With a Little Help from My Friends: The Role of Intraoperative Fluorescent Dyes in the Surgical Management of High-Grade Gliomas
Abstract
:1. Introduction
2. Materials and Methods
Search Strategy
3. Results
3.1. 5-ALA
3.2. 5-ALA and Intensity of Fluorescence
3.3. 5-ALA and Extent of Resection
3.4. 5-ALA and Intraoperative Tools
3.5. 5-ALA and Outcome
4. Conclusions and Future Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
HGG | high-grade gliomas |
PFS | progression-free survival |
OS | overall survival |
5-ALA | 5-aminolevulinic acid |
FS | fluorescein sodium |
PpIX | protoporphyrin IX |
EOR | extent of resection |
GTR | gross total resection |
PPV | positive predictive value |
NPV | negative predictive value |
CRET | complete resection of enhancing tumor |
FGS | fluorescence-guided surgery |
iMRI | intraoperative Magnetic Resonance Imaging |
EMEA | European Medicines Agency |
References
- Maugeri, R.; Schiera, G.; Di Liegro, C.M.; Fricano, A.; Iacopino, D.G.; Di Liegro, I. Aquaporins and Brain Tumors. Int. J. Mol. Sci. 2016, 17, 1029. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, H.; Ge, P.; Zhao, J.; Li, W.; Gu, H.; Wang, G.; Luo, Y.; Chen, D. Gross total resection of glioma with the intraoperative fluorescence-guidance of fluorescein sodium. Int. J. Med. Sci. 2012, 9, 708–714. [Google Scholar] [CrossRef] [PubMed]
- La Torre, D.; Maugeri, R.; Angileri, F.F.; Pezzino, G.; Conti, A.; Cardali, S.M.; Calisto, A.; Sciarrone, G.; Misefari, A.; Germanò, A.; et al. Human leukocyte antigen frequency in human high-grade gliomas: A case-control study in Sicily. Neurosurgery 2009, 64, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Rey-Dios, R.; Roberts, D.W.; Valdes, P.A.; Cohen-Gadol, A.A. Intraoperative fluorescence-guided resection of high-grade gliomas: A comparison of the present techniques and evolution of future strategies. World Neurosurg. 2014, 82, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.G.; Nakano, I. Fluorescence-guided brain tumor surgery. World Neurosurg. 2012, 78, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Colditz, M.J.; Jeffree, R.L. Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 1: Clinical, radiological and pathological studies. J. Clin. Neurosci. 2012, 19, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Holland, E.; et al. A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival. J. Neurosurg. 2001, 95, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Sanai, N.; Polley, M.Y.; McDermott, M.W.; Parsa, A.T.; Berger, M.S. An extent of resection threshold for newly diagnosed glioblastomas. J. Neurosurg. 2011, 115, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Meinel, T.; Ewelt, C.; Martus, P.; Jakobs, O.; Felsberg, J.; Reifenberger, G.; Gilsbach, J.; Oertel, M.; Franz, K.; et al. Prospective cohort study of radiotherapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery. J. Neuro-Oncol. 2012, 108, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, R.; Basile, L.; Giugno, A.; Graziano, F.; Iacopino, D.G. Impasse in the management of recurrent basal cell carcinoma of the skull with sagittal sinus erosion. Interdiscip. Neurosurg. 2015, 2, 160–163. [Google Scholar] [CrossRef]
- Su, X.; Huang, Q.F.; Chen, H.L.; Chen, J. Fluorescence-guided resection of high-grade gliomas: A systematic review and meta-analysis. Photodiagn. Photodyn. Ther. 2014, 11, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Schwake, M.; Stummer, W.; Suero Molina, E.J.; Wolfer, J. Simultaneous fluorescein sodium and 5-ALA in fluorescence-guided glioma surgery. Acta Neurochir. 2015, 157, 877–879. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, N.; Barbarite, E.; Albert, T.R.; Berchmans, E.; Shah, A.H.; Bregy, A.; Ivan, M.E.; Brown, T.; Komotar, R.J. The role of 5-aminolevulinic acid in brain tumor surgery: A systematic review. Neurosurg. Rev. 2016, 39, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wu, J.; Wang, C.; Liu, H.; Dong, X.; Shi, C.; Shi, C.; Liu, Y.; Teng, L.; Han, D.; et al. Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid-induced porphyrins: A systematic review and meta-analysis of prospective studies. PLoS ONE 2013, 8, e63682. [Google Scholar] [CrossRef] [PubMed]
- Diez Valle, R.; Tejada Solis, S. To what extent will 5-aminolevulinic acid change the face of malignant glioma surgery? CNS Oncol. 2015, 4, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Hadjipanayis, C.G.; Widhalm, G.; Stummer, W. What is the Surgical Benefit of Utilizing 5-Aminolevulinic Acid for Fluorescence-Guided Surgery of Malignant Gliomas? Neurosurgery 2015, 77, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Halani, S.H.; Adamson, D.C. Clinical utility of 5-aminolevulinic acid HCl to better visualize and more completely remove gliomas. Oncol. Targets Ther. 2016, 9, 5629–5642. [Google Scholar]
- Stummer, W.; Stocker, S.; Wagner, S.; Stepp, H.; Fritsch, C.; Goetz, C.; Goetz, A.E.; Kiefmann, R.; Reulen, H.J. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 1998, 42, 518–525. [Google Scholar] [PubMed]
- Masubuchi, T.; Kajimoto, Y.; Kawabata, S.; Nonoguchi, N.; Fujishiro, T.; Miyatake, S.; Kuroiwa, T. Experimental study to understand nonspecific protoporphyrin IX fluorescence in brain tissues near tumors after 5-aminolevulinic acid administration. Photomed. Laser Surg. 2013, 31, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Muragaki, Y.; Maruyama, T.; Komori, T.; Okada, Y. Role of neurochemical navigation with 5-aminolevulinic acid during intraoperative MRI-guided resection of intracranial malignant gliomas. Clin. Neurol. Neurosurg. 2015, 130, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Diez Valle, R.; Tejada Solis, S.; Idoate Gastearena, M.A.; Garcia de Eulate, R.; Dominguez Echavarri, P.; Aristu Mendiroz, J. Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: Volumetric analysis of extent of resection in single-center experience. J. Neuro-Oncol. 2011, 102, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Novotny, A.; Stepp, H.; Goetz, C.; Bise, K.; Reulen, H.J. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: A prospective study in 52 consecutive patients. J. Neurosurg. 2000, 93, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, A.; Thurm, H.; Zountsas, B.; Pietsch, T.; Lanfermann, H.; Pichlmeier, U.; Mehdorn, M.; 5-ALA Recurrent Glioma Study Group. Five-aminolevulinic acid for fluorescence-guided resection of recurrent malignant gliomas: A phase ii study. Neurosurgery 2009, 65, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Eljamel, S. 5-ALA Fluorescence Image Guided Resection of Glioblastoma Multiforme: A Meta-Analysis of the Literature. Int. J. Mol. Sci. 2015, 16, 10443–10456. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.J.; ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicentre phase III trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef]
- Della Puppa, A.; De Pellegrin, S.; d’Avella, E.; Gioffrè, G.; Rossetto, M.; Gerardi, A.; Lombardi, G.; Manara, R.; Munari, M.; Saladini, M.; et al. 5-aminolevulinic acid (5-ALA) fluorescence guided surgery of high-grade gliomas in eloquent areas assisted by functional mapping. Our experience and review of the literature. Acta Neurochir. 2013, 155, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.; Mansouri, S.; Hachem, L.D.; Klironomos, G.; Vogelbaum, M.A.; Bernstein, M.; Zadeh, G. The role of 5-aminolevulinic acid in enhancing surgery for high-grade glioma, its current boundaries, and future perspectives: A systematic review. Cancer 2016, 122, 2469–2478. [Google Scholar] [CrossRef] [PubMed]
- Schucht, P.; Beck, J.; Abu-Isa, J.; Andereggen, L.; Murek, M.; Seidel, K.; Stieglitz, L.; Raabe, A. Gross total resection rates in contemporary glioblastoma surgery: Results of an institutional protocol combining 5-aminolevulinic acid intraoperative fluorescence imaging and brain mapping. Neurosurgery 2012, 71, 927–935. [Google Scholar] [CrossRef] [PubMed]
- Panciani, P.P.; Fontanella, M.; Schatlo, B.; Garbossa, D.; Agnoletti, A.; Ducati, A.; Lanotte, M. Fluorescence and image guided resection in high grade glioma. Clin. Neurol. Neurosurg. 2012, 114, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Feigl, G.C.; Ritz, R.; Moraes, M.; Klein, J.; Ramina, K.; Gharabaghi, A.; Krischek, B.; Danz, S.; Bornemann, A.; Liebsch, M.; et al. Resection of malignant brain tumors in eloquent cortical areas: A new multimodal approach combining 5-aminolevulinic acid and intraoperative monitoring. J. Neurosurg. 2010, 113, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Coburger, J.; Engelke, J.; Scheuerle, A.; Thal, D.R.; Hlavac, M.; Wirtz, C.R.; König, R. Tumor detection with 5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced intraoperative MRI at the border of contrast-enhancing lesions: A prospective study based on histopathological assessment. Neurosurg. Focus 2014, 36, E3. [Google Scholar] [CrossRef] [PubMed]
- Roder, C.; Bisdas, S.; Ebner, F.H.; Honegger, J.; Naegele, T.; Ernemann, U.; Tatagiba, M. Maximizing the extent of resection and survival benefit of patients in glioblastoma surgery: High-field iMRI versus conventional and 5-ALA-assisted surgery. Eur. J. Surg. Oncol. 2014, 40, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Marbacher, S.; Klinger, E.; Schwyzer, L.; Fischer, I.; Nevzati, E.; Diepers, M.; Roelcke, U.; Fathi, A.R.; Coluccia, D.; Fandino, J. Use of fluorescence to guide resection or biopsy of primary brain tumors and brain metastases. Neurosurg. Focus 2014, 36, E10. [Google Scholar] [CrossRef] [PubMed]
- Tsugu, A.; Ishizaka, H.; Mizokami, Y.; Osada, T.; Baba, T.; Yoshiyama, M.; Nishiyama, J.; Matsumae, M. Impact of the combination of 5-aminolevulinic acid-induced fluorescence with intraoperative magnetic resonance imaging-guided surgery for glioma. World Neurosurg. 2011, 76, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Eyupoglu, I.Y.; Hore, N.; Savaskan, N.E.; Grummich, P.; Roessler, K.; Buchfelder, M.; Ganslandt, O. Improving the extent of malignant glioma resection by dual intraoperative visualization approach. PLoS ONE 2012, 7, e44885. [Google Scholar] [CrossRef] [PubMed]
- Aldave, G.; Tejada, S.; Pay, E.; Marigil, M.; Bejarano, B.; Idoate, M.A.; Díez-Valle, R. Prognostic value of residual fluorescent tissue in glioblastoma patients after gross total resection in 5-aminolevulinic Acid-guided surgery. Neurosurgery 2013, 72, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Cordova, J.S.; Gurbani, S.S.; Holder, C.A.; Olson, J.J.; Schreibmann, E.; Shi, R.; Guo, Y.; Shu, H.-K.G.; Shim, H.; Hadjipanayis, C.G. Semi-Automated Volumetric and Morphological Assessment of Glioblastoma Resection with Fluorescence-Guided Surgery. Mol. Imaging Biol. 2016, 18, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Widhalm, G.; Wolfsberger, S.; Minchev, G.; Woehrer, A.; Krssak, M.; Czech, T.; Prayer, D.; Asenbaum, S.; Hainfellner, J.A.; Knosp, E. 5-Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement. Cancer 2010, 116, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.W.; Valdes, P.A.; Harris, B.T.; Fontaine, K.M.; Hartov, A.; Fan, X.; Ji, S.; Lollis, S.S.; Pogue, B.W.; Leblond, F.; et al. Coregistered fluorescence-enhanced tumor resection of malignant glioma: Relationships between delta-aminolevulinic acid-induced protoporphyrin IX fluorescence, magnetic resonance imaging enhancement, and neuropathological parameters. J. Neurosurg. 2011, 114, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Ikeda, N.; Nonoguchi, N.; Kajimoto, Y.; Miyatake, S.; Hagiya, Y.; Ogura, S.; Nakagawa, H.; Ishikawa, T.; Kuroiwa, T. Enhanced expression of coproporphyrinogen oxidase in malignant brain tumors: CPOX expression and 5-ALA-induced fluorescence. Neuro-Oncology 2011, 13, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
- Valdes, P.A.; Kim, A.; Brantsch, M.; Niu, C.; Moses, Z.B.; Tosteson, T.D.; Wilson, B.C.; Paulsen, K.D.; Roberts, D.W.; Harris, B.T. Delta-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: The need for quantitative fluorescence-guided resection to identify regions of increasing malignancy. Neuro-Oncology 2011, 13, 846–856. [Google Scholar] [PubMed]
- Tykocki, T.; Michalik, R.; Bonicki, W.; Nauman, P. Fluorescence-guided resection of primary and recurrent malignant gliomas with 5-aminolevulinic acid. Preliminary results. Neurol. Neurochir. Polska 2012, 46, 47–51. [Google Scholar] [CrossRef]
- Widhalm, G.; Kiesel, B.; Woehrer, A.; Traub-Weidinger, T.; Preusser, M.; Marosi, C.; Prayer, D.; Hainfellner, J.A.; Knosp, E.; Wolfsberger, S. 5-Aminolevulinic acid induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement. PLoS ONE 2013, 8, e76988. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Tonn, J.C.; Goetz, C.; Ullrich, W.; Stepp, H.; Bink, A.; Pietsch, T.; Pichlmeier, U. 5-Aminolevulinic acid-derived tumor fluorescence: The diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery 2014, 74, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Jaber, M.; Wolfer, J.; Ewelt, C.; Holling, M.; Hasselblatt, M.; Niederstadt, T.; Zoubi, T.; Weckesser, M.; Stummer, W. The Value of 5-Aminolevulinic Acid in Low-grade Gliomas and High-grade Gliomas Lacking Glioblastoma Imaging Features: An Analysis Based on Fluorescence, Magnetic Resonance Imaging, 18F-Fluoroethyl Tyrosine Positron Emission Tomography, and Tumor Molecular Factors. Neurosurgery 2016, 78, 401–411. [Google Scholar] [PubMed]
- Haj-Hosseini, N.; Richter, J.C.; Hallbeck, M.; Wardell, K. Low dose 5-aminolevulinic acid: Implications in spectroscopic measurements during brain tumor surgery. Photodiagn. Photodyn. Ther. 2015, 12, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Teixidor, P.; Arraez, M.A.; Villalba, G.; Garcia, R.; Tardáguila, M.; González, J.J.; Rimbau, J.; Vidal, X.; Montané, E. Safety and Efficacy of 5-Aminolevulinic Acid for High Grade Glioma in Usual Clinical Practice: A Prospective Cohort Study. PLoS ONE 2016, 11, e0149244. [Google Scholar] [CrossRef] [PubMed]
- Szmuda, T.; Sloniewski, P.; Olijewski, W.; Springer, J.; Waszak, P.M. Colour contrasting between tissues predicts the resection in 5-aminolevulinic acid-guided surgery of malignant gliomas. J. Neuro-Oncol. 2015, 122, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.T.M.; Yi-Pin Sonia, H.; Poon, W.S. 5-Aminolevulinic acid fluorescence guided resection of malignant glioma: Hong Kong experience. Asian J. Surg. 2017. [Google Scholar] [CrossRef] [PubMed]
- Cozzens, J.W.; Lokaitis, B.C.; Moore, B.E.; Amin, D.V.; Espinosa, J.A.; MacGregor, M.; Michael, A.P.; Jones, B.A. A Phase 1 Dose-Escalation Study of Oral 5-Aminolevulinic Acid in Adult Patients Undergoing Resection of a Newly Diagnosed or Recurrent High-Grade Glioma. Neurosurgery 2017, 81, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Hirai, T.; Takeshima, H.; Kadota, Y.; Yamashita, S.; Ivanova, A.; Yokogami, K. Genetic Factors Affecting Intraoperative 5-aminolevulinic Acid-induced Fluorescence of Diffuse Gliomas. Radiol. Oncol. 2017, 51, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Yoshioka, H.; Kato, A. Fluorescence-guided surgery for glioblastoma multiforme using high-dose fluorescein sodium with excitation and barrier filters. J. Clin. Neurosci. 2012, 19, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Acerbi, F.; Broggi, M.; Eoli, M.; Anghileri, E.; Cuppini, L.; Pollo, B.; Schiariti, M.; Visintini, S.; Orsi, C.; Franzini, A.; et al. Fluorescein-guided surgery for grade IV gliomas with a dedicated filter on the surgical microscope: Preliminary results in 12 cases. Acta Neurochir. 2013, 155, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Schebesch, K.M.; Hoehne, J.; Hohenberger, C.; Proescholdt, M.; Riemenschneider, M.J.; Wendl, C.; Brawanski, A. Fluorescein sodium-guided resection of cerebral metastases-experience with the first 30 patients. Acta Neurochir. 2015, 157, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Diaz, R.J.; Dios, R.R.; Hattab, E.M.; Burrell, K.; Rakopoulos, P.; Sabha, N.; Hawkins, C.; Zadeh, G.; Rutka, J.T.; Cohen-Gadol, A.A. Study of the biodistribution of fluorescein in glioma-infiltrated mouse brain and histopathological correlation of intraoperative findings in high-grade gliomas resected under fluorescein fluorescence guidance. J. Neurosurg. 2015, 122, 1360–1369. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, G.M.; Certo, F.; Caltabiano, R.; Chiaramonte, I.; Albanese, V.; Visocchi, M. Role of intraoperative indocyanine green video-angiography to identify small, posterior fossa arteriovenous malformations mimicking cavernous angiomas. Technical report and review of the literature on common features of these cerebral vascular malformations. Clin. Neurol. Neurosurg. 2015, 138, 45–51. [Google Scholar] [PubMed]
- Moore, G.E.; Peyton, W.T.; French, L.A.; Walker, W.W. The clinical use of fluorescein in neurosurgery; the localization of brain tumors. J. Neurosurg. 1948, 5, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Martirosyan, N.L.; Georges, J.; Eschbacher, J.M.; Cavalcanti, D.D.; Elhadi, A.M.; Abdelwahab, M.G.; Scheck, A.C.; Nakaji, P.; Spetzler, R.F.; Preul, M.C. Potential application of a handheld confocal endomicroscope imaging system using a variety of fluorophores in experimental gliomas and normal brain. Neurosurg. Focus 2014, 36, E16. [Google Scholar] [CrossRef] [PubMed]
- Rey-Dios, R.; Hattab, E.M.; Cohen-Gadol, A.A. Use of intraoperative fluorescein sodium fluorescence to improve the accuracy of tissue diagnosis during stereotactic needle biopsy of high-grade gliomas. Acta Neurochir. 2014, 156, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- Kuroiwa, T.; Kajimoto, Y.; Ohta, T. Development of a fluorescein operative microscope for use during malignant glioma surgery: A technical note and preliminary report. Surg. Neurol. 1998, 50, 41–48. [Google Scholar] [CrossRef]
- Murray, K.J. Improved surgical resection of human brain tumors: Part I. A preliminary study. Surg. Neurol. 1982, 17, 316–319. [Google Scholar] [CrossRef]
- Acerbi, F.; Cavallo, C.; Broggi, M.; Cordella, R.; Anghileri, E.; Eoli, M.; Schiariti, M.; Broggi, G.; Ferroli, P. Fluorescein-guided surgery for malignant gliomas: A review. Neurosurg. Rev. 2014, 37, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Shinoda, J.; Yano, H.; Yoshimura, S.; Okumura, A.; Kaku, Y.; Iwama, T.; Sakai, N. Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium. Technical note. J. Neurosurg. 2003, 99, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Koc, K.; Anik, I.; Cabuk, B.; Ceylan, S. Fluorescein sodium-guided surgery in glioblastoma multiforme: A prospective evaluation. Br. J. Neurosurg. 2008, 22, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Schebesch, K.M.; Proescholdt, M.; Hohne, J.; Hohenberger, C.; Hansen, E.; Riemenschneider, M.; Ullrich, W.; Doenitz, C.; Schlaier, J.; Lange, M.; et al. Sodium fluorescein-guided resection under the YELLOW 560 nm surgical microscope filter in malignant brain tumor surgery—A feasibility study. Acta Neurochir. 2013, 155, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Acerbi, F.; Broggi, M.; Broggi, G.; Ferroli, P. What is the best timing for fluorescein injection during surgical removal of high-grade gliomas? Acta Neurochir. 2015, 157, 1377–1378. [Google Scholar] [CrossRef] [PubMed]
- Acerbi, F.; Broggi, M.; Eoli, M.; Anghileri, E.; Cavallo, C.; Boffano, C.; Cordella, R.; Cuppini, L.; Pollo, B.; Schiariti, M.; et al. Is fluorescein-guided technique able to help in resection of high-grade gliomas? Neurosurg. Focus 2014, 36, E5. [Google Scholar] [CrossRef] [PubMed]
- Hamamcioglu, M.K.; Akcakaya, M.O.; Goker, B.; Kasimcan, M.O.; Kiris, T. The use of the YELLOW 560 nm surgical microscope filter for sodium fluorescein-guided resection of brain tumors: Our preliminary results in a series of 28 patients. Clin. Neurol. Neurosurg. 2016, 143, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Francaviglia, N.; Iacopino, D.G.; Costantino, G.; Villa, A.; Impallaria, P.; Meli, F.; Maugeri, R. Fluorescein for resection of high-grade gliomas: A safety study control in a single center and review of the literature. Surg. Neurol. Int. 2017, 8, 145. [Google Scholar] [PubMed]
- Catapano, G.; Sgulo, F.G.; Seneca, V.; Lepore, G.; Columbano, L.; di Nuzzo, G. Fluorescein-Guided Surgery for High-Grade Glioma Resection: An Intraoperative “Contrast-Enhancer”. World Neurosurg. 2017, 104, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Senders, J.T.; Muskens, I.S.; Schnoor, R.; Karhade, A.V.; Cote, D.J.; Smith, T.R.; Broekman, M.L.D. Agents for fluorescence-guided glioma surgery: A systematic review of preclinical and clinical results. Acta Neurochir. 2017, 159, 151–167. [Google Scholar] [CrossRef] [PubMed]
Author and Year | Study Design | N° Pts | Tumor Type (n) | GTR Rate (%) | Sensitivity % | Specificity % | Primary Endpoint |
---|---|---|---|---|---|---|---|
Stummer et al., 1998 [18] | CT | 10 | Malignant gliomas: | 7/10 (70%) | To evaluate the use of 5-ALA in patients with malignant gliomas | ||
Grade III (2) | 87 (Grade IV) | 100 (Grade IV) | |||||
Grade IV (8) | 71 (Grade III) | 100 (Grade III) | |||||
Stummer et al., 2000 [22] | Pros | 52 | GBMs | 33/52 (63%) | / | / | To evaluate the impact of 5-ALA guided surgery on GTR, postoperative MRI findings and survival |
Stummer et al., 2006 [25] | CT | 139 | Malignant gliomas: | 90/139 (65%) | / | / | To assess GTR rate, survival (OS and PFS), adverse events using 5-ALA guided resection vs. controls |
Grade III (4) | |||||||
Grade IV (135) | |||||||
Nabavi et al., 2009 [23] | Pros | 36 | Recurrent malignant gliomas: | 7/36 (19.4%) | 82 | 97 | To assess the applicability of 5-ALA—resection for recurrent malignant gliomas |
Grade III (13) | |||||||
Grade IV (21) | |||||||
Secondary GBMs (2) | |||||||
Widhalm et al., 2010 [38] | Pros | 17 | Diffusely infiltrating gliomas: | 14/17 (82%) | / | Clarify whether 5-ALA may visualize anaplastic foci in diffusely infiltrating gliomas with non-significant contrast enhancement. | |
Grade II (8) | 0 (Grade II) | ||||||
Grade III (9) | 89 (Grade III) | ||||||
Díez Valle et al., 2011 [21] | Pros | 36 | Malignant Gliomas: | 30/36 (83.3%) | 47 | 100 | To evaluate the diagnostic accuracy, GTR rate, and safety, of 5-ALA guided surgery |
Newly diagnosed (28) | |||||||
Recurrent GBMs (8) | |||||||
Feigl et al., 2010 [30] | Pros | 18 | Malignant Gliomas: | 16/25 (64%) | / | / | To evaluate the utility and safety of combining 5-ALA—guided resection of malignant gliomas in eloquent areas and intraoperative neurophysiological monitoring. |
Grade III (3) | |||||||
Grade IV (15) | |||||||
Roberts et al., 2011 [39] | Pros | 11 | Newly diagnosed GBMs | / | 75 | 71 | To investigate the relationships between intraoperative fluorescence, features on MR imaging, and neuropathological parameters. |
Takahashi et al., 2011 [40] | Pros | 19 | Malignant brain tumors: | / | / | Evaluate the molecular mechanisms underlying PpIX accumulation in clinical malignant brain tumors following administration of 5-ALA. | |
GBMs (9) | 78 (GBMs) | ||||||
Metastases (10) | 30 (Metastases) | ||||||
Tsugu et al., 2011 [34] | Retro | 33 | Gliomas: | 6/11 (54.5%) only 5-ALA; 4/10 (40%) with iMRI | / | Evaluated intra-operative MRI—guided resection combined with resection guided by 5-ALA—fluorescence. | |
Grade II (6) | 0 (grade II) | ||||||
Grade III (7) | 57 (grade III) | ||||||
Grade IV (20) | 85 (grade IV) | ||||||
Valdes et al., 2011 [41] | CT | 23 | Gliomas: | / | / | To evaluate whether quantitative ex vivo tissue measurements of 5-aminolevulinic acid induced PpIX identify regions of increasing malignancy in low- and high-grade gliomas. | |
Grade I (4) | 0 (grade I) | ||||||
Grade II (2) | 50 (grade II) | ||||||
Grade III (3) | 100 (grade III) | ||||||
Grade IV (12) | 100 (grade IV) | ||||||
Schucht et al., 2012 [28] | Retro | 53 | Newly diagnosed and recurrent GBMs | 51/53 (96% of GTR-eligible patients) | 100 | / | To evaluate the efficacy and safety of the association of 5-ALA and functional mapping for surgery of GBMs. |
Tykocki et al., 2012 [42] | Small Case Series | 5 | Malignant Gliomas: | 4/5 (80%) | 80 | / | To evaluate the efficacy and safety of 5-ALA—guided resection of malignant gliomas. |
Newly diagnosed (2) | |||||||
Recurrent GBMs (3) | |||||||
Della Puppa et al., 2013 [26] | Pros | 31 | Malignant Gliomas: | 23/31 (74%) | / | To evaluate the efficacy and safety of the association of 5-ALA and functional mapping for surgery of malignant gliomas HHG in eloquent areas. | |
Grade IV (25) | 100 (grade IV) | ||||||
Grade III (6) | 100 (grade III) | ||||||
Widhalm et al., 2013 [43] | Pros | 59 | Gliomas with no significant contrast-enhancement: | 38/59 (64%) | 89 (to detect anaplastic histology) | 88 (to detect anaplastic histology) | To evaluate whether 5-ALA might serve as marker for visualization of anaplastic foci in diffusely infiltrating gliomas with non-significant contrast enhancement. |
Grade II (33) | |||||||
Grade III (26) | |||||||
Coburger et al., 2014 [31] | Pros | 42 | High grade gliomas and metastasis: | / | To evaluate whether 5-ALA fluorescence provides an additional benefit in detection of invasive tumor compared with intraoperative MRI (iMRI). | ||
Grade III-IV (34) Metastases (8) | Solid tumors: 85 (grade III-IV) 75 (metastases) Infiltrating tissue: 91 (grade III-IV) 88 (metastases) | Solid Tumors: 43 (grade III-IV) 80 (metastases) Infiltrating tissue: 80 (grade III-IV) 75 (metastases) | |||||
Marbacher et al., 2014 [33] | Retro | 458 | Intracranial tumors: | / | / | To evaluate the safety and clinical utility of 5-ALA in resection of brain tumors other than glioblastomas. | |
Grade I/II (20) | 40 (Grade I-II) | ||||||
Grade III/IV (138) | 88 (Grade III-IV) | ||||||
Meningiomas (110) | 85 (meningiomas) | ||||||
Metastases (75) | 52 (metastases) | ||||||
Stummer et al., 2014 [44] | Pros | 33 | Malignant Gliomas: | / | / | / | To determine the value of visible fluorescence qualities “strong” and “weak” for predicting tissue morphology. |
Grade III (4) | |||||||
Grade IV (29) | |||||||
Yamada et al., 2015 [20] | Pros | 99 | Malignant Gliomas: | 51/99 (52%) | 95% | 53% | To evaluate the role of 5-ALA during intraoperative MRI guided resection. |
Grade III (32) | |||||||
Grade IV (67) | |||||||
Jaber et al., 2016 [45] | Pros | 166 | Gliomas: | / | / | / | To identify preoperative factors for predicting fluorescence in gliomas without typical GBM imaging features. |
Grade II (82) | |||||||
Grade III (76) | |||||||
Grade IV (8) | |||||||
Haj-Hosseini et al., 2015 [46] | Pros | 30 | Malignant Gliomas: | / | / | / | To investigate the use of lower 5-ALA dose (5 mg/kg) compared with higher dose (20 mg/kg). |
Mixed grade III-IV (1) | |||||||
Grade III (2) | |||||||
Grade IV (27) | |||||||
Teixidor et al., 2016 [47] | Pros | 77 | Malignant Gliomas: | 41/77 (53.9%) | / | / | To evaluate the effectiveness and safety of 5-ALA. |
Grade III (11) | |||||||
Grade IV (66) | |||||||
Szmuda et al., 2015 [48] | Pros | 21 | Malignant Gliomas: | / | / | / | To reveal the shortcomings of 5-ALA fluorescence perception by surgeon’s eye in order to direct further improvements in image filtering and digital processing. |
Grade III (2) | |||||||
Grade IV (19) | |||||||
Chan et al., 2017 [49] | Retro | 16 | Suspected Malignant Gliomas: | 9/16 (56.2%) | / | / | To evaluate the percentage of patients who had brain tumors totally excised under the guidance of 5-ALA. |
Grade I-II (3) | |||||||
Grade III (2) | |||||||
Grade IV (10) | |||||||
Others (1) | |||||||
Cozzens et al., 2017 [50] | CT | 19 | Metastatic lung adenocarcinoma (1); Grade III (2) and Grade IV (16) gliomas | 11/19 (57.9%) | / | / | To identify the appropriate dose and toxicity of 5-ALA used for enhanced intraoperative visualization of malignant brain tumors. |
Saito et al., 2017 [51] | Retro | 60 | Gliomas: | / | / | / | To analyze factors (bimolecular, imaging and histological findings) influencing the intraoperative visualization of gliomas by their 5-ALA-induced fluorescence. |
Grade II (8) | |||||||
Grade III (17) | |||||||
Grade IV (35) |
Author and Year | Study Design | N° Pts | Tumor Type (n) | GTR Rate (%) | Sensitivity % | Specificity % | Primary Endpoint |
---|---|---|---|---|---|---|---|
Kuroiwa et al., 1998 [60] | Retro | 10 | Malignant Gliomas: Grade III (5) Grade IV (5) | 8/10 (80%) | / | / | To evaluate the efficacy of FS in malignant gliomas. |
Shinoda et al., 2003 [63] | Retro | 32 | GBMs | 27/32 (84.4%) | / | / | To evaluate the efficacy of FS in GBMs without any special surgical microscopes. |
Koc et al., 2008 [64] | Pros | 47 | GBMs | 39/47 (83%) | / | / | To evaluate the influence of FS-guided resection on GTR and overall survival in a series of patients with GBM. |
Chen et al., 2012 [2] | CT | 10 | Gliomas: Grade II (4) Grade III (3) Grade IV (3) | 8/10 (80%) | / | / | To reevaluate the utility and clinical limitations of using fluorescein sodium for the treatment and resection of glioma brain tumors. |
Schebesch et al., 2013 [65] | Retro | 35 | Brain tumors: Grade I (1) Grade II (3) Grade III (5) Grade IV (17) Metastases (5) non-malignant astrogliosis (2) post-radiation necrosis (2) | 28/35 (80%) | / | / | To assess the feasibility and efficacy of FS under YELLOW 560 nm. |
Acerbi et al., 2014 [67] | Pros | 20 | Malignant Gliomas: Grade III (1) Grade IV (19) | 16/20 (80%) | 94% | 89.5% | To evaluate the safety of fluorescein-guided surgery for HGGs and obtaining preliminary evidence regarding its efficacy for this purpose. |
Diaz et al., 2015 [55] | Pros | 12 | Malignant Gliomas: Newly diagnosed GBMs (9) Recurrent GBMs (3) | 12/12 (100%) | 82.2% | 90.9% | To assess the intraoperative application of this technology. |
Hamamcıoğlu et al., 2016 [68] | Retro | 29 | Malignant brain tumors: Grade III (6) Grade IV (15) Metastases (6) CNS lymphomas (2) | 23/29 (79%) | / | / | To confirm that FS guidance with the use of YELLOW 560 nm filter is safe and effective in high-grade glioma and metastatic tumor surgery. |
Catapano et al., 2017 [70] | Retro | 23 | Malignant Gliomas: Grade III (1) Grade IV (22) | 19/23 (82.6%) | 84.6% | 95% | To contribute to the investigation according to which FS-guided surgery for HGG is related to better rates of GTR. |
Francaviglia et al., 2017 [69] | Retro | 47 | Malignant Gliomas: Grade III (14) Grade IV (33) | 39/47 (83%) | / | / | To assess the role of FS in achieving GTR and in distinguishing tumoral by normal brain tissue. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maugeri, R.; Villa, A.; Pino, M.; Imperato, A.; Giammalva, G.R.; Costantino, G.; Graziano, F.; Gulì, C.; Meli, F.; Francaviglia, N.; et al. With a Little Help from My Friends: The Role of Intraoperative Fluorescent Dyes in the Surgical Management of High-Grade Gliomas. Brain Sci. 2018, 8, 31. https://doi.org/10.3390/brainsci8020031
Maugeri R, Villa A, Pino M, Imperato A, Giammalva GR, Costantino G, Graziano F, Gulì C, Meli F, Francaviglia N, et al. With a Little Help from My Friends: The Role of Intraoperative Fluorescent Dyes in the Surgical Management of High-Grade Gliomas. Brain Sciences. 2018; 8(2):31. https://doi.org/10.3390/brainsci8020031
Chicago/Turabian StyleMaugeri, Rosario, Alessandro Villa, Mariangela Pino, Alessia Imperato, Giuseppe Roberto Giammalva, Gabriele Costantino, Francesca Graziano, Carlo Gulì, Francesco Meli, Natale Francaviglia, and et al. 2018. "With a Little Help from My Friends: The Role of Intraoperative Fluorescent Dyes in the Surgical Management of High-Grade Gliomas" Brain Sciences 8, no. 2: 31. https://doi.org/10.3390/brainsci8020031
APA StyleMaugeri, R., Villa, A., Pino, M., Imperato, A., Giammalva, G. R., Costantino, G., Graziano, F., Gulì, C., Meli, F., Francaviglia, N., & Iacopino, D. G. (2018). With a Little Help from My Friends: The Role of Intraoperative Fluorescent Dyes in the Surgical Management of High-Grade Gliomas. Brain Sciences, 8(2), 31. https://doi.org/10.3390/brainsci8020031