Onion Peel: Turning a Food Waste into a Resource
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Plant Material and Exhaustive Extraction
2.3. UHPLC-HRMSn Analysis
2.4. Isolation and Identification of Onion Skin Flavonols
2.5. Quantitative Analysis by UHPLC-UV
2.6. Antioxidant Assays
2.7. Alpha-Glucosidase Inhibitory Activity
2.8. Cell Culture and Cell Viability Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. UHPLC-DAD-HRMS/MS Analysis of “Rossa di Tropea” and “Ramata di Montoro” Onion Skins
3.2. Isolation of Major Flavonols of Onion Skin
3.3. Quantitative Analysis of “Ramata di Montoro” and “Rossa di Tropea” Onion Skins
3.4. Antioxidant Activity of “Rossa di Tropea” and “Ramata di Montoro” Onion Skin Extracts
3.5. Onion Skin Extracts as Source of α-Glucosidase Inhibitors
3.6. Onion Skin Extracts Stimulate Cell Viability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marmot, M. Diet, cancer, and NCD prevention. Lancet Oncol. 2018, 19, 863–864. [Google Scholar] [CrossRef]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018. [Google Scholar] [CrossRef]
- Castro-Barquero, S.; Lamuela-Raventós, R.M.; Doménech, M.; Estruch, R. Relationship between Mediterranean Dietary Polyphenol Intake and Obesity. Nutrients 2018, 10, 1523. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, G.; Trueman, L.; Crowther, T.; Thomas, B.; Smith, B. Onions—A global benefit to health. Phyther. Res. 2002, 16, 603–615. [Google Scholar] [CrossRef]
- Russo, M.; Serra, D.; Suraci, F.; Di, R.; Fuda, S. The potential of e-nose aroma profiling for identifying the geographical origin of licorice (Glycyrrhiza glabra L.) roots. FOOD Chem. 2014, 165, 467–474. [Google Scholar] [CrossRef]
- Russo, M.; Cefaly, V.; Di Sanzo, R.; Carabetta, S.; Postorino, S.; Serra, D. Characterization of different “tropea red onion” (Allium cepa L.) ecotypes by aroma precursors, aroma profiles and polyphenolic composition. Acta Hortic. 2012, 197–203. [Google Scholar] [CrossRef]
- Beretta, V.H.; Bannoud, F.; Insani, M.; Galmarini, C.R.; Cavagnaro, P.F. Variability in spectrophotometric pyruvate analyses for predicting onion pungency and nutraceutical value. Food Chem. 2017, 224, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Slimestad, R.; Fossen, T.; Vågen, I.M. Onions: A source of unique dietary flavonoids. J. Agric. Food Chem. 2007, 55, 10067–10080. [Google Scholar] [CrossRef]
- Tedesco, I.; Carbone, V.; Spagnuolo, C.; Minasi, P.; Russo, G.L. Identification and quantification of flavonoids from two southern italian cultivars of Allium cepa L., Tropea (Red Onion) and Montoro (Copper Onion), and their capacity to protect human erythrocytes from oxidative stress. J. Agric. Food Chem. 2015, 63, 5229–5238. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. FAO Statistics Division 2018. Available online: http//www.fao.org/faostat/en/#data (accessed on 21 September 2020).
- Roldán, E.; Sánchez-Moreno, C.; de Ancos, B.; Cano, M.P. Characterisation of onion (Allium cepa L.) by-products as food ingredients with antioxidant and antibrowning properties. Food Chem. 2008, 108, 907–916. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Nile, S.H.; Lee, E.T.; Lee, Y.R. Economical and environmentally-friendly approaches for usage of onion (Allium cepa L.) waste. Food Funct. 2016, 7, 3354–3369. [Google Scholar] [CrossRef]
- Santiago, B.; Arias Calvo, A.; Gullón, B.; Feijoo, G.; Moreira, M.T.; González-García, S. Production of flavonol quercetin and fructooligosaccharides from onion (Allium cepa L.) waste: An environmental life cycle approach. Chem. Eng. J. 2020. [Google Scholar] [CrossRef]
- Gontard, N.; Sonesson, U.; Birkved, M.; Majone, M.; Bolzonella, D.; Celli, A.; Angellier-Coussy, H.; Jang, G.W.; Verniquet, A.; Broeze, J.; et al. A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Crit. Rev. Environ. Sci. Technol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Marotti, M.; Piccaglia, R. Characterization of flavonoids in different cultivars of onion (Allium cepa L.). J. Food Sci. 2002, 67, 1229–1232. [Google Scholar] [CrossRef]
- Campone, L.; Celano, R.; Piccinelli, A.L.; Pagano, I.; Carabetta, S.; Di Sanzo, R.; Russo, M.; Ibañez, E.; Cifuentes, A.; Rastrelli, L. Response surface methodology to optimize supercritical carbon dioxide/co-solvent extraction of brown onion skin by-product as source of nutraceutical compounds. Food Chem. 2018, 269, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Cools, K.; Terry, L.A.; Esteban, R.M. Characterization of Industrial Onion Wastes (Allium cepa L.): Dietary Fibre and Bioactive Compounds. Plant Foods Hum. Nutr. 2011, 66, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Mitchell, A.E. Quercetin and isorhamnetin glycosides in onion (Allium cepa L.): Varietal comparison, physical distribution, coproduct evaluation, and long-term storage stability. J. Agric. Food Chem. 2011, 59, 857–863. [Google Scholar] [CrossRef]
- Ly, T.N.; Hazama, C.; Shimoyamada, M.; Ando, H.; Kato, K.; Yamauchi, R. Antioxidative Compounds from the Outer Scales of Onion. J. Agric. Food Chem. 2005, 53, 8183–8189. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Mendiola, J.A.; Valdés, A.; Castro-Puyana, M.; García-Cañas, V.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Supercritical antisolvent fractionation of rosemary extracts obtained by pressurized liquid extraction to enhance their antiproliferative activity. J. Supercrit. Fluids 2016, 107, 581–589. [Google Scholar] [CrossRef]
- Ou, B.; Chang, T.; Huang, D.; Prior, R.L. Determination of total antioxidant capacity by oxygen radical absorbance capacity (ORAC) using fluorescein as the fluorescence probe: First Action 2012.23. J. AOAC Int. 2013, 96, 1372–1376. [Google Scholar] [CrossRef] [PubMed]
- Celano, R.; Piccinelli, A.L.; Pagano, I.; Roscigno, G.; Campone, L.; De Falco, E.; Russo, M.; Rastrelli, L. Oil distillation wastewaters from aromatic herbs as new natural source of antioxidant compounds. Food Res. Int. 2017, 99, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Pratap Chandran, R.; Nishanth Kumar, S.; Manju, S.; Abdul Kader, S.; Dileep Kumar, B.S. In Vitro α-glucosidase inhibition, antioxidant, anticancer, and antimycobacterial properties of ethyl acetate extract of Aegle tamilnadensis Abdul Kader (Rutaceae) leaf. Appl. Biochem. Biotechnol. 2015, 175, 1247–1261. [Google Scholar]
- Bonaccorsi, P.; Caristi, C.; Gargiulli, C.; Leuzzi, U. Flavonol glucoside profile of Southern Italian red onion (Allium cepa L.). J. Agric. Food Chem. 2005, 53, 2733–2740. [Google Scholar] [CrossRef]
- Makris, D.P.; Rossiter, J.T. An investigation on structural aspects influencing product formation in enzymic and chemical oxidation of quercetin and related flavonols. Food Chem. 2002, 77, 177–185. [Google Scholar] [CrossRef]
- Makris, D.P.; Rossiter, J.T. Hydroxyl Free Radical-Mediated Oxidative Degradation of Quercetin and Morin: A Preliminary Investigation. J. Food Compos. Anal. 2002, 15, 103–113. [Google Scholar] [CrossRef]
- Osman, A.; Makris, D.P.; Kefalas, P. Investigation on biocatalytic properties of a peroxidase-active homogenate from onion solid wastes: An insight into quercetin oxidation mechanism. Process Biochem. 2008, 43, 861–867. [Google Scholar] [CrossRef]
- Ramos, F.A.; Takaishi, Y.; Shirotori, M.; Kawaguchi, Y.; Tsuchiya, K.; Shibata, H.; Higuti, T.; Tadokoro, T.; Takeuchi, M. Antibacterial and antioxidant activities of quercetin oxidation products from yellow onion (Allium cepa) skin. J. Agric. Food Chem. 2006, 54, 3551–3557. [Google Scholar] [CrossRef]
- Gülşen, A.; Makris, D.P.; Kefalas, P. Biomimetic oxidation of quercetin: Isolation of a naturally occurring quercetin heterodimer and evaluation of its In Vitro antioxidant properties. Food Res. Int. 2007, 40, 7–14. [Google Scholar] [CrossRef]
- Takahama, U.; Oniki, T. Flavonoids and Some Other Phenolics as Substrates of Peroxidase: Physiological Significance of the Redox Reactions. J. Plant Res. 2000, 113, 301–309. [Google Scholar] [CrossRef]
- Metrani, R.; Singh, J.; Acharya, P.; Jayaprakasha, G.K.; Patil, B.S. Comparative Metabolomics Profiling of Polyphenols, Nutrients and Antioxidant Activities of Two Red Onion (Allium cepa L.) Cultivars. Plants 2020, 9, 1077. [Google Scholar] [CrossRef]
- Donner, H.; Gao, L.; Mazza, G. Separation and characterization of simple and malonylated anthocyanins in red onions, Allium cepa L. Food Res. Int. 1997, 30, 637–643. [Google Scholar] [CrossRef]
- Sharif, A.; Saim, N.; Jasmani, H.; Ahmad, W.Y.W. Effects of Solvent and Temperature on the Extraction of Colorant from Onion (Allium cepa) Skin using Pressurized Liquid Extraction. Asian J. Appl. Sci. 2010, 3, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Steimer, S.; Sjöberg, P.J.R. Anthocyanin characterization utilizing liquid chromatography combined with advanced mass spectrometric detection. J. Agric. Food Chem. 2011, 59, 2988–2996. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.N.; Park, M.J.; Ha, I.J.; Moon, J.S.; Kang, Y.-H. Functional Components and Antioxidant Effects of Colored Onions. Curr. Res. Agric. Life Sci. 2015, 33, 69–73. [Google Scholar]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Chen, L.; Teng, H.; Xie, Z.; Cao, H.; Cheang, W.S.; Skalicka-Woniak, K.; Georgiev, M.I.; Xiao, J. Modifications of dietary flavonoids towards improved bioactivity: An update on structure-activity relationship. Crit. Rev. Food Sci. Nutr. 2018, 58, 513–527. [Google Scholar] [CrossRef]
- López, J.G.-E. Flavonoids in Health and Disease. Curr. Med. Chem. 2019, 26, 6972–6975. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Heinonen, M. Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem. 2003, 51, 628–633. [Google Scholar] [CrossRef]
- Zulueta, A.; Esteve, M.J.; Frígola, A. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem. 2009, 114, 310–316. [Google Scholar] [CrossRef]
- Jacobo-Velázquez, D.A.; Cisneros-Zevallos, L. Correlations of Antioxidant Activity against Phenolic Content Revisited: A New Approach in Data Analysis for Food and Medicinal Plants. J. Food Sci. 2009, 74, R107–R113. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. Spectrophotometric determination of antioxidant activity. Redox Rep. 1996, 2, 161–171. [Google Scholar] [CrossRef]
- Rice-evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 1995. [Google Scholar] [CrossRef]
- Wang, H.; Cao, G.; Prior, R.L. Oxygen Radical Absorbing Capacity of Anthocyanins. J. Agric. Food Chem. 1997, 45, 304–309. [Google Scholar] [CrossRef]
- Wu, H.; Xu, B. Inhibitory effects of onion against α-glucosidase activity and its correlation with phenolic antioxidants. Int. J. Food Prop. 2014, 17, 599–609. [Google Scholar] [CrossRef]
- Kim, M.H.; Jo, S.H.; Jang, H.D.; Lee, M.S.; Kwon, Y.I. Antioxidant activity and α-glucosidase inhibitory potential of onion (Allium cepa L.) extracts. Food Sci. Biotechnol. 2010, 19, 159–164. [Google Scholar] [CrossRef]
- Şöhretoğlu, D.; Sari, S. Flavonoids as alpha-glucosidase inhibitors: Mechanistic approaches merged with enzyme kinetics and molecular modelling. Phytochem. Rev. 2020, 19, 1081–1092. [Google Scholar] [CrossRef]
- Chen, J.; Wu, S.; Zhang, Q.; Yin, Z.; Zhang, L. α-Glucosidase inhibitory effect of anthocyanins from Cinnamomum camphora fruit: Inhibition kinetics and mechanistic insights through In Vitro and in silico studies. Int. J. Biol. Macromol. 2020, 143, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Thanakosai, W.; Phuwapraisirisan, P. First identification of α-glucosidase inhibitors from okra (Abelmoschus esculentus) seeds. Nat. Prod. Commun. 2013, 8, 1085–1088. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, G.A. Alliuocide G, a new flavonoid with potent α-amylase inhibitory activity from Allium cepa L. Arkivoc 2008, 2008, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of alpha-Glucosidase and alpha-Amylase by Flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Iio, M.; Yoshioka, A.; Imayoshi, Y.; Koriyama, C.; Moriyama, A. Effect of flavonoids on a-glucosidase and ß-fructosidase from yeast. Agric. Biol. Chem. 1984, 48, 1559–1563. [Google Scholar]
- Nile, A.; Gansukh, E.; Park, G.S.; Kim, D.H.; Hariram Nile, S. Novel insights on the multi-functional properties of flavonol glucosides from red onion (Allium cepa L.) solid waste–In Vitro and in silico approach. Food Chem. 2021. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Zhou, F.C.; Gao, F.; Bian, J.S.; Shan, F. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. J. Agric. Food Chem. 2009. [Google Scholar] [CrossRef] [PubMed]
- Bahramsoltani, R.; Farzaei, M.H.; Rahimi, R. Medicinal plants and their natural components as future drugs for the treatment of burn wounds: An integrative review. Arch. Dermatol. Res. 2014. [Google Scholar] [CrossRef]
- Addis, R.; Cruciani, S.; Santaniello, S.; Bellu, E.; Sarais, G.; Ventura, C.; Maioli, M.; Pintore, G. Fibroblast proliferation and migration in wound healing by phytochemicals: Evidence for a novel synergic outcome. Int. J. Med. Sci. 2020. [Google Scholar] [CrossRef] [Green Version]
N° | Compound | Molecular Formula | RT(UV) (min) | Measured (m/z) [M − H]− (m/z) | Error (ppm) | Product Ion MS/MS | Measured (m/z) [M + H]+ (m/z) | Error (ppm) | Product Ion MS/MS | Onion Cultivar |
---|---|---|---|---|---|---|---|---|---|---|
1 | Protocatechuic acid | C7H6O4 | 1.0 | 153.1235 | 1.6 | / | / | / | / | M, T |
2 | 2-(3,4-Dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (Qox) | C15H10O8 | 6.0 | 317.0303 | 3.3 | 299; 191; 207; 273 | / | / | / | M, T |
3 | Cyanidin 3-glucoside (CyG) | C21H21O11 | 6.2 | / | / | / | 449.1077 | −0.3 | 287 | T |
4 | Quercetin dihexoside | C27H30O17 | 6.6 | 625.1405 | 0.9 | 463; 301 | 627.1557 | 0.3 | 465; 303 | M, T |
5 | Cyanidin 3-laminaribioside | C27H31O16 | 7.0 | / | / | / | 611.1609 | 0.3 | 287 | T |
6 | Quercetin 3,4’-diglucoside (QdG) | C27H30O17 | 7.4 | 625.1410 | −0.3 | 463; 301 | 627.1559 | 0.6 | 465; 303 | M, T |
7 | Isorhamnetin dihexoside | C28H32O17 | 8.2 | 639.1571 | 0.04 | 477; 315 | 641.1716 | 0.5 | 317; 479 | M, T |
8 | Cyanidin 3-malonilglucoside | C24H23O14 | 10.5 | / | / | / | 535.1084 | 0.3 | 287 | T |
9 | Cyanidin 3-malonillaminaribioside | C30H33O19 | 11.4 | / | / | / | 697.1609 | 0.2 | 287 | T |
10 | Quercetin-3-glucoside | C21H20O12 | 11.6 | 463.0874 | 0.6 | 301 | 465.1027 | −0.2 | 303 | M, T |
11 | Quercetin-4’-glucoside (QG) | C21H20O12 | 12.4 | 463.0873 | 0.8 | 301 | 465.1025 | −0.6 | 303 | M, T |
12 | Isorhamnetin-O-hexoside | C22H22O12 | 13.3 | 477.1031 | 0.7 | 315 | 479.1186 | 0.5 | 317 | M, T |
13 | Quercetin (Q) | C15H10O7 | 14.3 | 301.0350 | 0.6 | 179; 151 | 303.0496 | −1.0 | 285; 257; 229; | M, T |
14 | Protocatecoyl quercetin | C22H14O11 | 14.8 | 453.0454 | 0.4 | 299 | 455.0610 | 0.1 | 437; 301; | M, T |
15 | Protocatecoyl quercetin | C22H14O11 | 14.9 | 453.0455 | 0.6 | 299 | 455.00609 | 0.1 | 437; 301; | M, T |
16 | Kaempferol | C15H10O6 | 16.3 | 285.0399 | 2.1 | / | 287.0548 | −0.6 | / | M, T |
17 | Isorhamnetin | C16H12O7 | 16.9 | 315.0503 | 1.2 | 300; 257 | 317.0656 | 0.0 | 302, 285; 257 | M, T |
18 | Quercetin dimer 4’-glucoside (Q2Ga) | C36H28O19 | 17.2 | 763.1140 | −0.2 | 611; 449; | 765.1300 | 0.3 | 603; 451 | M, T |
19 | Quercetin dimer 4’-glucoside (Q2Gb) | C36H28O19 | 18.3 | 763.1139 | −0.3 | 611; 600; 299 | 765.1298 | 0.1 | 603; 585 | M, T |
20 | Quercetin dimer hexoside | C36H28O19 | 18.8 | 763.1139 | −0.2 | 611; 600; 299 | 765.1299 | 0.2 | 603; 585 | M, T |
21 | Quercetin dimer (Q2) | C30H18O14 | 19.4 | 601.0617 | 0.8 | 449; 299 | 603.0772 | 0.5 | 585; 313; 303 | M, T |
22 | Quercetin trimer (Q3) | C45H26O21 | 20.8 | 901.0881 | −0.2 | 299; 449; 599; 601 | 903.1044 | 0.5 | 885; 751; 585; 613 | M, T |
“Ramata di Montoro” Onion | “Rossa di Tropea” Onion | |||
---|---|---|---|---|
Compounds | Exhaustive Extract (mg/g) | Onion Skin (mg/100 gDM) | Exhaustive Extract (mg/g) | Onion Skin (mg/100 gDM) |
CyG | nd | nd | 16.2 ± 0.2 c | 365.2 ± 4.5 c |
CymG a | nd | nd | 1.5 ± 0.1 a | 34.5 ± 2.3 a |
QdG | 5.5 ± 0.9 a | 64.0 ± 10.5 a | 8.8 ± 0.2 b | 198.2 ± 4.5 b |
QG | 44.6 ± 5.2 e | 517.7 ± 60.3 e | 71.2 ± 3.8 g | 1602.9 ± 85.5 g |
Q | 30.1± 2.5 d | 349.5 ± 29.1 d | 52.4 ± 2.9 f | 1180.0 ± 65.3 f |
Q2 | 22.9 ± 2.8 c | 265.5 ± 45.4 c | 27.1 ± 4.1 d | 608.9 ± 18.8 d |
Q2Ga | 14.6 ± 2.5 b | 168.9 ± 28.9 b | 19.4 ± 0.6 c | 436.6 ± 13.5 c |
Q2Gb | 16.4 ± 1.6 b | 190.3 ± 18.5 b | 17.8 ± 2.6 c | 399.6 ± 58.3 c |
Q3 | 29.0 ± 3.7 d | 336.7 ± 42.9 d | 35.1 ± 9.0 e | 790.4 ± 17.3 e |
ORAC | ABTS | |
---|---|---|
µmol TE/g ± SD | µmol TE/g ± SD | |
“Rossa di Tropea” | 7.82 ± 0.72 a | 11.32 ± 1.40 a |
“Ramata di Montoro” | 4.13 ± 0.29 b | 5.77 ± 0.88 b |
Compounds | µmol TE/ µmol ± SD | µmol TE/ µmol ± SD |
CyG | 5.55 ± 1.88 | 7.21 ± 2.03 |
QdG | 1.01 ± 0.09 | 2.14 ± 0.55 |
QG | 1.68 ± 1.93 | 3.60 ± 0.11 |
Q | 5.17 ± 1.76 | 9.80 ± 0.64 |
Q2 | 4.47 ± 3.93 | 5.58 ± 0.14 |
Q3 | 2.42 ± 1.86 | 6.99 ± 0.15 |
Compounds | % Alpha-Glucosidase Inhibition | Concentration Range (C1–C4) * | |||
---|---|---|---|---|---|
C1 | C2 | C3 | C4 | ||
CyG | 8.08 ± 1.00 | 8.58 ± 0.59 | 7.34 ± 0.41 | 7.17 ± 0.35 | 0.15–0.40 μg |
QdG | 7.30 ± 0.51 | 6.27 ± 2.03 | 7.12 ± 0.85 | 6.98 ± 0.15 | 0.05–0.25 μg |
QG | 4.61 ± 0.08 | 4.55 ± 0.28 | 5.63 ± 1.22 | 3.88 ± 0.20 | 0.75–2.0 μg |
Q | 99.25 ± 0.32 | 99.53 ± 0.03 | 99.46 ± 0.03 | 99.76 ± 0.43 | 0.50–1.50 μg |
Q2 | 95.59 ± 1.86 | 99.07 ± 2.64 | 97.84 ± 1.80 | 98.70 ± 2.69 | 0.15–0.75 μg |
Q3 | 99.27 ± 0.56 | 99.58 ± 0.07 | 99.41 ± 0.34 | 99.45 ± 0.18 | 0.30–0.90 μg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celano, R.; Docimo, T.; Piccinelli, A.L.; Gazzerro, P.; Tucci, M.; Di Sanzo, R.; Carabetta, S.; Campone, L.; Russo, M.; Rastrelli, L. Onion Peel: Turning a Food Waste into a Resource. Antioxidants 2021, 10, 304. https://doi.org/10.3390/antiox10020304
Celano R, Docimo T, Piccinelli AL, Gazzerro P, Tucci M, Di Sanzo R, Carabetta S, Campone L, Russo M, Rastrelli L. Onion Peel: Turning a Food Waste into a Resource. Antioxidants. 2021; 10(2):304. https://doi.org/10.3390/antiox10020304
Chicago/Turabian StyleCelano, Rita, Teresa Docimo, Anna Lisa Piccinelli, Patrizia Gazzerro, Marina Tucci, Rosa Di Sanzo, Sonia Carabetta, Luca Campone, Mariateresa Russo, and Luca Rastrelli. 2021. "Onion Peel: Turning a Food Waste into a Resource" Antioxidants 10, no. 2: 304. https://doi.org/10.3390/antiox10020304
APA StyleCelano, R., Docimo, T., Piccinelli, A. L., Gazzerro, P., Tucci, M., Di Sanzo, R., Carabetta, S., Campone, L., Russo, M., & Rastrelli, L. (2021). Onion Peel: Turning a Food Waste into a Resource. Antioxidants, 10(2), 304. https://doi.org/10.3390/antiox10020304