=glasso (accessed on 28 May 2024).
- Haslbeck, J.M.B.; Waldorp, L.J. mgm: Estimating Time-Varying Mixed Graphical Models in High-Dimensional Data. J. Stat. Softw. 2020, 93, 1–46. [Google Scholar] [CrossRef]
- Epskamp, S. Regularized Gaussian Psychological Networks: Brief Report on the Performance of Extended BIC Model Selection. arXiv 2016, arXiv:1606.05771. [Google Scholar]
- Friedman, J.; Hastie, T.; Tibshirani, R. Sparse Inverse Covariance Estimation with the Graphical Lasso. Biostatistics 2008, 9, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression Selection and Shrinkage via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Fox, J. Nonparametric Simple Regression: Smoothing Scatterplots; Sage: Thousand Oaks, CA, USA, 2000. [Google Scholar] [CrossRef]
- O’Connor, D.B.; Archer, J.; Hair, W.M.; Wu, F.C. Exogenous Testosterone, Aggression, and Mood in Eugonadal and Hypogonadal Men. Physiol. Behav. 2002, 75, 557–566. [Google Scholar] [CrossRef]
- Armstrong, T.; Wells, J.; Boisvert, D.L.; Lewis, R.H.; Cooke, E.M.; Woeckener, M.; Kavish, N. An Exploratory Analysis of Testosterone, Cortisol, and Aggressive Behavior Type in Men and Women. Biol. Psychol. 2021, 161, 108073. [Google Scholar] [CrossRef]
- Cleveland, W.S.; Grosse, E.; Shyu, W.M. Local Regression Models. In Chapter 8 of Statistical Models in S; Chambers, J.M., Hastie, T.J., Eds.; Routledge: London, UK, 1992. [Google Scholar]
- Cloninger, C.R.; Svrakic, D.M.; Przybeck, T.R. A Psychobiological Model of Temperament and Character. Arch. Gen. Psychiatry 1993, 50, 975–990. [Google Scholar] [CrossRef]
- Zuckerman, M. Personality in the Third Dimension: A Psychobiological Approach. Personal. Individ. Differ. 1989, 10, 391–418. [Google Scholar] [CrossRef]
- Zuckerman, M. Behavioral Expressions and Biosocial Bases of Sensation Seeking; Cambridge University Press: New York, NY, USA, 1994. [Google Scholar]
- Zuckerman, M. Sensation Seeking and Risky Behavior; American Psychological Association: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Dominguez, J.M.; Hull, E.M. Dopamine, the Medial Preoptic Area, and Male Sexual Behavior. Physiol. Behav. 2005, 86, 356–368. [Google Scholar] [CrossRef]
- Putnam, S.K.; Du, J.; Sato, S.; Hull, E.M. Testosterone Restoration of Copulatory Behavior Correlates with Medial Preoptic Dopamine Release in Castrated Male Rats. Horm. Behav. 2001, 39, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Zuckerman, M. Sensation Seeking and Arousal Systems. Personal. Individ. Differ. 1983, 4, 381–386. [Google Scholar] [CrossRef]
- Pérez-Neri, I.; Montes, S.; Ríos, C. Inhibitory Effect of Dehydroepiandrosterone on Brain Monoamine Oxidase Activity: In Vivo and In Vitro Studies. Life Sci. 2009, 85, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Rukavina, S.; Limbrecht-Ecklundt, K.; Hrabal, D.; Walter, S.; Traue, H.C. Sexual Hormones Influence Gray’s Theory of Personality. Psychol. Res. 2013, 3, 153–161. [Google Scholar] [CrossRef]
- Quinn, T.A.; Robinson, S.R.; Walker, D. Dehydroepiandrosterone (DHEA) and DHEA Sulfate: Roles in Brain Function and Disease. In Sex Hormones in Neurodegeneration Processes and Diseases; Drevenšek, G., Ed.; IntechOpen: London, UK, 2018; pp. 41–68. [Google Scholar] [CrossRef]
- Agrawal, J.; Dwivedi, Y. GABAA Receptor Subunit Transcriptional Regulation, Expression Organization, and Mediated Calmodulin Signaling in Prefrontal Cortex of Rats Showing Testosterone-Mediated Impulsive Behavior. Front. Neurosci. 2020, 14, 600099. [Google Scholar] [CrossRef] [PubMed]
(1) n = 40 | (2) n = 39 | (3) n = 41 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
<38 Years | 38 to 50 Years | <50 Years | p< | |||||||
M | SD | M | SD | M | SD | Scheffé | K | S | α | |
Age | 29.93 | 4.28 | 44.41 | 3.89 | 58.64 | 5.84 | - | −0.99 | 0.11 | - |
DHEA-S * | 0.86 | 0.20 | 0.76 | 0.24 | 0.61 | 0.18 | 1 > 2 (0.001); 2 > 3 (0.007) | −0.34 | 0.04 | - |
Testosterone * | 2.09 | 0.17 | 2.01 | 0.21 | 1.97 | 0.16 | 1 > 3 (0.014) | 1.8 | 0.44 | - |
Attention (BIS-11) | 14.39 | 5.26 | 13.11 | 4.48 | 13.83 | 4.50 | −0.08 | 0.56 | 0.62 | |
Motor (BIS-11) | 13.80 | 6.78 | 12.08 | 5.26 | 11.63 | 5.51 | 0.73 | 0.83 | 0.73 | |
Non-planning (BIS-11) | 15.63 | 7.01 | 15.24 | 5.97 | 14.76 | 7.48 | 0.79 | 0.94 | 0.72 | |
Negative Urgency | 7.80 | 1.91 | 7.47 | 2.33 | 8.12 | 3.12 | 0.11 | 0.49 | 0.80 | |
Lack of Premeditation | 8.10 | 2.08 | 7.74 | 2.10 | 7.44 | 2.21 | −0.34 | 0.08 | 0.81 | |
Lack of Perseverance | 8.61 | 1.46 | 8.76 | 1.97 | 8.78 | 1.98 | −0.41 | 0.07 | 0.69 | |
Sensation Seeking | 9.93 | 3.03 | 8.71 | 2.69 | 7.73 | 2.37 | 1 > 3 (0.002) | −0.60 | 0.07 | 0.85 |
Positive Urgency | 7.46 | 2.42 | 6.97 | 2.68 | 7.07 | 2.59 | 0.27 | 0.77 | 0.83 | |
Sensitivity to Reward | 21.90 | 4.12 | 21.37 | 3.82 | 19.02 | 4.61 | 1 > 3 (0.010); 2 > 3 (0.05) | −0.68 | −0.05 | 0.76 |
Including Age | I | II | Excluding Age | I | II |
---|---|---|---|---|---|
Positive Urgency | 0.72 | 0.20 | Non-Planning (BIS-11) | 0.76 | 0.11 |
Lack of Premeditation | 0.72 | 0.19 | Lack of Premeditation | 0.76 | 0.32 |
Motor (BIS-11) | 0.69 | 0.31 | Lack of Perseverance | 0.73 | −0.09 |
Attention (BIS-11) | 0.66 | 0.10 | Attention (BIS 11) | 0.59 | 0.24 |
Negative Urgency | 0.65 | −0.01 | Sensitivity to Reward | −0.12 | 0.77 |
Non-Planning (BIS-11) | 0.61 | 0.03 | Positive Urgency | 0.30 | 0.70 |
Lack of Perseverance | 0.46 | −0.06 | Sensation Seeking | 0.13 | 0.67 |
DHEA-S | 0.03 | 0.77 | Negative Urgency | 0.09 | 0.66 |
Age | 0.09 | −0.76 | Motor (BIS11) | 0.35 | 0.64 |
Testosterone | 0.05 | 0.57 | DHEA-S | 0.12 | 0.48 |
Sensitivity to Reward | 0.31 | 0.55 | Testosterone | 0.07 | 0.42 |
Sensation Seeking | 0.41 | 0.53 |
DHEA-S | Testosterone | ||||||
---|---|---|---|---|---|---|---|
Adjusted R2 = 0.28 | β | t | p< | Adjusted R2 = 0.09 | β | t | p< |
(Constant) | 4.92 | 0.001 | (Constant) | 14.14 | 0.001 | ||
Age | −0.39 | −4.39 | 0.001 | Age | −0.22 | −2.25 | 0.027 |
Attention (BIS-11) | −0.04 | −0.40 | 0.690 | Attention (BIS-11) | 0.16 | 1.45 | 0.151 |
Motor (BIS-11) | 0.15 | 1.34 | 0.183 | Motor (BIS-11) | −0.11 | −0.93 | 0.352 |
Non-Planning (BIS-11) | −0.05 | −0.51 | 0.609 | Non-Planning (BIS-11) | 0 | −0.02 | 0.982 |
Sensitivity to Reward | 0.21 | 2.11 | 0.037 | Sensitivity to Reward | 0.15 | 1.30 | 0.196 |
Negative Urgency | −0.34 | −3.05 | 0.003 | Negative Urgency | −0.20 | −1.59 | 0.115 |
Lack of Premeditation | 0.05 | 0.46 | 0.649 | Lack of Premeditation | −0.13 | −1.04 | 0.300 |
Lack of Perseverance | 0.09 | 0.91 | 0.365 | Lack of Perseverance | 0.07 | 0.66 | 0.510 |
Sensation Seeking | −0.13 | −1.35 | 0.180 | Sensation Seeking | −0.01 | −0.09 | 0.927 |
Positive Urgency | 0.32 | 2.71 | 0.008 | Positive Urgency | 0.36 | 2.73 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aluja, A.; Balada, F.; García, Ó.; Aymamí, N.; García, L.F. The Androgen Dehydroepiandrosterone Sulfate Shows a Greater Relationship with Impulsivity than Testosterone in a Healthy Male Sample. Brain Sci. 2024, 14, 569. https://doi.org/10.3390/brainsci14060569
Aluja A, Balada F, García Ó, Aymamí N, García LF. The Androgen Dehydroepiandrosterone Sulfate Shows a Greater Relationship with Impulsivity than Testosterone in a Healthy Male Sample. Brain Sciences. 2024; 14(6):569. https://doi.org/10.3390/brainsci14060569
Chicago/Turabian StyleAluja, Anton, Ferran Balada, Óscar García, Neus Aymamí, and Luis F. García. 2024. "The Androgen Dehydroepiandrosterone Sulfate Shows a Greater Relationship with Impulsivity than Testosterone in a Healthy Male Sample" Brain Sciences 14, no. 6: 569. https://doi.org/10.3390/brainsci14060569
APA StyleAluja, A., Balada, F., García, Ó., Aymamí, N., & García, L. F. (2024). The Androgen Dehydroepiandrosterone Sulfate Shows a Greater Relationship with Impulsivity than Testosterone in a Healthy Male Sample. Brain Sciences, 14(6), 569. https://doi.org/10.3390/brainsci14060569