Neutrophil–Lymphocyte Ratio Values in Schizophrenia: A Comparison between Oral and Long-Acting Antipsychotic Therapies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data and Sample Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association Publishing: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Shanko, A.; Abute, L.; Tamirat, T. Attitudes towards schizophrenia and associated factors among community members in Hossana town: A mixed method study. BMC Psychiatry 2023, 23, 80. [Google Scholar] [CrossRef] [PubMed]
- Edinoff, A.N.; Sathivadivel, N.; McNeil, S.E.; Ly, A.I.; Kweon, J.; Kelkar, N.; Cornett, E.M.; Kaye, A.M.; Kaye, A.D. Antipsychotic Use in Pregnancy: Patient Mental Health Challenges, Teratogenicity, Pregnancy Complications, and Postnatal Risks. Neurol. Int. 2022, 14, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Mohr, P.; Masopust, J.; Kopeček, M. Dopamine Receptor Partial Agonists: Do They Differ in Their Clinical Efficacy? Front. Psychiatry 2022, 12, 781946. [Google Scholar] [CrossRef] [PubMed]
- De Bartolomeis, A.; Tomasetti, C.; Iasevoli, F. Update on the Mechanism of Action of Aripiprazole: Translational Insights into Antipsychotic Strategies beyond Dopamine Receptor Antagonism. CNS Drugs 2015, 29, 773–799. [Google Scholar] [CrossRef]
- Stahl, S.M.; Stahl, S.M. Essential Psychopharmacology. Neuroscientific Basis and Practical Applications; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Wei, Y.; Wang, T.; Li, G.; Feng, J.; Deng, L.; Xu, H.; Yin, L.; Ma, J.; Chen, D.; Chen, J. Investigation of systemic immune-inflammation index, neutrophil/high-density lipoprotein ratio, lymphocyte/high-density lipoprotein ratio, and monocyte/high-density lipoprotein ratio as indicators of inflammation in patients with schizophrenia and bipolar. Front. Psychiatry 2022, 13, 941728. [Google Scholar] [CrossRef] [PubMed]
- Ostuzzi, G.; Bertolini, F.; Tedeschi, F.; Vita, G.; Brambilla, P.; del Fabro, L.; Gastaldon, C.; Papola, D.; Purgato, M.; Nosari, G.; et al. Oral and long-acting antipsychotics for relapse prevention in schizophrenia-spectrum disorders: A network meta-analysis of 92 randomized trials including 22,645 participants. World Psychiatry 2022, 21, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Lindenmayer, J.P.; Glick, I.D.; Talreja, H.; Underriner, M. Persistent Barriers to the Use of Long-Acting Injectable Antipsychotics for the Treatment of Schizophrenia. J. Clin. Psychopharmacol. 2020, 40, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Rahimian, R.; Wakid, M.; O’Leary, L.A.; Mechawar, N. The emerging tale of microglia in psychiatric disorders. Neurosci. Biobehav. Rev. 2021, 131, 1–29. [Google Scholar] [CrossRef]
- Comer, A.L.; Carrier, M.; Tremblay, M.È.; Cruz-Martín, A. The Inflamed Brain in Schizophrenia: The Convergence of Genetic and Environmental Risk Factors That Lead to Uncontrolled Neuroinflammation. Front. Cell. Neurosci. 2020, 14, 274. [Google Scholar] [CrossRef]
- Alvarez, G.M.; Hackman, D.A.; Miller, A.B.; Muscatell, K.A. Systemic inflammation is associated with differential neural reactivity and connectivity to affective images. Soc. Cogn. Affect. Neurosci. 2020, 15, 1024–1033. [Google Scholar] [CrossRef]
- Kasai, K.; Yamasue, H.; Araki, T. Neuroanatomy and neurophysiology in schizophrenia. Seishin Shinkeigaku Zasshi 2004, 106, 851–866. [Google Scholar] [CrossRef] [PubMed]
- Menzel, A.; Samouda, H.; Dohet, F.; Loap, S.; Ellulu, M.S.; Bohn, T. Common and novel markers for measuring inflammation and oxidative stress ex vivo in research and clinical practice—Which to use regarding disease outcomes? Antioxidants 2021, 10, 414. [Google Scholar] [CrossRef] [PubMed]
- Bhikram, T.; Sandor, P. Neutrophil-lymphocyte ratios as inflammatory biomarkers in psychiatric patients. Brain. Behav. Immun. 2022, 105, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Bulut, N.S.; Yorguner, N.; Çarkaxhiu Bulut, G. The severity of inflammation in major neuropsychiatric disorders: Comparison of neutrophil–lymphocyte and platelet–lymphocyte ratios between schizophrenia, bipolar mania, bipolar depression, major depressive disorder, and obsessive compulsive disorder. Nord. J. Psychiatry 2021, 75, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, A.A.; Steen, V.M.; Torsvik, A. Is Elevated Neutrophil Count and Neutrophil-to-Lymphocyte Ratio a Cause or Consequence of Schizophrenia?—A Scoping Review. Front. Psychiatry 2021, 12, 728990. [Google Scholar] [CrossRef]
- Balcioglu, Y.H.; Kirlioglu, S.S. C-reactive protein/albumin and neutrophil/albumin ratios as novel inflammatory markers in patients with schizophrenia. Psychiatry Investig. 2020, 17, 902–910. [Google Scholar] [CrossRef]
- Yüksel, R.N.; Ertek, I.E.; Dikmen, A.U.; Göka, E. High neutrophil-lymphocyte ratio in schizophrenia independent of infectious and metabolic parameters. Nord. J. Psychiatry 2018, 72, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Hernández, G.; Ramiro, N.; Palma-Álvarez, F.; Soto-Angona, Ó.; Mantilla, M.F.; Duque, J.; Gonzalo, I.; Collazos, F. The use of long-acting injectable antipsychotics in an acute psychiatric unit. Eur. Psychiatry 2023, 66 (Suppl. 1), S182–S183. [Google Scholar] [CrossRef]
- Poloni, N.; Ielmini, M.; Caselli, I.; Lucca, G.; Gasparini, A.; Lorenzoli, G.; Callegari, C. Oral antipsychotic versus long-acting injections antipsychotic in schizophrenia spectrum disorder: A mirror analysis in a real-world clinical setting. Psychopharmacol. Bull. 2019, 49, 17–27. [Google Scholar]
- Patlola, S.R.; Donohoe, G.; McKernan, D.P. Anti-inflammatory effects of 2nd generation antipsychotics in patients with schizophrenia: A systematic review and meta-analysis. J. Psychiatr. Res. 2023, 160, 126–136. [Google Scholar] [CrossRef]
- Alvarez-Herrera, S.; Escamilla, R.; Medina-Contreras, O.; Saracco, R.; Flores, Y.; Hurtado-Alvarado, G.; Maldonado-García, J.L.; Becerril-Villanueva, E.; Pérez-Sánchez, G.; Pavón, L. Immunoendocrine Peripheral Effects Induced by Atypical Antipsychotics. Front. Endocrinol. 2020, 11, 504865. [Google Scholar] [CrossRef] [PubMed]
- Obuchowicz, E.; Bielecka-Wajdman, A.M.; Paul-Samojedny, M.; Nowacka, M. Different influence of antipsychotics on the balance between pro- and anti-inflammatory cytokines depends on glia activation: An in vitro study. Cytokine 2017, 94, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.A.; Monji, A.; Mizoguchi, Y.; Hashioka, S.; Horikawa, H.; Seki, Y.; Kasai, M.; Utsumi, H.; Kanba, S. Anti-Inflammatory Properties of Antipsychotics Via Microglia Modulations: Are Antipsychotics a ‘Fire Extinguisher’ in the Brain of Schizophrenia? Mini-Rev. Med. Chem. 2011, 11, 565–574. [Google Scholar] [CrossRef] [PubMed]
- MacDowell, K.S.; Caso, J.R.; Martín-Hernández, D.; Moreno, B.M.; Madrigal, J.L.M.; Micó, J.A.; Leza, J.C.; García-Bueno, B. The Atypical Antipsychotic Paliperidone Regulates Endogenous Antioxidant/Anti-Inflammatory Pathways in Rat Models of Acute and Chronic Restraint Stress. Neurotherapeutics 2016, 13, 833–843. [Google Scholar] [CrossRef] [PubMed]
- MacDowell, K.S.; Munarriz-Cuezva, E.; Caso, J.R.; Madrigal, J.L.M.; Zabala, A.; Meana, J.J.; García-Bueno, B.; Leza, J.C. Paliperidone reverts Toll-like receptor 3 signaling pathway activation and cognitive deficits in a maternal immune activation mouse model of schizophrenia. Neuropharmacology 2017, 116, 196–207. [Google Scholar] [CrossRef] [PubMed]
- MacDowell, K.S.; Martín-Hernández, D.; Ulecia-Morón, C.; Bris, Á.G.; Madrigal, J.L.M.; García-Bueno, B.; Caso, J.R. Paliperidone attenuates chronic stress-induced changes in the expression of inflammasomes-related protein in the frontal cortex of male rats. Int. Immunopharmacol. 2021, 90, 107217. [Google Scholar] [CrossRef] [PubMed]
- Sobiś, J.; Rykaczewska-Czerwińska, M.; Świętochowska, E.; Gorczyca, P. Therapeutic effect of aripiprazole in chronic schizophrenia is accompanied by anti-inflammatory activity. Pharmacol. Rep. 2015, 67, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Stapel, B.; Sieve, I.; Falk, C.S.; Bleich, S.; Hilfiker-Kleiner, D.; Kahl, K.G. Second generation atypical antipsychotics olanzapine and aripiprazole reduce expression and secretion of inflammatory cytokines in human immune cells. J. Psychiatr. Res. 2018, 105, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Alvergne, A.; Högqvist Tabor, V. Is Female Health Cyclical? Evolutionary Perspectives on Menstruation. Trends Ecol. Evol. 2018, 33, 399–414. [Google Scholar] [CrossRef]
- Zahorec R Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl. Lek. Listy 2021, 122, 474–488. [CrossRef]
- Marques, P.; Francisco, V.; Martínez-Arenas, L.; Carvalho-Gomes, Â.; Domingo, E.; Piqueras, L.; Berenguer, M.; Sanz, M.J. Overview of Cellular and Soluble Mediators in Systemic Inflammation Associated with Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2023, 24, 2313. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, X.; Li, R.; Yan, J.; Xiao, Y.; Li, W.; Shen, H. Neutrophil-to-Lymphocyte Ratio Is Independently Associated With Severe Psychopathology in Schizophrenia and Is Changed by Antipsychotic Administration: A Large-Scale Cross-Sectional Retrospective Study. Front. Psychiatry 2020, 11, 581061. [Google Scholar] [CrossRef] [PubMed]
- Dawidowski, B.; Grelecki, G.; Biłgorajski, A.; Podwalski, P.; Misiak, B.; Samochowiec, J. Effect of antipsychotic treatment on neutrophil-to-lymphocyte ratio during hospitalization for acute psychosis in the course of schizophrenia—A cross-sectional retrospective study. J. Clin. Med. 2022, 11, 232. [Google Scholar] [CrossRef] [PubMed]
- Naguy, A.; Moodliar-Rensburg, S.; Alamiri, B. The long-acting injectable atypical antipsychotics-Merits and demerits! CNS Spectr. 2021, 26, 442–443. [Google Scholar] [CrossRef] [PubMed]
- Sethi, B.; Kumar, V.; Mahato, K.; Coulter, D.W.; Mahato, R.I. Recent advances in drug delivery and targeting to the brain. J. Control. Release 2022, 350, 668–687. [Google Scholar] [CrossRef] [PubMed]
- Saarti, M.; Mahmood, M.D.; Alchalaby, L.A. Comparative Effect of Aripiprazole Versus Risperidone on Sperm Motility and Morphology in Rats. Rev. Electron. Vet. 2022, 23, 304–313. [Google Scholar]
- Nguyen, H.D.; Jo, W.H.; Hoang, N.H.M.; Kim, M.S. Risperidone ameliorated 1,2-Diacetylbenzene-induced cognitive impairments in mice via activating prolactin signaling pathways. Int. Immunopharmacol. 2023, 115, 109726. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Nabi, B.; Javed, A.; Khan, T.; Iqubal, A.; Ansari, M.J.; Baboota, S.; Ali, J. Unraveling enhanced brain delivery of paliperidone-loaded lipid nanoconstructs: Pharmacokinetic, behavioral, biochemical, and histological aspects. Drug Deliv. 2022, 29, 1409–1422. [Google Scholar] [CrossRef]
- Auxilia, A.M.; Buoli, M.; Caldiroli, A.; Carnevali, G.S.; Tringali, A.; Nava, R.; Clerici, M.; Capuzzi, E. High Rate of Discontinuation during Long-Acting Injectable Antipsychotic Treatment in Patients with Psychotic Disorders. Biomedicines 2023, 11, 314. [Google Scholar] [CrossRef]
- Horseman, M.; Panahi, L.; Udeani, G.; Tenpas, A.S.; Verduzco, R., Jr.; Patel, P.H.; Bazan, D.Z.; Mora, A.; Samuel, N.; Mingle, A.-C.; et al. Drug-Induced Hyperthermia Review. Cureus 2022, 14, e27278. [Google Scholar] [CrossRef]
- Myles, N.; Myles, H.; Xia, S.; Large, M.; Bird, R.; Galletly, C.; Kisely, S.; Siskind, D. A meta-analysis of controlled studies comparing the association between clozapine and other antipsychotic medications and the development of neutropenia. Aust. N. Z. J. Psychiatry 2019, 53, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.J.; Gassama, B.; Sebastian, D.; Buckley, P.; Mellor, A. Meta-analysis of lymphocytes in schizophrenia: Clinical status and antipsychotic effects. Biol. Psychiatry 2013, 73, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Regolo, M.; Vaccaro, M.; Sorce, A.; Stancanelli, B.; Colaci, M.; Natoli, G.; Russo, M.; Alessandria, I.; Motta, M.; Santangelo, N.; et al. Neutrophil-to-Lymphocyte Ratio (NLR) Is a Promising Predictor of Mortality and Admission to Intensive Care Unit of COVID-19 Patients. J. Clin. Med. 2022, 11, 2235. [Google Scholar] [CrossRef] [PubMed]
- Özdin, S.; Böke, Ö. Neutrophil/lymphocyte, platelet/lymphocyte and monocyte/lymphocyte ratios in different stages of schizophrenia. Psychiatry Res. 2019, 271, 131–135. [Google Scholar] [CrossRef]
- Tong, Z.; Zhu, J.; Wang, J.J.; Yang, Y.J.; Hu, W. The Neutrophil-Lymphocyte Ratio Is Positively Correlated with Aggression in Schizophrenia. BioMed Res. Int. 2022, 2022, 4040974. [Google Scholar] [CrossRef]
Oral Antipsychotics (n = 27) | Long-Acting Antipsychotics (n = 23) | p-Value | |
---|---|---|---|
Males, number (%) | 11 (40.7) | 16 (69.6) | 0.08 |
Mean age, years (SD) | 41.3 (6.2) | 38.2 (8.6) | 0.15 |
Marital status, number (%) | |||
Single | 16 (59.3) | 18 (78.3) | 0.18 |
Married | 8 (29.6) | 2 (8.7) | |
Divorced or widowed | 3 (11.1) | 3 (13) | |
Duration of psychosis, years (SD) | 3.0 (1.9) | 2.0 (1.2) | 0.03 |
Drug, number (%) | |||
Aripiprazole | 16 (53.9) | 12 (52.2) | 0.83 |
Paliperidone | 11 (40.7) | 11 (47.8) | |
PANSS, mean (SD) | 72.48 (26.03) | 65.57 (24.97) | 0.35 |
N/L ratio, mean (SD) | 2.2 (1.3) | 1.5 (0.7) | 0.03 |
Variable | Sum of Squares | df | F | p-Value |
---|---|---|---|---|
Group | 8.781 | 1 | 7.685 | 0.008 |
Age | 0.187 | 1 | 0.164 | 0.688 |
Duration of psychosis | 1.781 | 1 | 1.559 | 0.219 |
PANSS | 1.607 | 1 | 1.406 | 0.243 |
Gender (male) | 0.378 | 1 | 0.330 | 0.569 |
Marital status (married) | 1.617 | 1 | 1.415 | 0.241 |
Marital status (single) | 0.479 | 1 | 0.420 | 0.521 |
Drug (paliperidone) | 0.036 | 1 | 0.032 | 0.860 |
Residual | 46.852 | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messina, A.; Bella, F.; Maccarone, G.; Rodolico, A.; Signorelli, M.S. Neutrophil–Lymphocyte Ratio Values in Schizophrenia: A Comparison between Oral and Long-Acting Antipsychotic Therapies. Brain Sci. 2024, 14, 602. https://doi.org/10.3390/brainsci14060602
Messina A, Bella F, Maccarone G, Rodolico A, Signorelli MS. Neutrophil–Lymphocyte Ratio Values in Schizophrenia: A Comparison between Oral and Long-Acting Antipsychotic Therapies. Brain Sciences. 2024; 14(6):602. https://doi.org/10.3390/brainsci14060602
Chicago/Turabian StyleMessina, Antonino, Fabrizio Bella, Giuliana Maccarone, Alessandro Rodolico, and Maria Salvina Signorelli. 2024. "Neutrophil–Lymphocyte Ratio Values in Schizophrenia: A Comparison between Oral and Long-Acting Antipsychotic Therapies" Brain Sciences 14, no. 6: 602. https://doi.org/10.3390/brainsci14060602
APA StyleMessina, A., Bella, F., Maccarone, G., Rodolico, A., & Signorelli, M. S. (2024). Neutrophil–Lymphocyte Ratio Values in Schizophrenia: A Comparison between Oral and Long-Acting Antipsychotic Therapies. Brain Sciences, 14(6), 602. https://doi.org/10.3390/brainsci14060602