Antitussive, Antioxidant, and Anti-Inflammatory Effects of a Walnut (Juglans regia L.) Septum Extract Rich in Bioactive Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of the Walnut Septum Extract
2.3. Animals and Experimental Protocol
2.3.1. Antitussive Test
2.3.2. Biological Samples
2.4. Determination of the Total Protein Content
2.5. Oxidative Stress Biomarkers
2.5.1. Reactive Oxygen Species
2.5.2. Nitric Oxide Level
2.5.3. Total Antioxidant Capacity by Trolox Equivalent Antioxidant Capacity (TEAC) Assay
2.6. Inflammatory Biomarkers
2.7. Histopathological Analysis
2.8. Statistical Analysis
3. Results
3.1. Antitussive Effect
3.2. Oxidative Stress and Inflammatory Biomarkers
3.3. Histopathological Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate) |
AU | arbitrary units |
BSA | bovine serum albumin |
b.w. | body weight |
CBB | Coomassie Briliant Blue G |
CXC-R1 | chemokine receptor type 1 |
CXC-R2 | chemokine receptor type 2 |
DCFH-DA | 2′,7′-dichlorodihydrofluorescein diacetate |
FC | Folin-Ciocâlteu |
GAE | gallic acid equivalents |
HE | hematoxylin and eosin |
IL-6 | interleukin 6 |
IL-8 | interleukin 8 |
LC-MS | liquid chromatography-mass spectrometry |
LC-MS/MS | liquid chromatography coupled with tandem mass spectrometry |
LOD | Limit of detection |
LOQ | Limit of quantification |
NF-κB | Nuclear Factor kappa B |
NO | nitric oxide |
Nrf2/ARE | Nuclear factor erythroid 2-related factor 2/antioxidant response element |
PBS | phosphate-buffered saline |
ROS | reactive oxygen species |
SD | standard deviation |
SEM | standard error mean |
TAC | total antioxidant capacity |
TEAC | Trolox equivalent antioxidant capacity |
TNF-α | tumor necrosis factor α |
TPC | total phenolic content |
Tris | tris(hydroxymethyl)aminomethane |
Trolox | 6-hydroxy-2,5,7,8-tetramethyl chroman-2-carboxylic acid |
WS | walnut septum |
WSE | walnut septum extract |
References
- Xu, Y.; Wang, F.; Guo, H.; Wang, S.; Ni, S.; Zhou, Y.; Wang, Z.; Bao, H.; Wang, Y. Antitussive and Anti-inflammatory Dual-active Agents Developed from Natural Product Lead Compound 1-Methylhydantoin. Molecules 2019, 24, 2355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oketch-Rabah, H.A.; Marles, R.J.; Jordan, S.A.; Low Dog, T. United States Pharmacopeia Safety Review of Willow Bark. Planta Med. 2019, 85, 1192–1202. [Google Scholar] [CrossRef] [PubMed]
- Dicpinigaitis, P.V.; Morice, A.H.; Birring, S.S.; McGarvey, L.; Smith, J.A.; Canning, B.J.; Page, C.P. Antitussive Drugs—Past, Present, and Future. Pharmacol. Rev. 2014, 66, 468–512. [Google Scholar] [CrossRef]
- Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J. 2011, 10, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Estrada, C.; Martín, J.; Cueto, L.; Barreiro, C. Omics Approaches Applied to Penicillium chrysogenum and Penicillin Production: Revealing the Secrets of Improved Productivity. Genes 2020, 11, 712. [Google Scholar] [CrossRef]
- Tobias, J.D.; Green, T.P.; Coté, C.J. Codeine: Time to Say “No”. Pediatrics 2016, 138, e20162396. [Google Scholar] [CrossRef] [Green Version]
- Rusu, M.E.; Mocan, A.; Ferreira, I.C.F.R.; Popa, D.-S. Health Benefits of Nut Consumption in Middle-Aged and Elderly Population. Antioxidants 2019, 8, 302. [Google Scholar] [CrossRef] [Green Version]
- Rusu, M.E.; Simedrea, R.; Gheldiu, A.-M.; Mocan, A.; Vlase, L.; Popa, D.-S.; Ferreira, I.C.F.R. Benefits of tree nut consumption on aging and age-related diseases: Mechanisms of actions. Trends Food Sci. Technol. 2019, 88, 104–120. [Google Scholar] [CrossRef]
- Alasalvar, C.; Bolling, B. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 2015, 113, S68–S78. [Google Scholar] [CrossRef]
- Santos, A.; Barros, L.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Leaves and decoction of Juglans regia L.: Different performances regarding bioactive compounds and in vitro antioxidant and antitumor effects. Ind. Crops Prod. 2013, 51, 430–436. [Google Scholar] [CrossRef]
- Vieira, V.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, J.M.; Coutinho, J.A.P.; Ferreira, O.; Barros, L.; Ferreira, I.C.F.R. Hydroethanolic extract of Juglans regia L. green husks: A source of bioactive phytochemicals. Food Chem. Toxicol. 2020, 137, 111189. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, F.; Mashhoody, T.; Panjehshahin, M. Effect of aqueous extract of walnut septum on blood glucose and pancreatic structure in streptozotocin-induced diabetic mouse. Iran J. Pharmacol. Ther. 2012, 11, 10–14. [Google Scholar]
- Ramishvili, L.; Gordeziani, M.; Tavdishvili, E.; Bedineishvili, N.; Dzidziguri, D.; Kotrikadze, N. The effect of extract of greek walnut (Juglans regia L.) septa on some functional characteristics of erythrocytes. Georg. Med. News 2016, 261, 51–57. [Google Scholar]
- Ravanbakhsh, A.; Mahdavi, M.; Jalilzade-Amin, G.; Javadi, S.; Maham, M.; Mohammadnejad, D.; Rashidi, M.R. Acute and subchronic toxicity study of the median septum of Juglans regia in Wistar rats. Adv. Pharm. Bull. 2016, 6, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Rusu, M.E.; Gheldiu, A.-M.; Mocan, A.; Moldovan, C.; Popa, D.-S.; Tomuta, I.; Vlase, L. Process Optimization for Improved Phenolic Compounds Recovery from Walnut (Juglans regia L.) Septum: Phytochemical Profile and Biological Activities. Molecules 2018, 23, 2814. [Google Scholar] [CrossRef] [Green Version]
- Reynoso, M.; Brodkiewics, I.; Villagra, J.; Balderrama Coca, M.; Sanchez Riera, A.; Vera, N. Evaluation of antitussive and expectorant potential of Ziziphus Mistol Fruits (Mistol). Int. J. Pharm. Sci. Res. 2017, 8, 3726–3733. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, H.; Wang, S.; Hou, A.; Man, W.; Zhang, J.; Guo, X.; Yang, B.; Kuang, H.; Wang, Q. Discovering the Major Antitussive, Expectorant, and Anti-Inflammatory Bioactive Constituents in Tussilago Farfara L. Based on the Spectrum—Effect Relationship Combined with Chemometrics. Molecules 2020, 25, 620. [Google Scholar] [CrossRef] [Green Version]
- Rusu, M.E.; Fizeșan, I.; Pop, A.; Gheldiu, A.-M.; Mocan, A.; Crișan, G.; Vlase, L.; Loghin, F.; Popa, D.-S.; Tomuta, I. Enhanced Recovery of Antioxidant Compounds from Hazelnut (Corylus avellana L.) Involucre Based on Extraction Optimization: Phytochemical Profile and Biological Activities. Antioxidants 2019, 8, 460. [Google Scholar] [CrossRef] [Green Version]
- Directive 2010/63/EU of the European Parliament and of the Council. 2010. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02010L0063-20190626&from=EN (accessed on 18 November 2020).
- Song, K.J.; Shin, Y.J.; Lee, K.R.; Lee, E.J.; Suh, Y.S.; Kim, K.S. Expectorant and Antitussive Effect of Hedera helix and Rhizoma coptidis extracts mixture. Yonsei Med. J. 2015, 56, 819–824. [Google Scholar] [CrossRef]
- Gheldiu, A.-M.; Popa, D.-S.; Loghin, F.; Vlase, L. Oxidative Metabolism of Estrone Modified by Genistein and Bisphenol A in Rat Liver Microsomes. Biomed. Environ. Sci. 2015, 28, 834–838. [Google Scholar] [CrossRef]
- Garg, G.; Singh, S.; Singh, A.K.; Rizvi, S.I. Antiaging Effect of Metformin on Brain in Naturally Aged and Accelerated Senescence Model of Rat. Rejuvenation Res. 2017, 20, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Boşca, A.B.; Dinte, E.; Colosi, H.; Ilea, A.; Câmpian, R.-S.; Uifălean, A.; Pârvu, A.E. Curcumin effect on nitro-oxidative stress in ligature-induced rat periodontitis. Rom. Biotechnol. Lett. 2015, 20, 10708–10717. [Google Scholar]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Grozav, A.; Miclaus, V.; Vostinaru, O.; Ghibu, S.; Berce, C.; Rotar, I.; Mogosan, C.; Therrien, B.; Loghin, F.; Popa, D. Acute toxicity evaluation of a thiazolo arene ruthenium (II) complex in rats. Regul. Toxicol. Pharmacol. 2016, 80, 233–240. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Ji, L.L.; Cirelli, C. Sleep Deprivation and Cellular Responses to Oxidative Stress. Sleep 2004, 27, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Song, L.; Sun, X.; Yan, S.; Huang, W.; Liu, P. Characterisation of phenolics in fruit septum of Juglans regia Linn. by ultra performance liquid chromatography coupled with Orbitrap mass spectrometer. Food Chem. 2019, 286, 669–677. [Google Scholar] [CrossRef]
- Genovese, C.; Cambria, M.T.; D’Angeli, F.; Addamo, A.P.; Malfa, G.A.; Siracusa, L.; Pulvirenti, L.; Anfuso, C.D.; Lupo, G.; Salmeri, M. The double effect of walnut septum extract (Juglans regia L.) counteracts A172 glioblastoma cell survival and bacterial growth. Int. J. Oncol. 2020, 57, 1129–1144. [Google Scholar] [CrossRef]
- Rusu, M.E.; Fizesan, I.; Pop, A.; Mocan, A.; Gheldiu, A.-M.; Babota, M.; Vodnar, D.C.; Jurj, A.; Berindan-Neagoe, I.; Vlase, L.; et al. Walnut (Juglans regia L.) Septum: Assessment of Bioactive Molecules and In Vitro Biological Effects. Molecules 2020, 25, 2187. [Google Scholar] [CrossRef]
- Ju, J.; Zhou, L.; Lin, G.; Liu, D.; Wang, L.; Yang, J. Studies on constituents of triterpene acids from Eriobotrya japonica and their anti-inflammatory and antitussive effects. J. Chin. Pharm. Sci. 2003, 38, 752–757. [Google Scholar]
- Hosseinzadeh, H.; Ghenaati, J. Evaluation of the antitussive effect of stigma and petals of saffron (Crocus sativus) and its components, safranal and crocin in guinea pigs. Fitoterapia 2006, 77, 446–448. [Google Scholar] [CrossRef]
- Chung, H.-S.; Hon, P.-M.; Lin, G.; But, P.P.-H.; Dong, H. Antitussive activity of Stemona alkaloids from Stemona tuberosa. Planta Med. 2003, 69, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Dzidziguri, D.; Rukhadze, M.; Modebadze, I.; Bakuradze, E.; Kurtanidze, M.; Giqoshvili, V. The study of the immune corrective properties of greek walnut (Juglans regia L.) septa on the experimental model of leukopenia. Georg. Med. News 2016, 252, 84–89. [Google Scholar]
- Dal Negro, R.W.; Wedzicha, J.A.; Iversen, M.; Fontana, G.; Page, C.; Cicero, A.F.; Pozzi, E.; Calverley, P.M.A. Effect of erdosteine on the rate and duration of COPD exacerbations: The RESTORE study. Eur. Respir. J. 2017, 50, 1700711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Ji, L. Chronic Ginseng Consumption Attenuates Age-Associated Oxidative Stress in Rats. J. Nutr. 2003, 133, 3603–3609. [Google Scholar] [CrossRef]
- Rusu, M.E.; Georgiu, C.; Pop, A.; Mocan, A.; Kiss, B.; Vostinaru, O.; Fizesan, I.; Stefan, M.-G.; Gheldiu, A.-M.; Mates, L.; et al. Antioxidant Effects of Walnut (Juglans regia L.) Kernel and Walnut Septum Extract in a D-Galactose-Induced Aging Model and in Naturally Aged Rats. Antioxidants 2020, 9, 424. [Google Scholar] [CrossRef]
- Muthaiyah, B.; Essa, M.M.; Chauhan, V.; Chauhan, A. Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem. Res. 2011, 36, 2096–2103. [Google Scholar] [CrossRef] [Green Version]
- Muzaffer, U.; Paul, V.; Prasad, N.R.; Karthikeyan, R.; Agilan, B. Protective effect of Juglans regia L. against ultraviolet B radiation induced inflammatory responses in human epidermal keratinocytes. Phytomedicine 2018, 42, 100–111. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Erlank, H.; Elmann, A.; Kohen, R.; Kanner, J. Polyphenols activate Nrf2 in astrocytes via H2O2, semiquinones, and quinones. Free Radic. Biol. Med. 2011, 51, 2319–2327. [Google Scholar] [CrossRef]
- Zarogoulidis, P.; Cheva, A.; Zarampouka, K.; Huang, H.; Li, C.; Huang, Y.; Katsikogiannis, N.; Zarogoulidis, K. Tocopherols and tocotrienols as anticancer treatment for lung cancer: Future nutrition. J. Thorac. Dis. 2013, 5, 349–352. [Google Scholar] [CrossRef]
- Boots, A.W.; Haenen, G.R.; Bast, A. Health effects of quercetin: From antioxidant to nutraceutical. Eur. J. Pharmacol. 2008, 585, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-J.; Tai, B.H.; Cuong, N.M.; Kim, Y.-H.; Jang, H.-D. Antioxidative and anti-inflammatory effect of quercetin and its glycosides isolated from mampat (Cratoxylum formosum). Food Sci. Biotechnol. 2012, 21, 587–595. [Google Scholar] [CrossRef]
- Tanigawa, S.; Fujii, M.; Hou, D.-X. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic. Biol. Med. 2007, 42, 1690–1703. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Han, X.; Piao, M.; Oh, M.; Fernando, P.; Kang, K.; Ryu, Y.; Jung, U.; Kim, I.; Hyun, J. Hyperoside Induces Endogenous Antioxidant System to Alleviate Oxidative Stress. J. Cancer Prev. 2016, 21, 41–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djedjibegovic, J.; Marjanovic, A.; Panieri, E.; Saso, L. Ellagic Acid-Derived Urolithins as Modulators of Oxidative Stress. Oxid. Med. Cell. Longev. 2020, 2020, 5194508. [Google Scholar] [CrossRef] [PubMed]
- Ricciardolo, F.L.M.; Sterk, P.J.; Gaston, B.; Folkerts, G. Nitric oxide in health and disease of the respiratory system. Physiol. Rev. 2004, 84, 731–765. [Google Scholar] [CrossRef] [PubMed]
- Thomassen, M.J.; Buhrow, L.T.; Connors, M.J.; Takao Kaneko, F.; Erzurum, S.C.; Kavuru, M.S. Nitric oxide inhibits inflammatory cytokine production by human alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 1997, 17, 279–283. [Google Scholar] [CrossRef]
- Hoyte, F.C.L.; Gross, L.M.; Katial, R.K. Exhaled nitric oxide: An update. Immunol. Allergy Clin. 2018, 38, 573–585. [Google Scholar] [CrossRef]
- Šutovská, M.; Fraňová, S.; Sadloňová, V.; Grønhaug, T.E.; Diallo, D.; Paulsen, B.S.; Capek, P. The relationship between dose-dependent antitussive and bronchodilatory effects of Opilia celtidifolia polysaccharide and nitric oxide in guinea pigs. Int. J. Biol. Macromol. 2010, 47, 508–513. [Google Scholar] [CrossRef]
- Sutovská, M.; Kocmálová, M.; Adamkov, M.; Výbohová, D.; Mikolka, P.; Mokrá, D.; Hatok, J.; Antošová, M.; Fraňová, S. The long-term administration of Orai 1 antagonist possesses antitussive, bronchodilatory and anti-inflammatory effects in experimental asthma model. Gen. Physiol. Biophys. 2013, 32, 251–259. [Google Scholar] [CrossRef]
- Pang, W.; Lin, S.; Dai, Q.; Zhang, H.; Hu, J. Antitussive Activity of Pseudostellaria heterophylla (Miq.) Pax Extracts and Improvement in Lung Function via Adjustment of Multi-Cytokine Levels. Molecules 2011, 16, 3360–3370. [Google Scholar] [CrossRef] [Green Version]
- Wardyn, J.D.; Ponsford, A.H.; Sanderson, C.M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans. 2015, 43, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Fizeșan, I.; Chary, A.; Cambier, S.; Moschini, E.; Serchi, T.; Nelissen, I.; Kiss, B.; Pop, A.; Loghin, F.; Gutleb, A.C. Responsiveness assessment of a 3D tetra-culture alveolar model exposed to diesel exhaust particulate matter. Toxicol. Vitr. 2018, 53, 67–79. [Google Scholar] [CrossRef]
- Ahmed, S.; Luo, L.; Namani, A.; Wang, X.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 585–597. [Google Scholar] [CrossRef]
- Papoutsi, Z.; Kassi, E.; Chinou, I.; Halabalaki, M.; Skaltsounis, L.; Moutsatsou, P. Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br. J. Nutr. 2008, 99, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Govindaraju, V.; Michoud, M.-C.; Al-Chalabi, M.; Ferraro, P.; Powell, W.S.; Martin, J.G. Interleukin-8: Novel roles in human airway smooth muscle cell contraction and migration. Am. J. Physiol. Cell Physiol. 2006, 291, C957–C965. [Google Scholar] [CrossRef] [Green Version]
- Qamar, W.; Sultana, S. Polyphenols from Juglans regia L.(walnut) kernel modulate cigarette smoke extract induced acute inflammation, oxidative stress and lung injury in Wistar rats. Hum. Exp. Toxicol. 2011, 30, 499–506. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Zarei, H.; Taghiabadi, E. Antinociceptive, anti-inflammatory and acute toxicity effects of Juglans regia L. leaves in mice. Iran. Red Crescent Med. J. 2011, 13, 27–33. [Google Scholar]
- Boskabady, M.H.; Gholami Mhtaj, L. Effect of the Zataria multiflora on systemic inflammation of experimental animals model of COPD. Biomed. Res. Int. 2014, 2014, 802189. [Google Scholar] [CrossRef] [Green Version]
- Khazdair, M.R.; Ghorani, V.; Alavinezhad, A.; Boskabady, M.H. Effect of Zataria multiflora on serum cytokine levels and pulmonary function tests in sulfur mustard-induced lung disorders: A randomized double-blind clinical trial. J. Ethnopharmacol. 2020, 248, 112325. [Google Scholar] [CrossRef]
- Keller, J.A.; McGovern, A.E.; Mazzone, S.B. Translating cough mechanisms into better cough suppressants. Chest 2017, 152, 833–841. [Google Scholar] [CrossRef] [PubMed]
Group | Dose (mg/kg b.w./day) | Cough Latency 1 (sec) | No. of Coughs 1 | Inhibition (%) |
---|---|---|---|---|
NC | 0 | 34 (15–70) | 31.8 (18–44) | - |
Codeine | 3 | 144 (75–200) | 15.4 (11–20) | 51.57 |
WSE | 134 * | 81 (60–190) | 10.3 (5–15) | 67.50 |
WSE 1:2 | 67 * | 56 (33–100) | 25.6 (11–40) | 19.28 |
Method (Ref.) | Chromatographic Conditions | Detection Mode | Bioactive Compound | m/z | mg/100 g |
---|---|---|---|---|---|
LC-MS [15] | Zorbax SB-C18; methanol: 0.1% acetic acid (v/v) and binary gradient at 48 °C; flow rate: 1 mL/min; injection volume: 5 µL | UV: 330 nm for 0–17 min (to detect phenolic acids); 370 nm for 18–38 min (to detect flavonoids and their aglycones) MS: ESI a, negative mode, SIM b mode | Caftaric acid Gentisic acid Caffeic acid Chlorogenic acid p-Coumaric acid Ferulic acid Sinapic acid Hyperoside Isoquercitrin Rutoside Myricetol Fisetin Quercitrin Quercetin Patuletin Luteolin Kaempferol Apigenin | 311 179 179 353 163 193 223 463 463 609 317 285 447 301 331 285 285 279 | <LOD <LOQ <LOD <LOD <LOQ <LOQ <LOD 6.73 10.36 <LOD <LOD <LOD 107.31 <LOQ <LOD <LOD <LOD <LOD |
LC-MS [15] | Zorbax SB-C18; methanol: 0.1% acetic acid (v/v) and binary gradient at 48 °C; flow rate: 1 mL/min; injection volume: 5 µL | MS: ESI, negative mode, SIM mode | Epicatechin Catechin Gallic acid Syringic acid Protocatechuic acid Vanillic acid | 289 289 169 197 153 167 | 1.25 59.76 7.96 0.52 0.99 0.56 |
LC-MS/MS [15] | Zorbax SB-C18; methanol: acetonitrile (10:90, v/v) and isocratic elution, at 40 °C; flow rate: 1 mL/min; injection volume: 5 µL | MS: APCI c, positive mode, MRM d mode | β-Sitosterol Stigmasterol Campesterol Ergosterol | 397 ** 395 383 379 | 3101.8 <LOQ 29.21 <LOD |
LC-MS/MS [29] | Zorbax SB-C18; water: methanol (7:93, v/v) and isocratic elution, at 40 °C; flow rate: 1 mL/min; injection volume: 10 µL | MS: APCI, negative mode, MRM mode | α-Tocopherol β/γ-Tocopherols δ-Tocopherol | 401→386 415→400 429→163 | 3.35 1.73 1.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fizeșan, I.; Rusu, M.E.; Georgiu, C.; Pop, A.; Ștefan, M.-G.; Muntean, D.-M.; Mirel, S.; Vostinaru, O.; Kiss, B.; Popa, D.-S. Antitussive, Antioxidant, and Anti-Inflammatory Effects of a Walnut (Juglans regia L.) Septum Extract Rich in Bioactive Compounds. Antioxidants 2021, 10, 119. https://doi.org/10.3390/antiox10010119
Fizeșan I, Rusu ME, Georgiu C, Pop A, Ștefan M-G, Muntean D-M, Mirel S, Vostinaru O, Kiss B, Popa D-S. Antitussive, Antioxidant, and Anti-Inflammatory Effects of a Walnut (Juglans regia L.) Septum Extract Rich in Bioactive Compounds. Antioxidants. 2021; 10(1):119. https://doi.org/10.3390/antiox10010119
Chicago/Turabian StyleFizeșan, Ionel, Marius Emil Rusu, Carmen Georgiu, Anca Pop, Maria-Georgia Ștefan, Dana-Maria Muntean, Simona Mirel, Oliviu Vostinaru, Béla Kiss, and Daniela-Saveta Popa. 2021. "Antitussive, Antioxidant, and Anti-Inflammatory Effects of a Walnut (Juglans regia L.) Septum Extract Rich in Bioactive Compounds" Antioxidants 10, no. 1: 119. https://doi.org/10.3390/antiox10010119
APA StyleFizeșan, I., Rusu, M. E., Georgiu, C., Pop, A., Ștefan, M. -G., Muntean, D. -M., Mirel, S., Vostinaru, O., Kiss, B., & Popa, D. -S. (2021). Antitussive, Antioxidant, and Anti-Inflammatory Effects of a Walnut (Juglans regia L.) Septum Extract Rich in Bioactive Compounds. Antioxidants, 10(1), 119. https://doi.org/10.3390/antiox10010119