Ingredient-Dependent Extent of Lipid Oxidation in Margarine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Production of Margarine
2.3. Study Design
2.4. Analysis of the Fatty Acid Composition by GC/FID
2.5. Measurement of the Peroxide Value
2.6. Detection of the Oxidation Induction Time
2.7. NMR Analysis
2.8. Determination of Iron and Copper
2.9. Determination of the pH-Value
2.10. Statistical Analysis
3. Results and Discussion
3.1. Fatty Acid Composition of Margarine
3.2. Ingredient-Dependent Influences on the Oxidative Stability of Margarine
3.2.1. Influence of Different Emulsifiers
3.2.2. Influence of Different Antioxidants
3.2.3. Influence of Minor Components
3.2.4. Combinational Effects
3.3. NMR, TXRF and GFAAS Analysis of Margarine Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McClements, D.J.; Decker, E.A. Lipid Oxidation in Oil-in-Water Emulsions: Impact of Molecular Environment on Chemical Reactions in Heterogeneous Food Systems. J. Food Sci. 2000, 65, 1270–1282. [Google Scholar] [CrossRef]
- Morris, D.H.; Vaisey-Genser, M. Role of Margarine in the diet. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Trugo, L., Finglas, P.M., Eds.; Academic Press: Cambridge, MA, USA, 2003; pp. 3719–3725. [Google Scholar]
- Berton-Carabin, C.C.; Ropers, M.-H.; Genot, C. Lipid Oxidation in Oil-in-Water Emulsions: Involvement of the Interfacial Layer. Compr. Rev. Food Sci. Food Saf. 2014, 13, 945–977. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Revisiting the polar paradox theory: A critical overview. J. Agric. Food Chem. 2011, 59, 3499–3504. [Google Scholar] [CrossRef]
- Poyato, C.; Navarro-Blasco, I.; Calvo, M.I.; Cavero, R.Y.; Astiasarán, I.; Ansorena, D. Oxidative stability of O/W and W/O/W emulsions: Effect of lipid composition and antioxidant polarity. Food Res. Int. 2013, 51, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Miyagawa, Y.; Adachi, S. Dispersion and oxidative stability of O/W emulsions and oxidation of microencapsulated oil. Biosci Biotechnol. Biochem. 2017, 81, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Yi, B.; Kim, M.J.; Lee, J. Oxidative stability of oil-in-water emulsions with alpha-tocopherol, charged emulsifier, and different oxidative stress. Food Sci. Biotechnol. 2018, 27, 1571–1578. [Google Scholar] [CrossRef]
- Zhu, Q.; Pan, Y.; Jia, X.; Li, J.; Zhang, M.; Yin, L. Review on the Stability Mechanism and Application of Water-in-Oil Emulsions Encapsulating Various Additives. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1660–1675. [Google Scholar] [CrossRef]
- Liu, J.; Guo, Y.; Li, X.; Si, T.; McClements, D.J.; Ma, C. Effects of chelating agents and salts on interfacial properties and lipid oxidation in oil-in-water emulsions. J. Agric. Food Chem. 2019, 67, 13718–13727. [Google Scholar] [CrossRef]
- Chen, B.; Rao, J.; Ding, Y.; McClements, D.J.; Decker, E.A. Lipid oxidation in base algae oil and water-in-algae oil emulsion: Impact of natural antioxidants and emulsifiers. Food Res. Int. 2016, 85, 162–169. [Google Scholar] [CrossRef]
- Adeyi, O.; Ikhu-Omoregbe, D.; Jideani, V.A. Effect of citric acid on physical stability of sunflower oil-in-water emulsion stabilized by gelatinized bambara groundnut floor. Int. J. Civ. Eng. 2019, 10, 2260–2273. [Google Scholar]
- Zeb, A.; Murkovic, M. Pro-Oxidant Effects of β-Carotene During Thermal Oxidation of Edible Oils. J. Am. Oil Chem. Soc. 2013, 90, 881–889. [Google Scholar] [CrossRef]
- Sun, Y.E.; Wang, W.D.; Chen, H.W.; Li, C. Autoxidation of unsaturated lipids in food emulsion. Crit. Rev. Food Sci. Nutr. 2011, 51, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Coupland, J.N.; McClements, D.J. Lipid oxidation in food emulsions. Trends Food Sci. Technol. 1996, 7, 83–91. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Kaneez, F.; Masood, N.; Luqman, S. Quenching of singlet oxygen by natural and synthetic antioxidants and assessment of electronic UV/Visible absorption spectra for alleviating or enhancing the efficacy of photodynamic therapy. Biomed. Res. Ther. 2016, 3, 514–527. [Google Scholar]
- Fakourelis, N.; Lee, E.C.; Min, D.B. Effects of Chlorophyll and p-Carotene on the Oxidation Stability of Olive Oil. J. Food Sci. 1987, 52, 234–235. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms of Antioxidants in the Oxidation of Foods. Compr. Rev. Food Sci. Food Saf. 2009, 8, 345–358. [Google Scholar] [CrossRef]
- Frankel, E.N.; Huang, S.W.; Kanner, J.; German, J.B. Interfacial Phenomena in the evaluation of antioxidants: Bulk oils vs. emulsions. J. Agric. Food Chem. 1994, 42, 1054–1059. [Google Scholar] [CrossRef]
- Porter, W.L.; Black, E.D.; Drolet, A.M. Use of Polyamide Oxidative Fluorescence Test on Lipid Emulsions: Contrast in Relative Effectiveness of Antioxidants in Bulk Versus Dispersed Systems. J. Agric. Food Chem. 1989, 37, 615–624. [Google Scholar] [CrossRef]
- Laguerre, M.; Giraldo, L.J.; Lecomte, J.; Figueroa-Espinoza, M.C.; Barea, B.; Weiss, J.; Decker, E.A.; Villeneuve, P. Chain length affects antioxidant properties of chlorogenate esters in emulsion: The cutoff theory behind the polar paradox. J. Agric. Food Chem. 2009, 57, 11335–11342. [Google Scholar] [CrossRef] [PubMed]
- Balgavý, P.; Devínsky, F. Cut-off effects in biological activities of surfactants. Adv. Colloid Interface Sci. 1996, 66, 23–63. [Google Scholar] [CrossRef]
- Dridi, W.; Essafi, W.; Gargouri, M.; Leal-Calderon, F.; Cansell, M. Influence of formulation on the oxidative stability of water-in-oil emulsions. Food Chem. 2016, 202, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Koroleva, M.Y.; Yurtov, E.V. Effect of ionic strength of dispersed phase on Ostwald ripening in water-in-oil emulsions. Colloid J. 2003, 65, 40–43. [Google Scholar] [CrossRef]
- Kabalnov, A.S.; Shchukin, E.D. Ostwald ripening theory: Applications to fluorocarbon emul-sion stability. Adv. Colloid Interface Sci. 1992, 38, 69–97. [Google Scholar] [CrossRef]
- Márquez, A.L.; Medrano, A.; Panizzolo, L.A.; Wagner, J.R. Effect of calcium salts and surfactant concentration on the stability of water-in-oil (w/o) emulsions prepared with polyglycerol polyricinoleate. J. Colloid Interface Sci. 2010, 341, 101–108. [Google Scholar] [CrossRef]
- Kizling, J.; Kronberg, B. On the formation of concentrated stable W/O emulsions. Adv. Colloid Interface Sci. 2001, 89, 395–399. [Google Scholar] [CrossRef]
- Cho, Y.-J.; McClements, D.J.; Decker, E.A. Ability of chelators to alter the physical location and prooxidant activity of iron in oil-in-water emulsions. J. Food Sci. 2003, 68, 1952–1957. [Google Scholar] [CrossRef]
- Osborn-Barnes, H.T.; Akoh, C.C. Copper-catalyzed oxidation of a structured lipid-based emulsion containing alpha-tocopherol and citric acid: Influence of pH and NaCl. J. Agric. Food Chem. 2003, 51, 6851–6855. [Google Scholar] [CrossRef]
- Mei, L.; McClements, D.J.; Wu, J.; Decker, E.A. Iron-catalyzed lipid oxidation in emulsion as affected by surfactant, pH and NaCl. Food Chem. 1998, 61, 307–312. [Google Scholar] [CrossRef]
- Gerstenberg Kirkeby, P. Margarine and Dairy Spreads: Processing and Technology. In Handbook of Food Products Manufacturing; Hui, Y.H., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2007; pp. 705–722. [Google Scholar]
- Paiva, S.A.R.; Russell, R.M. b-Carotene and other carotenoids as antioxidants. J. Am. Coll. Nutr. 1999, 18, 426–433. [Google Scholar] [CrossRef]
- Black, H.S.; Okotie-Eboh, G.; Gerguis, J. Diet potentiates the UV-carcinogenic response to beta-carotene. Nutr. Cancer 2000, 37, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.C.; Min, D.B. Quenching mechanism of b-carotene on the chlorophyll sensitized photo oxidation of soybean oil. J. Food Sci. 1998, 53, 1894–1895. [Google Scholar] [CrossRef]
- Grüneis, V.; Fruehwirth, S.; Zehl, M.; Ortner, J.; Schamann, A.; König, J.; Pignitter, M. Simultaneous Analysis of Epoxidized and Hydroperoxidized Triacylglycerols in Canola Oil and Margarine by LC-MS. J. Agric. Food Chem. 2019, 67, 10174–10184. [Google Scholar] [CrossRef] [PubMed]
- Deutsche Gesellschaft für Fettwissenschaft e.V. Deutsche Einheitsmethoden zur Untersuchung von Fetten, Fettprodukten, Tensiden und Verwandten Stoffen; Deutsche Gesellschaft für Fettwissenschaft e.V.: Stuttgart, Germany, 2014. [Google Scholar]
- Fruehwirth, S.; Egger, S.; Flecker, T.; Ressler, M.; Firat, N.; Pignitter, M. Acetone as indicator of lipid oxidation in stored margarine. Antioxidants 2021, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, D.H. Peroxide formation as a measure of autoxidative deterioriation. Oil Soap 1932, 9, 89–97. [Google Scholar] [CrossRef]
- AOCS. Official Methods of Analysis of AOCS International; AOCS: Arlingt, TX, USA, 1995. [Google Scholar]
- Aktar, T.; Adal, E. Determining the Arrhenius Kinetics of Avocado Oil: Oxidative Stability under Rancimat Test Conditions. Foods 2019, 8, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pignitter, M.; Stolze, K.; Gartner, S.; Dumhart, B.; Stoll, C.; Steiger, G.; Kraemer, K.; Somoza, V. Cold fluorescent light as major inducer of lipid oxidation in soybean oil stored at household conditions for eight weeks. J. Agric. Food Chem. 2014, 62, 2297–2305. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.K.; Oh, F.C.H. Oleins and Stearins from Malaysian Palm Oil Chemical and Physical Characteristics; Palm Oil Research Institute of Malaysia: Bandar Baru Bangi, Malaysia, 1981. [Google Scholar]
- Brát, J.; Pokorný, J. Fatty Acid Composition of Margarines and Cooking Fats Available on the Czech Market. J. Food Compos. Anal. 2000, 13, 337–343. [Google Scholar] [CrossRef]
- Yi, J.; Dong, W.; Zhu, Z.; Liu, N.; Ding, Y.; McClements, D.J.; Decker, E.A. Surfactant Concentration, Antioxidants, and Chelators Influencing Oxidative Stability of Water-in-Walnut Oil Emulsions. J. Am. Oil Chem. Soc. 2015, 92, 1093–1102. [Google Scholar] [CrossRef]
- Martin-Rubio, A.S.; Sopelana, P.; Guillen, M.D. A thorough insight into the complex effect of gamma-tocopherol on the oxidation process of soybean oil by means of (1)H Nuclear Magnetic Resonance. Comparison with alpha-tocopherol. Food Res. Int. 2018, 114, 230–239. [Google Scholar] [CrossRef]
- Kirkhus, B.; Lamglait, A.; Storro, I.; Vogt, G.; Olsen, E.; Lundby, F.; Standal, H. The Role of Water in Protection Against Thermal Deterioration of Liquid Margarine. J. Am. Oil Chem. Soc. 2015, 92, 215–223. [Google Scholar] [CrossRef]
- Dana, D.; Blumenthal, M.M.; Saguy, I.S. The protective role of water injection on oil quality in deep fat frying conditions. Eur. Food Res. Technol. 2003, 217, 104–109. [Google Scholar] [CrossRef]
- Wu, C.M.; Chen, S.Y. Volatile compounds in oils after deep frying or stir frying and subsequent storage. J. Am. Oil Chem. Soc. 1992, 69, 858–885. [Google Scholar] [CrossRef]
- Borquez, R.; Koller, W.D.; Wolf, W.; Spiess, W.E.L. Stability of n-3 fatty acids of fish protein concentrate during drying and storage. Food Sci. Technol. 1997, 30, 508–512. [Google Scholar] [CrossRef]
- Bubonja-Sonje, M.; Giacometti, J.; Abram, M. Antioxidant and antilisterial activity of olive oil, cocoa and rosemary extract polyphenols. Food Chem. 2011, 127, 1821–1827. [Google Scholar] [CrossRef]
- Riznar, K.; Celan, S.; Knez, Z.; Skerget, M.; Bauman, D.; Glaser, R. Antioxidant and antimicrobial activity of rosemary extract in chicken frankfurters. J. Food Sci. 2006, 71, 425–429. [Google Scholar] [CrossRef]
- Fernandez-Lopez, J.; Zhi, N.; Aleson-Carbonell, L.; Perez-Alvarez, J.A.; Kuri, V. Antioxidant and antibacterial activities of natural extracts: Application in beef meatballs. Meat Sci. 2005, 69, 371–380. [Google Scholar] [CrossRef]
- Lo, A.H.; Liang, Y.C.; Lin-Shiau, S.Y.; Ho, C.T.; Lin, J.K. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-kappaB in mouse macrophages. Carcinogenesis 2002, 23, 983–991. [Google Scholar] [CrossRef] [Green Version]
- Aruoma, O.I. Prooxidant Properties: An Important Consideration for Food Additives and/or Nutrient Components? In Free Radicals and Food Additives; Aruoma, O.I., Halliwell, B., Eds.; Taylor & Francis: London, UK, 1991; pp. 173–194. [Google Scholar]
- Chen, Z.Y.; Wang, L.-Y.; Chan, P.T.; Zhang, Z.; Chung, H.Y.; Liang, C. Antioxidative Activity of Green Tea Catechin Extract Compared with That of Rosemary Extract. J. Am. Oil Chem. Soc. 1998, 75, 1141–1145. [Google Scholar] [CrossRef]
- Mustafa, F.A. Effects of green tea extract on color and lipid oxidation in ground beef meat. J. Tikrit Univ. Agric. Sci. 2013, 13, 351–354. [Google Scholar]
- Senanayake, S.P.J.N. Green tea extract: Chemistry, antioxidant properties and food applications—A review. J. Funct. Foods 2013, 5, 1529–1541. [Google Scholar] [CrossRef]
- Forester, S.C.; Lambert, J.D. The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Mol. Nutr. Food Res. 2011, 55, 844–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, J.D.; Elias, R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch. Biochem. Biophys. 2010, 501, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azam, S.; Hadi, N.; Khan, N.U.; Hadi, S.M. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: Implications for anticancer properties. Toxicol. Vitr. 2004, 18, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-W.; Frankel, E.N. Antioxidant Activity of Tea Catechins in Different Lipid Systems. J. Agric. Food Chem. 1997, 45, 3033–3038. [Google Scholar] [CrossRef]
- Seeram, N.P.; Henning, S.M.; Niu, Y.; Lee, R.; Scheuller, H.S.; Heber, D. Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity. J. Agric. Food Chem. 2006, 54, 1599–1603. [Google Scholar] [CrossRef]
- Leon-Carmona, J.R.; Galano, A. Is caffeine a good scavenger of oxygenated free radicals? J. Phys. Chem. B 2011, 115, 4538–4546. [Google Scholar] [CrossRef]
- Shi, X.; Dalal, N.S.; Jain, A.C. Antioxidant behaviour of caffeine: Efficient scavenging of hydroxyl radicals. Food Chem. Toxicol. 1991, 29, 1–6. [Google Scholar] [CrossRef]
- Brezová, V.; Šlebodová, A.; Staško, A. Coffee as a source of antioxidants: An EPR study. Food Chem. 2009, 114, 859–868. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules 2014, 19, 19180–19208. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.S.; Devasagayam, T.P.; Jayashree, B.; Kesavan, P.C. Mechanism of protection against radiation-induced DNA damage in plasmid pBR322 by caffeine. Int. J. Radiat. Biol. 2001, 77, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, T. Oxidative Stability of Egg and Soy Lecithin as Affected by Transition Metal Ions and pH in Emulsion. J. Agric. Food Chem. 2008, 56, 11424–11431. [Google Scholar] [CrossRef] [Green Version]
- Barbooti, M.M.; Al-Sammerrai, D.A. Thermal decomposition of citric acid. Thermochim. Acta 1986, 98, 119–126. [Google Scholar] [CrossRef]
- Knockaert, G.; Pulissery, S.K.; Lemmens, L.; Van Buggenhout, S.; Hendrickx, M.; Van Loey, A. Carrot β-Carotene Degradation and Isomerization Kinetics during Thermal Processing in the Presence of Oil. J. Agric. Food Chem. 2012, 60, 10312–10319. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Tang, C. Characteristics and oxidative stability of soy protein-stabilized oil-in-water emulsions: Influence of ionic strength and heat pretreatment. Food Hydrocoll. 2014, 37, 149–158. [Google Scholar] [CrossRef]
- Kanner, J.; Harel, S.; Jaffe, R. Lipid peroxidation of muscle food as affected by sodium chloride. J. Agric. Food Chem. 1991, 39, 1017–1021. [Google Scholar] [CrossRef]
- Kowalewski, J.; Mäler, L. Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2006; Volume 128. [Google Scholar]
Margarine | Emulsifiers | Content in Margarine (%) | |
M1 | emulsifier 1 | commonly applied concentration | 0.175 |
M2 | emulsifier 1 | −20% | 0.140 |
M3 | emulsifier 1 | +20% | 0.210 |
M4 | emulsifier 2 | commonly applied concentration | 0.750 |
M5 | emulsifier 2 | −20% | 0.600 |
M6 | emulsifier 2 | +20% | 0.900 |
margarine | antioxidants | content in margarine (%) | |
M7 | vitamin E acetate | commonly applied concentration | 0.200 |
M8 | vitamin E acetate | −20% | 0.160 |
M9 | vitamin E acetate | +20% | 0.240 |
M10 | rosemary extract | commonly applied concentration | 0.200 |
M11 | rosemary extract | −20% | 0.160 |
M12 | rosemary extract | +20% | 0.240 |
M13 | green tea extract | commonly applied concentration | 0.200 |
M14 | green tea extract | −20% | 0.160 |
M15 | green tea extract | +20% | 0.240 |
margarine | minor components | content in margarine (%) | |
M16 | green tea extract (0.160%) + citric acid | 0.010 | |
M17 | green tea extract (0.160%) + β-carotene | 0.001 | |
M18 | green tea extract (0.160%) + NaCl | 0.100 | |
margarine | minor components | content in margarine (%) | |
M(total) | contains all minor components as well as green tea extract (0.160%) and emulsifier 1 (0.175%) |
Margarine | Ingredients | pH |
---|---|---|
M1 | E1, SC 1 | 7.82 ± 0.01 |
M2 | E1, −20% | 7.82 ± 0.00 |
M3 | E1, +20% | 7.91 ± 0.01 |
M4 | E2, SC | 7.90 ± 0.00 |
M5 | E2, −20% | 7.86 ± 0.01 |
M6 | E2, +20% | 7.88 ± 0.01 |
M7 | (E1, SC) + (aTA, SC) | 7.89 ± 0.01 |
M8 | (E1, SC) + (aTA, −20%) | 7.90 ± 0.02 |
M9 | (E1, SC) + (aTA, +20%) | 7.82 ± 0.09 |
M10 | (E1, SC) + (RE, SC) | 7.91 ± 0.03 |
M11 | (E1, SC) + (RE, −20%) | 7.91 ± 0.03 |
M12 | (E1, SC) + (RE, +20%) | 7.92 ± 0.02 |
M13 | (E1, SC) + (GTE, SC) | 4.31 ± 0.00 * |
M14 | (E1, SC) + (GTE, −20%) | 4.30 ± 0.00 * |
M15 | (E1, SC) + (GTE, +20%) | 4.12 ± 0.00 * |
M16 | (E1, SC) + (GTE, −20%) + citric acid | 3.77 ± 0.00 ** |
M17 | (E1, SC) + (GTE, −20%) + β-carotene | 4.45 ± 0.00 |
M18 | (E1, SC) + (GTE, −20%) + NaCl | 4.34 ± 0.00 |
M(total) | (E1, SC) + (GTE, −20%) + all minor ingredients | 3.58 ± 0.00 ** |
Margarine | Ingredients | T1/T2 | Fe (mg/kg) | Cu (mg/kg) |
---|---|---|---|---|
M1 | E1, SC 1 | 2.67 | 2.88 ± 0.85 a | 0.10 ± 0.01 a |
M8 | M1 + aTA, −20% | 1.47 | 3.08 ± 0.56 a | 0.06 ± 0.01 b |
M11 | M1 + RE, −20% | 3.81 | 4.64 ± 0.31 b | 0.06 ± 0.01 ab |
M14 | M1 + GTE, −20% | 33.2 | 2.22 ± 0.26 a | 0.09 ± 0.01 ab |
M(total) | M14 + minor ingredients | 3.58 | 3.42 ± 0.33 ab | 0.06 ± 0.01 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fruehwirth, S.; Egger, S.; Kurzbach, D.; Windisch, J.; Jirsa, F.; Flecker, T.; Ressler, M.; Reiner, A.T.; Firat, N.; Pignitter, M. Ingredient-Dependent Extent of Lipid Oxidation in Margarine. Antioxidants 2021, 10, 105. https://doi.org/10.3390/antiox10010105
Fruehwirth S, Egger S, Kurzbach D, Windisch J, Jirsa F, Flecker T, Ressler M, Reiner AT, Firat N, Pignitter M. Ingredient-Dependent Extent of Lipid Oxidation in Margarine. Antioxidants. 2021; 10(1):105. https://doi.org/10.3390/antiox10010105
Chicago/Turabian StyleFruehwirth, Sarah, Sandra Egger, Dennis Kurzbach, Jakob Windisch, Franz Jirsa, Thomas Flecker, Miriam Ressler, Agnes T. Reiner, Nesrin Firat, and Marc Pignitter. 2021. "Ingredient-Dependent Extent of Lipid Oxidation in Margarine" Antioxidants 10, no. 1: 105. https://doi.org/10.3390/antiox10010105
APA StyleFruehwirth, S., Egger, S., Kurzbach, D., Windisch, J., Jirsa, F., Flecker, T., Ressler, M., Reiner, A. T., Firat, N., & Pignitter, M. (2021). Ingredient-Dependent Extent of Lipid Oxidation in Margarine. Antioxidants, 10(1), 105. https://doi.org/10.3390/antiox10010105