CD59 Protects Primary Human Cerebrovascular Smooth Muscle Cells from Cytolytic Membrane Attack Complex
Abstract
:1. Background
2. Materials and Methods
2.1. Cell Isolation and Culture
2.2. Immunofluorescence Microscopy
2.3. Alternative Complement Pathway Activity Test
2.4. HCSM Cell Complement Resistance Assay
2.5. CD59 Inhibition Assay
2.6. Statistical Analysis
3. Results
3.1. Generation of Primary HCSM Cells from Human Cerebral Vasculature
3.2. Functional Evaluation of CD59 in HCSM Cell Resistance to Complement Attack
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinters, H.V. Cerebral amyloid angiopathy. A critical review. Stroke 1987, 18, 311–324. [Google Scholar] [CrossRef]
- Soontornniyomkij, V.; Lynch, M.D.; Mermash, S.; Pomakian, J.; Badkoobehi, H.; Clare, R.; Vinters, H.V. Cerebral microinfarcts associated with severe cerebral beta-amyloid angiopathy. Brain Pathol. 2010, 20, 459–467. [Google Scholar] [CrossRef]
- Zabel, M.; Schrag, M.; Crofton, A.; Tung, S.; Beaufond, P.; Van Ornam, J.; Dininni, A.; Vinters, H.V.; Coppola, G.; Kirsch, W.M. A shift in microglial β-amyloid binding in Alzheimer’s disease is associated with cerebral amyloid angiopathy. Brain Pathol. 2013, 23, 390–401. [Google Scholar] [CrossRef]
- Bano, S.; Yadav, S.N.; Garga, U.C.; Chaudhary, V. Sporadic cerebral amyloid angiopathy: An important cause of cerebral hemorrhage in the elderly. J. Neurosci. Rural. Pract. 2011, 2, 87–91. [Google Scholar] [CrossRef]
- Boyle, P.A.; Yu, L.; Wilson, R.S.; Leurgans, S.E.; Schneider, J.A.; Bennett, D.A. Person-specific contribution of neuropathologies to cognitive loss in old age. Ann. Neurol. 2018, 83, 74–83. [Google Scholar] [CrossRef]
- Kirsch, W.; McAuley, G.; Holshouser, B.; Petersen, F.; Ayaz, M.; Vinters, H.V.; Dickson, C.; Haacke, E.M.; Britt Iii, W.; Larsen, J.; et al. Serial Susceptibility Weighted MRI Measures Brain Iron and Microbleeds in Dementia. J. Alzheimer’s Dis. 2009, 17, 599–609. [Google Scholar] [CrossRef]
- Thal, D.R.; Ghebremedhin, E.; Orantes, M.; Wiestler, O.D. Vascular pathology in Alzheimer disease: Correlation of cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline. J. Neuropathol. Exp. Neurol. 2003, 62, 1287–1301. [Google Scholar] [CrossRef]
- Corriveau, R.A.; Bosetti, F.; Emr, M.; Gladman, J.T.; Koenig, J.I.; Moy, C.S.; Pahigiannis, K.; Waddy, S.P.; Koroshetz, W. The Science of Vascular Contributions to Cognitive Impairment and Dementia (VCID): A Framework for Advancing Research Priorities in the Cerebrovascular Biology of Cognitive Decline. Cell Mol. Neurobiol. 2016, 36, 281–288. [Google Scholar] [CrossRef]
- Auriel, E.; Greenberg, S.M. The pathophysiology and clinical presentation of cerebral amyloid angiopathy. Curr. Atheroscler. Rep. 2012, 14, 343–350. [Google Scholar] [CrossRef]
- Tanaka, M.; Saito, S.; Inoue, T.; Satoh-Asahara, N.; Ihara, M. Potential Therapeutic Approaches for Cerebral Amyloid Angiopathy and Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 1992. [Google Scholar] [CrossRef]
- Fishelson, Z.; Attali, G.; Mevorach, D. Complement and apoptosis. Mol. Immunol. 2001, 38, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Green, H.; Barrow, P.; Goldberg, B. Effect of antibody and complement on permeability control in ascites tumor cells and erythrocytes. J. Exp. Med. 1959, 110, 699–713. [Google Scholar] [CrossRef] [PubMed]
- Morgan, B.P. Complement membrane attack on nucleated cells: Resistance, recovery and non-lethal effects. Biochem. J. 1989, 264, 1. [Google Scholar] [CrossRef] [PubMed]
- Dunkelberger, J.R.; Song, W.-C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010, 20, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Berends, E.T.M.; Mohan, S.; Miellet, W.R.; Ruyken, M.; Rooijakkers, S.H.M. Contribution of the complement Membrane Attack Complex to the bactericidal activity of human serum. Mol. Immunol. 2015, 65, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Mastellos, D.C.; Hajishengallis, G.; Lambris, J.D. A guide to complement biology, pathology and therapeutic opportunity. Nat. Rev. Immunol. 2024, 24, 118–141. [Google Scholar] [CrossRef] [PubMed]
- Lambris, J.D.; Ricklin, D.; Geisbrecht, B.V. Complement evasion by human pathogens. Nat. Rev. Microbiol. 2008, 6, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.B.; Li, R.; Meri, S.; Rogers, J.; Shen, Y. Deficiency of complement defense protein CD59 may contribute to neurodegeneration in Alzheimer’s disease. J. Neurosci. Off. J. Soc. Neurosci. 2000, 20, 7505–7509. [Google Scholar] [CrossRef] [PubMed]
- Vedeler, C.; Ulvestad, E.; Bjørge, L.; Conti, G.; Williams, K.; Mørk, S.; Matre, R. The expression of CD59 in normal human nervous tissue. Immunology 1994, 82, 542–547. [Google Scholar]
- Wang, Z.; Guo, W.; Liu, Y.; Gong, Y.; Ding, X.; Shi, K.; Thome, R.; Zhang, G.X.; Shi, F.D.; Yan, Y. Low expression of complement inhibitory protein CD59 contributes to humoral autoimmunity against astrocytes. Brain Behav. Immun. 2017, 65, 173–182. [Google Scholar] [CrossRef]
- Oglesby, T.J.; Longwith, J.E.; Huettner, P.C. Human complement regulator expression by the normal female reproductive tract. Anat. Rec. 1996, 246, 78–86. [Google Scholar] [CrossRef]
- Michielsen, L.A.; Budding, K.; Drop, D.; van de Graaf, E.A.; Kardol-Hoefnagel, T.; Verhaar, M.C.; van Zuilen, A.D.; Otten, H.G. Reduced Expression of Membrane Complement Regulatory Protein CD59 on Leukocytes following Lung Transplantation. Front. Immunol. 2018, 8, 2008. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, E.D.; Aass, H.C.D.; Rootwelt, T.; Fung, M.; Lambris, J.D.; Mollnes, T.E. CD59 Efficiently Protects Human NT2-N Neurons Against Complement-mediated Damage. Scand. J. Immunol. 2007, 66, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Meri, S.; Morgan, B.P.; Davies, A.; Daniels, R.H.; Olavesen, M.G.; Waldmann, H.; Lachmann, P.J. Human protectin (CD59), an 18,000–20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology 1990, 71, 1. [Google Scholar] [PubMed]
- Zhao, J.; Rollins, S.A.; Maher, S.E.; Bothwell, A.L.; Sims, P.J. Amplified gene expression in CD59-transfected Chinese hamster ovary cells confers protection against the membrane attack complex of human complement. J. Biol. Chem. 1991, 266, 13418–13422. [Google Scholar] [CrossRef] [PubMed]
- Farkas, I.; Baranyi, L.; Ishikawa, Y.; Okada, N.; Bohata, C.; Budai, D.; Fukuda, A.; Imai, M.; Okada, H. CD59 blocks not only the insertion of C9 into MAC but inhibits ion channel formation by homologous C5b-8 as well as C5b-9. J. Physiol. 2002, 539 Pt 2, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Couves, E.C.; Gardner, S.; Voisin, T.B.; Bickel, J.K.; Stansfeld, P.J.; Tate, E.W.; Bubeck, D. Structural basis for membrane attack complex inhibition by CD59. Nat. Commun. 2023, 14, 890. [Google Scholar] [CrossRef] [PubMed]
- Dalakas, M.C.; Alexopoulos, H.; Spaeth, P.J. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat. Rev. Neurol. 2020, 16, 601–617. [Google Scholar] [CrossRef] [PubMed]
- Kesselring, R.; Thiel, A.; Pries, R.; Fichtner-Feigl, S.; Brunner, S.; Seidel, P.; Bruchhage, K.L.; Wollenberg, B. The complement receptors CD46, CD55 and CD59 are regulated by the tumour microenvironment of head and neck cancer to facilitate escape of complement attack. Eur. J. Cancer 2014, 50, 2152–2161. [Google Scholar] [CrossRef]
- Budding, K.; van de Graaf, E.A.; Kardol-Hoefnagel, T.; Broen, J.C.A.; Kwakkel-van Erp, J.M.; Oudijk, E.-J.D.; van Kessel, D.A.; Hack, C.E.; Otten, H.G. A Promoter Polymorphism in the CD59 Complement Regulatory Protein Gene in Donor Lungs Correlates With a Higher Risk for Chronic Rejection After Lung Transplantation. Am. J. Transplant. 2016, 16, 987–998. [Google Scholar] [CrossRef]
- Konttinen, Y.T.; Ceponis, A.; Meri, S.; Vuorikoski, A.; Kortekangas, P.; Sorsa, T.; Sukura, A.; Santavirta, S. Complement in acute and chronic arthritides: Assessment of C3c, C9, and protectin (CD59) in synovial membrane. Ann. Rheum. Dis. 1996, 55, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Fishelson, Z.; Donin, N.; Zell, S.; Schultz, S.; Kirschfink, M. Obstacles to cancer immunotherapy: Expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol. Immunol. 2003, 40, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Paul Morgan, B.; van den Berg, C.W.; Harris, C.L. ‘‘Homologous restriction’’ in complement lysis: Roles of membrane complement regulators. Xenotransplantation 2005, 12, 258–265. [Google Scholar] [CrossRef]
- Powell, M.B.; Marchbank, K.J.; Rushmere, N.K.; van den Berg, C.W.; Morgan, B.P. Molecular cloning, chromosomal localization, expression, and functional characterization of the mouse analogue of human CD59. J. Immunol. 1997, 158, 1692–1702. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.L.; Hanna, S.M.; Mizuno, M.; Holt, D.S.; Marchbank, K.J.; Morgan, B.P. Characterization of the mouse analogues of CD59 using novel monoclonal antibodies: Tissue distribution and functional comparison. Immunology 2003, 109, 117–126. [Google Scholar] [CrossRef]
- Karbian, N.; Eshed-Eisenbach, Y.; Tabib, A.; Hoizman, H.; Morgan, B.P.; Schueler-Furman, O.; Peles, E.; Mevorach, D. Molecular pathogenesis of human CD59 deficiency. Neurol. Genet. 2018, 4, e280. [Google Scholar] [CrossRef]
- Yasojima, K.; McGeer, E.G.; McGeer, P.L. Complement regulators C1 inhibitor and CD59 do not significantly inhibit complement activation in Alzheimer disease. Brain Res. 1999, 833, 297–301. [Google Scholar] [CrossRef]
- Ramo, K.; Cashman, S.M.; Kumar-Singh, R. Evaluation of adenovirus-delivered human CD59 as a potential therapy for AMD in a model of human membrane attack complex formation on murine RPE. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4126–4136. [Google Scholar] [CrossRef] [PubMed]
- Mevorach, D.; Reiner, I.; Grau, A.; Ilan, U.; Berkun, Y.; Ta-Shma, A.; Elpeleg, O.; Shorer, Z.; Edvardson, S.; Tabib, A. Therapy with eculizumab for patients with CD59 p.Cys89Tyr mutation. Ann. Neurol. 2016, 80, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Holguin, M.H.; Fredrick, L.R.; Bernshaw, N.J.; Wilcox, L.A.; Parker, C.J. Isolation and characterization of a membrane protein from normal human erythrocytes that inhibits reactive lysis of the erythrocytes of paroxysmal nocturnal hemoglobinuria. J. Clin. Investig. 1989, 84, 7–17. [Google Scholar] [CrossRef]
- Risitano, A.M.; Frieri, C.; Urciuoli, E.; Marano, L. The complement alternative pathway in paroxysmal nocturnal hemoglobinuria: From a pathogenic mechanism to a therapeutic target. Immunol. Rev. 2023, 313, 262–278. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, T. Congenital Defects in the Expression of the Glycosylphosphatidylinositol-Anchored Complement Regulatory Proteins CD59 and Decay-Accelerating Factor. Semin. Hematol. 2018, 55, 136–140. [Google Scholar] [CrossRef]
- Tulamo, R.; Frösen, J.; Paetau, A.; Seitsonen, S.; Hernesniemi, J.; Niemelä, M.; Järvelä, I.; Meri, S. Lack of complement inhibitors in the outer intracranial artery aneurysm wall associates with complement terminal pathway activation. Am. J. Pathol. 2010, 177, 3224–3232. [Google Scholar] [CrossRef] [PubMed]
- Namekar, M.; Kumar, M.; O’Connell, M.; Nerurkar, V.R. Effect of Serum Heat-Inactivation and Dilution on Detection of Anti-WNV Antibodies in Mice by West Nile Virus E-protein Microsphere Immunoassay. PLoS ONE 2012, 7, e45851. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Halperin, J.A.; Lee, C.-M. Complement-mediated neurotoxicity is regulated by homologous restriction. Brain Res. 1995, 671, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Costabile, M. Measuring the 50% haemolytic complement (CH50) activity of serum. J. Vis. Exp. 2010, 37, e1923. [Google Scholar] [CrossRef]
- Hayes, G.; Pinto, J.; Sparks, S.N.; Wang, C.; Suri, S.; Bulte, D.P. Vascular smooth muscle cell dysfunction in neurodegeneration. Front. Neurosci. 2022, 16, 1010164. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.D. Intermediate filaments in smooth muscle. Am. J. Physiol. Cell Physiol. 2008, 294, C869–C878. [Google Scholar] [CrossRef] [PubMed]
- Fearon, D.; Austen, K. Activation of the alternative complement pathway with rabbit erythrocytes by circumvention of the regulatory action of endogenous control proteins. J. Exp. Med. 1977, 146, 22–33. [Google Scholar] [CrossRef]
- Ekdahl, K.N.; Persson, B.; Mohlin, C.; Sandholm, K.; Skattum, L.; Nilsson, B. Interpretation of Serological Complement Biomarkers in Disease. Front. Immunol. 2018, 9, 2237. [Google Scholar] [CrossRef]
- Zhao, W.-P.; Zhu, B.; Duan, Y.-Z.; Chen, Z.-T. Neutralization of complement regulatory proteins CD55 and CD59 augments therapeutic effect of herceptin against lung carcinoma cells. Oncol. Rep. 2009, 21, 1405–1411. [Google Scholar] [CrossRef]
- Jarvis, G.A.; Li, J.; Hakulinen, J.; Brady, K.A.; Nordling, S.; Dahiya, R.; Meri, S. Expression and function of the complement membrane attack complex inhibitor protectin (CD59) in human prostate cancer. Int. J. Cancer 1997, 71, 1049–1055. [Google Scholar] [CrossRef]
- Eyden, B. The myofibroblast: Phenotypic characterization as a prerequisite to understanding its functions in translational medicine. J. Cell Mol. Med. 2008, 12, 22–37. [Google Scholar] [CrossRef]
- Wang, J.; Zohar, R.; McCulloch, C.A. Multiple roles of alpha-smooth muscle actin in mechanotransduction. Exp. Cell Res. 2006, 312, 205–214. [Google Scholar] [CrossRef]
- Rus, H.G.; Niculescu, F.I.; Shin, M.L. Role of the C5b-9 complement complex in cell cycle and apoptosis. Immunol. Rev. 2001, 180, 49–55. [Google Scholar] [CrossRef]
- Carney, D.F.; Hammer, C.H.; Shin, M.L. Elimination of terminal complement complexes in the plasma membrane of nucleated cells: Influence of extracellular Ca2+ and association with cellular Ca2+. J. Immunol. 1986, 137, 263–270. [Google Scholar] [CrossRef]
- Koski, C.L.; Ramm, L.E.; Hammer, C.H.; Mayer, M.M.; Shin, M.L. Cytolysis of nucleated cells by complement: Cell death displays multi-hit characteristics. Proc. Natl. Acad. Sci. USA 1983, 80, 3816–3820. [Google Scholar] [CrossRef] [PubMed]
- Giuntini, S.; Reason, D.C.; Granoff, D.M. Combined roles of human IgG subclass, alternative complement pathway activation, and epitope density in the bactericidal activity of antibodies to meningococcal factor h binding protein. Infect. Immun. 2012, 80, 187–194. [Google Scholar] [CrossRef]
- Garred, P.; Michaelsen, T.E.; Aase, A. The IgG subclass pattern of complement activation depends on epitope density and antibody and complement concentration. Scand. J. Immunol. 1989, 30, 379–382. [Google Scholar] [CrossRef]
- Michaelsen, T.E.; Garred, P.; Aase, A. Human IgG subclass pattern of inducing complement-mediated cytolysis depends on antigen concentration and to a lesser extent on epitope patchiness, antibody affinity and complement concentration. Eur. J. Immunol. 1991, 21, 11–16. [Google Scholar] [CrossRef]
- Bindon, C.I.; Hale, G.; Brüggemann, M.; Waldmann, H. Human monoclonal IgG isotypes differ in complement activating function at the level of C4 as well as C1q. J. Exp. Med. 1988, 168, 127–142. [Google Scholar] [CrossRef]
- Murray, E.W.; Robbins, S.M. Antibody Cross-linking of the Glycosylphosphatidylinositol-linked Protein CD59 on Hematopoietic Cells Induces Signaling Pathways Resembling Activation by Complement. J. Biol. Chem. 1998, 273, 25279–25284. [Google Scholar] [CrossRef]
- Fraser, D.A.; Harris, C.L.; Williams, A.S.; Mizuno, M.; Gallagher, S.; Smith, R.A.; Morgan, B.P. Generation of a recombinant, membrane-targeted form of the complement regulator CD59: Activity in vitro and in vivo. J. Biol. Chem. 2003, 278, 48921–48927. [Google Scholar] [CrossRef]
- Chen, S.; Caragine, T.; Cheung, N.K.; Tomlinson, S. CD59 expressed on a tumor cell surface modulates decay-accelerating factor expression and enhances tumor growth in a rat model of human neuroblastoma. Cancer Res. 2000, 60, 3013–3018. [Google Scholar]
- McKeage, K. Eculizumab. Drugs 2011, 71, 2327–2345. [Google Scholar] [CrossRef]
- McKeage, K. Ravulizumab: First Global Approval. Drugs 2019, 79, 347–352. [Google Scholar] [CrossRef]
- Sarmoko; Ramadhanti, M.; Zulkepli, N.A. CD59: Biological function and its potential for drug target action. Gene Rep. 2023, 31, 101772. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whinnery, C.D.; Nie, Y.; Boskovic, D.S.; Soriano, S.; Kirsch, W.M. CD59 Protects Primary Human Cerebrovascular Smooth Muscle Cells from Cytolytic Membrane Attack Complex. Brain Sci. 2024, 14, 601. https://doi.org/10.3390/brainsci14060601
Whinnery CD, Nie Y, Boskovic DS, Soriano S, Kirsch WM. CD59 Protects Primary Human Cerebrovascular Smooth Muscle Cells from Cytolytic Membrane Attack Complex. Brain Sciences. 2024; 14(6):601. https://doi.org/10.3390/brainsci14060601
Chicago/Turabian StyleWhinnery, Carson D., Ying Nie, Danilo S. Boskovic, Salvador Soriano, and Wolff M. Kirsch. 2024. "CD59 Protects Primary Human Cerebrovascular Smooth Muscle Cells from Cytolytic Membrane Attack Complex" Brain Sciences 14, no. 6: 601. https://doi.org/10.3390/brainsci14060601
APA StyleWhinnery, C. D., Nie, Y., Boskovic, D. S., Soriano, S., & Kirsch, W. M. (2024). CD59 Protects Primary Human Cerebrovascular Smooth Muscle Cells from Cytolytic Membrane Attack Complex. Brain Sciences, 14(6), 601. https://doi.org/10.3390/brainsci14060601