Synergistic Effect of 3′,4′-Dihidroxifenilglicol and Hydroxytyrosol on Oxidative and Nitrosative Stress and Some Cardiovascular Biomarkers in an Experimental Model of Type 1 Diabetes Mellitus
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Material and Preparation of Polyphenols
2.3. Analytical Techniques
2.3.1. Samples
- −
- Whole blood. Blood was collected in tubes without anticoagulants and with coagulation activator gel. The samples were centrifuged at 3500× g for 10 min and the supernatant was separated and frozen in aliquots at −80 °C until the determination of the corresponding variables.
- −
- Urine. Rats were individually placed in modular metabolic cages (Tecniplast S.p.A., Buguggiate, Italy) and 24-h urine was collected. Total diuresis was measured, and the samples were centrifuged at 3500× g for 10 min at 4 °C and frozen at −80 °C in aliquots until the corresponding analytical determinations were made.
- −
- Aortic tissue. A segment of the aorta from the division of the renal arteries to 1 cm upwards was obtained from each animal.
2.3.2. Serum Biochemistry
2.3.3. Platelet Aggregometry
2.3.4. Urine Eicosanoid Concentration
2.3.5. Oxidative and Nitrosative Stress
2.3.6. Other Cardiovascular Biomarkers
2.3.7. Aortic Morphometric Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease: A cochrane review. Glob. Heart 2020, 15, 56. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Román-Viñas, B.; Sanchez-Villegas, A.; Guasch-Ferré, M.; Corella, D.; La Vecchia, C. Benefits of the Mediterranean diet: Epidemiological and molecular aspects. Mol. Asp. Med. 2019, 67, 1–55. [Google Scholar] [CrossRef]
- Hernáez, Á.; Remaley, A.T.; Farràs, M.; Fernández-Castillejo, S.; Subirana, I.; Schröder, H.; Fernández-Mampel, M.; Muñoz-Aguayo, D.; Sampson, M.; Solà, R.; et al. Olive oil polyphenols decrease LDL concentrations and LDL atherogenicity in men in a randomized controlled trial. J. Nutr. 2015, 145, 1692–1697. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Yubero-Serrano, E.M.; Lopez-Moreno, J.; Gomez-Delgado, F.; Lopez-Miranda, J. Extra virgin olive oil: More than a healthy fat. Eur. J. Clin. Nutr. 2019, 72 (Suppl. S1), 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Cruz, J.P.; Del Río, S.; López-Villodres, J.A.; Villalobos, M.A.; Jebrouni, N.; González-Correa, J.A. Virgin olive oil administration improves the effect of aspirin on retinal vascular pattern in experimental diabetes mellitus. Br. J. Nutr. 2010, 104, 560–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visioli, F.; Bernardini, E. Extra virgin olive oil’s polyphenols: Biological activities. Curr. Pharm. Des. 2011, 17, 786–804. [Google Scholar] [CrossRef]
- D’Angelo, C.; Franceschelli, S.; Quiles, J.L.; Speranza, L. Wide biological role of hydroxytyrosol: Possible therapeutic and preventive properties in cardiovascular diseases. Cells 2020, 9, 1932. [Google Scholar] [CrossRef]
- De La Cruz, J.P.; Pérez de Algaba, I.; Martín-Aurioles, E.; Arrebola, M.M.; Ortega-Hombrados, L.; Rodríguez-Pérez, M.D.; Fernández-Prior, M.Á.; Bermúdez-Oria, A.; Verdugo, C.; González-Correa, J.A. Extra virgin oil polyphenols improve the protective effects of hydroxytyrosol in an in vitro model of hypoxia-reoxygenation of rat brain. Brain Sci. 2021, 11, 1133. [Google Scholar] [CrossRef]
- Rodríguez, G.; Lama, A.; Jaramillo, S.; Fuentes-Alventosa, J.M.; Guillén, R.; Jiménez-Araujo, A.; Rodríguez-Arcos, R.; Fernández-Bolaños, J. 3,4-Dihydroxyphenylglycol (DHPG): An important phenolic compound present in natural table olives. J. Agric. Food Chem. 2009, 57, 6298–6304. [Google Scholar] [CrossRef] [PubMed]
- De Roos, B.; Zhang, X.; Rodriguez Gutierrez, G.; Wood, S.; Rucklidge, G.J.; Reid, M.D.; Duncan, G.J.; Cantlay, L.L.; Duthie, G.G.; O’Kennedy, N. Anti-platelet effects of olive oil extract: In vitro functional and proteomic studies. Eur. J. Nutr. 2011, 50, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Prior, Á.; Bermúdez-Oria, A.; Millán-Linares, M.D.C.; Fernández-Bolaños, J.; Espejo-Calvo, J.A.; Rodríguez-Gutiérrez, G. Anti-inflammatory and antioxidant activity of hydroxytyrosol and 3,4-dihydroxyphenyglycol purified from table olive effluents. Foods 2021, 10, 227. [Google Scholar] [CrossRef]
- Rubio-Senent, F.; de Roos, B.; Duthie, G.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Inhibitory and synergistic effects of natural olive phenols on human platelet aggregation and lipid peroxidation of microsomes from vitamin E-deficient rats. Eur. J. Nutr. 2015, 54, 1287–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedan, V.; Popp, M.; Rohn, S.; Nyfeler, M.; Bongartz, A. Characterization of phenolic compounds and their contribution to sensory properties of olive oil. Molecules 2019, 24, 2041. [Google Scholar] [CrossRef] [Green Version]
- Medina, E.; de Castro, A.; Romero, C.; Brenes, M. Comparison of the concentrations of phenolics compounds in olive oils and other plant oils: Correlation with antimicrobial activity. J. Agric. Food Chem. 2006, 54, 4954–4961. [Google Scholar] [CrossRef]
- Reyes, J.J.; Villanueva, B.; López-Villodres, J.A.; De La Cruz, J.P.; Romero, L.; Rodríguez-Pérez, M.D.; Rodriguez-Gutierrez, G.; Fernández-Bolaños, J.; González-Correa, J.A. Neuroprotective effect of hydroxytyrosol in experimental diabetes mellitus. J. Agric. Food Chem. 2017, 65, 4378–4383. [Google Scholar] [CrossRef]
- López-Villodres, J.A.; Abdel-Karim, M.; De La Cruz, J.P.; Rodríguez-Pérez, M.D.; Reyes, J.J.; Guzmán-Moscoso, R.; Rodriguez-Gutierrez, G.; Fernández-Bolaños, J.; González-Correa, J.A. Effects of hydroxytyrosol on cardiovascular biomarkers in experimental diabetes mellitus. J. Nutr. Biochem. 2016, 37, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Senent, F.; Rodríguez-Gutiérrez, G.; Lama-Muñoz, A.; Fernández-Bolaños, J. New phenolic compounds hydrothermally extracted from the olive oil by-product alperujo and their antioxidative activities. J. Agric. Food Chem. 2012, 60, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bolaños, J.; Rodríguez, G.; Rodríguez, R.; Heredia, A.; Guillén, R.; Jiménez, A. Production in large quantities of highly purified hidroxitirosol from liquid-solid waste of two-phase olive oil processing or “Alperujo”. J. Agric. Food Chem. 2002, 50, 6804–6811. [Google Scholar] [CrossRef]
- Costabile, G.; Della Pepa, G.; Bozzetto, L.; Annuzzi, G.; Vetrani, C.; Giacco, R.; Della Corte, G.; Conte, F.S.; Di Marino, L.; Rivellese, A.A. Urine 8-isoprostane in relation to adiposity and insulin resistance in individuals at high cardiometabolic risk. Metab. Syndr. Relat. Disord. 2015, 13, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Pedret, A.; Fernández-Castillejo, S.; Valls, R.M.; Catalán, Ú.; Rubió, L.; Romeu, M. Cardiovascular benefits of phenol-enriched virgin olive oils: New insights from the virgin olive oil and HDL functionality (VOHF) study. Mol. Nutr. Food Res. 2018, 62, e1800456. [Google Scholar] [CrossRef] [PubMed]
- Hernáez, Á.; Jaramillo, S.; García-Borrego, A.; Espejo-Calvo, J.A.; Covas, M.I.; Blanchart, G.; de la Torre, R.; Carrasco-Pancorbo, A.; Mesa, M.D.; Fernández-Prior, M.Á.; et al. From green technology to functional olive oils: Assessing the best combination of olive tree-related extracts with complementary bioactivities. Antioxidants 2021, 10, 202. [Google Scholar] [CrossRef]
- Silva, A.F.R.; Resende, D.; Monteiro, M.; Coimbra, M.A.; Silva, A.M.S.; Cardoso, S.M. Application of hydroxytyrosol in the functional foods field: From ingredient to dietary supplements. Antioxidants 2020, 9, 1246. [Google Scholar] [CrossRef]
- Vlavcheski, F.; Young, M.; Tsiani, E. Antidiabetic effects of hydroxytyrosol: In vitro and in vivo evidence. Antioxidants 2019, 8, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Gutiérrez, G.; Duthie, G.G.; Wood, S.; Morrice, P.; Nicol, F.; Reid, M.; Cantlay, L.L.; Kelder, T.; Horgan, G.W.; Fernández-Bolaños, J.; et al. Alperujo extract, hydroxytyrosol, and 3,4-dihydroxyphenylglycol are bioavailable and have antioxidant properties in vitamin E-deficient rats--a proteomics and network analysis approach. Mol. Nutr. Food Res. 2012, 56, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Soto, M.; Sánchez-Fidalgo, S.; González-Benjumea, A.; Maya, I.; Fernández-Bolaños, J.G.; Alarcón-de-la-Lastra, C. Naturally occurring hydroxytyrosol derivatives: Hydroxytyrosyl acetate and 3,4-dihydroxyphenylglycol modulate inflammatory response in murine peritoneal macrophages. Potential utility as new dietary supplements. J. Agric. Food Chem. 2015, 63, 836–846. [Google Scholar] [CrossRef]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyon.; traditional risk factors. Diabetes Metab. Res. Rev. 2021, e3502. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Deshmukh, A.; Sachdeva, R.; Lu, J.; Mehta, J.L. Oxidized low-density lipoprotein and atherosclerosis implications in antioxidant therapy. Am. J. Med. Sci. 2011, 342, 135–142. [Google Scholar] [CrossRef]
- González-Correa, J.A.; López-Villodres, J.A.; Asensi, R.; Espartero, J.L.; Rodríguez-Gutiérez, G.; De La Cruz, J.P. Virgin olive oil polyphenol hydroxytyrosol.; acetate inhibits in vitro platelet aggregation in human whole blood: Comparison with hydroxytyrosol and acetylsalicylic acid. Br. J. Nutr. 2009, 101, 1157–1164. [Google Scholar] [CrossRef] [Green Version]
- González-Correa, J.A.; Navas, M.D.; Muñoz-Marín, J.; Trujillo, M.; Fernández-Bolaños, J.; De La Cruz, J.P. Effects of hydroxytyrosol and hydroxytyrosol acetate administration to rats on platelet function compared to acetylsalicylic acid. J. Agric. Food Chem. 2008, 56, 7872–7876. [Google Scholar] [CrossRef] [PubMed]
- Higashi, Y.; Noma, K.; Yoshizumi, M.; Kihara, Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ. J. 2009, 73, 411–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | NDR | DR | HT-5 | DHPG-0.5 | DHPG-1 | HT-5 + DHPG-0.5 | HT-5 + DHPG-1 |
---|---|---|---|---|---|---|---|
Body weight (g) | 460 ± 7.3 | 347 ± 17.5 (+) | 358 ± 20.1 | 368 ± 17.8 | 364 ± 15.1 | 368 ± 23.8 | 374 ± 16.2 |
Chow intake (g/day) | 19.5 ± 2.0 | 29.5 ± 3.5 (+) | 24.3 ± 3.9 | 28.2 ± 2.9 | 23.8 ± 2.5 | 24.2 ± 2.9 | 27.2 ± 3.0 |
Water intake (mL/day) | 39.5 ± 5.1 | 110 ± 6.9 (+) | 82.7 ± 13.4 | 85.0 ± 9.1 | 82.5 ± 10.5 | 73.7 ± 10.3 | 80.7 ± 9.6 |
Variable | NDR | DR | HT-5 | DHPG-0.5 | DHPG-1 | HT-5 + DHPG-0.5 | HT-5 + DHPG-1 |
---|---|---|---|---|---|---|---|
Blood glucose (mg/dL) | 95.1 ± 5.3 | 456 ± 10.0 (+) | 460 ± 9.7 | 384 ± 32.5 | 424 ± 36.7 | 329 ± 39.8 | 420 ± 10.8 |
Total cholesterol (mg/dL) | 57.5 ± 7.4 | 78.7 ± 4.7 | 68.3 ± 2.5 | 75.2 ± 7.5 | 71.0 ± 9.1 | 70.7 ± 6.7 | 72.5 ± 4.7 |
LDL cholesterol (mg/dL) | 23.2 ± 5.4 | 33.5 ± 5.8 | 30.1 ± 7.8 | 34.0 ± 6.8 | 29.2 ± 6.1 | 28.2 ± 7.1 | 27.7 ± 4.1 |
HDL cholesterol (mg/dL) | 18.5 ± 2.4 | 18.4 ± 4.8 | 28.0 ± 8.1 (*) | 25.5 ±5.4 | 27.5 ± 4.4 | 24.5 ± 4.1 | 25.2 ± 2.8 |
Triglycerides (mg/dL) | 67.5± 7.7 | 105 ± 13.7 (+) | 102 ± 6.6 | 108 ± 6.5 | 109 ± 13.5 | 85.5 ± 7.8 (*,a) | 110 ± 7.4 (*) |
Variable | NDR | DR | HT-5 | DHPG-0.5 | DHPG-1 | HT-5 + DHPG-0.5 | HT-5 + DHPG-1 |
---|---|---|---|---|---|---|---|
TBARS (nmol/mL) | 4.0 ± 0.8 | 8.9 ± 0.7 (+) | 4.7 ± 0.4 (*,c) | 6.7 ± 0.4 (*) | 6.5 ± 0.5 (*) | 5.1 ± 0.6 (*) | 2.4 ± 0.4 (*,c) |
oxLDL (ng/mL) | 14.0 ± 0.9 | 24.7 ± 1.5 (+) | 17.3 ± 0.5 (*) | 16.7 ± 2.3 (*) | 17.8 ± 2.1 (*) | 12.3 ± 1.3 (*,b) | 12.0 ± 0,6 (*,b) |
8-OHdG (ng/mL) | 15.6 ± 0.6 | 27.5 ± 1.5 (+) | 15.5 ± 1.4 (*) | 16.5 ± 1.1 (*) | 14.9 ± 1.6 (*) | 12.2 ± 2.1 (*,a) | 15.4 ± 0.7 (*,a) |
8-isoprostanes (ng/mg urine creatinine) | 6.5 ± 0.5 | 9.2 ± 0.6 (+) | 5.6 ± 0.6 (*) | 4.8 ± 0.7 (*) | 4.8 ± 0.8 (*,e) | 4.2 ± 0.5 (*) | 2.8 ± 0.3 (*,e) |
GHS (nmol/mL) | 131 ± 5.4 | 90.4 ± 7.2 (+) | 114 ± 4.8 (*) | 103 ± 3.5 (*) | 111 ± 6.8 (*) | 140 ± 5.3 (*,f) | 132 ± 4.5 (*,f) |
GSHpx (nmol/min/mL) | 7.0 ± 0.8 | 18.7 ± 1.6 (+) | 10.7 ± 1.0 (*) | 13.3 ± 1.5 (*) | 15.6 ± 0.2 (*,e) | 15.7 ± 0.5 (*,e) | 15.6 ± 0.9 (*,e) |
TAC (U/mL) | 19.8 ± 0.7 | 12.1 ± 0.8 (+) | 17.1 ± 0.6 (*,b) | 13.1 ± 0.6 | 15.2 ± 0.8 (*) | 16.6 ± 0.5 (*) | 17.7 ± 0.4 (*,b) |
3-nitrotyrosine (pg/mL) | 1.9 ± 0.2 | 6.7 ± 0.4 (+) | 3.5 ± 0.3 (*,d) | 5.4 ± 0.08 | 4.6 ± 0.1 (*) | 2.6 ± 0.3 (*,b) | 1.9 ± 0.09 (*,c) |
Variable | NDR | DR | HT-5 | DHPG-0.5 | DHPG-1 | HT-5 + DHPG-0.5 | HT-5 + DHPG-1 |
---|---|---|---|---|---|---|---|
Imax (ohms) | 12.8 ± 2.1 | 23.1 ± 2.1 (+) | 8.8 ± 1.4 (*) | 10.7 ± 1.3 (*) | 6.9 ± 1.5 (*) | 3.0 ± 0.7 (*,a) | 3.2 ± 0.7 (*,a) |
11-dH-TxB2 (ng/mg urine creatinine) | 3.9 ± 0.9 | 9.7 ± 1.1 (+) | 4.4 ± 1.2 (*) | 8.9 ± 1.8 | 6.8 ± 0.9 | 5.6 ± 1.3 | 7.8 ± 1.6 |
6-keto-PGF1α (pg/mg urine creatinine) | 14.0 ± 1.4 | 6.8 ± 1.0 (+) | 10.8 ± 1.6 (*) | 11.1 ± 0.9 (*) | 13.1 ± 1.9 (*) | 16.6 ± 1.5 (*,c) | 18.7 ± 2.8 (*,c) |
MPOx (ng/mL) | 0.8 ± 0.08 | 2.5 ± 0.3 (+) | 0.7 ± 0.2 (*) | 0.8 ± 0.1 | 0.8 ± 0.09 | 0.5 ± 0.1 (*) | 0.4 ± 0.08 (*) |
VCAM-1 (ng/mL) | 4.8 ± 0.8 | 9.7 ± 0.8 (+) | 4.1 ± 0.4 (*) | 7.9 ± 0.6 (*) | 6.1 ± 0.8 (*) | 4.6 ± 0.5 (*) | 3.4 ± 0.8 (*,b) |
Variable | NDR | DR | HT-5 | DHPG-0.5 | DHPG-1 | HT-5 + DHPG-0.5 | HT-5 + DHPG-1 |
---|---|---|---|---|---|---|---|
Aortic thickness (µm) | 108 ± 5.8 | 144 ± 5.2 (+) | 113 ± 7.9 (*) | 120 ± 3.3 (*) | 190 ± 9.4 | 117 ± 4.2 (*) | 118 ± 4.8 (*) |
Smooth muscle cells (n/105 µm2) | 41.9 ± 2.2 | 55.2 ± 2.8 (+) | 44.5 ± 3.5 (*) | 41.2 ± 2.1 (*) | 41.3 ± 1.9 (*) | 38.1 ± 3.8 (*) | 44.0 ± 1.9 (*) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De La Cruz Cortés, J.P.; Vallejo-Carmona, L.; Arrebola, M.M.; Martín-Aurioles, E.; Rodriguez-Pérez, M.D.; Ortega-Hombrados, L.; Verdugo, C.; Fernández-Prior, M.Á.; Bermúdez-Oria, A.; González-Correa, J.A. Synergistic Effect of 3′,4′-Dihidroxifenilglicol and Hydroxytyrosol on Oxidative and Nitrosative Stress and Some Cardiovascular Biomarkers in an Experimental Model of Type 1 Diabetes Mellitus. Antioxidants 2021, 10, 1983. https://doi.org/10.3390/antiox10121983
De La Cruz Cortés JP, Vallejo-Carmona L, Arrebola MM, Martín-Aurioles E, Rodriguez-Pérez MD, Ortega-Hombrados L, Verdugo C, Fernández-Prior MÁ, Bermúdez-Oria A, González-Correa JA. Synergistic Effect of 3′,4′-Dihidroxifenilglicol and Hydroxytyrosol on Oxidative and Nitrosative Stress and Some Cardiovascular Biomarkers in an Experimental Model of Type 1 Diabetes Mellitus. Antioxidants. 2021; 10(12):1983. https://doi.org/10.3390/antiox10121983
Chicago/Turabian StyleDe La Cruz Cortés, José Pedro, Leticia Vallejo-Carmona, María Monsalud Arrebola, Esther Martín-Aurioles, María Dolores Rodriguez-Pérez, Laura Ortega-Hombrados, Cristina Verdugo, María África Fernández-Prior, Alejandra Bermúdez-Oria, and José Antonio González-Correa. 2021. "Synergistic Effect of 3′,4′-Dihidroxifenilglicol and Hydroxytyrosol on Oxidative and Nitrosative Stress and Some Cardiovascular Biomarkers in an Experimental Model of Type 1 Diabetes Mellitus" Antioxidants 10, no. 12: 1983. https://doi.org/10.3390/antiox10121983
APA StyleDe La Cruz Cortés, J. P., Vallejo-Carmona, L., Arrebola, M. M., Martín-Aurioles, E., Rodriguez-Pérez, M. D., Ortega-Hombrados, L., Verdugo, C., Fernández-Prior, M. Á., Bermúdez-Oria, A., & González-Correa, J. A. (2021). Synergistic Effect of 3′,4′-Dihidroxifenilglicol and Hydroxytyrosol on Oxidative and Nitrosative Stress and Some Cardiovascular Biomarkers in an Experimental Model of Type 1 Diabetes Mellitus. Antioxidants, 10(12), 1983. https://doi.org/10.3390/antiox10121983