Antioxidant Properties of Ester Derivatives of Cinnamic and Hydroxycinnamic Acids in Nigella sativa and Extra-Virgin Olive Oils-Based Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Synthesis of Cinnammic, Cumaric, and Ferulic C10-Ester Derivatives
2.3. Emulsion Preparation and Characterization
2.4. Oil-to-Water Partition Coefficient Determination
2.5. Antioxidant Assays
2.5.1. Measurement of Hydrogen Peroxide/Luminol-Derived Chemiluminescence (CL)
2.5.2. Measurement of Superoxide/Lucigenin-Derived CL
2.5.3. DPPP Assay
2.5.4. Statistical Analysis
3. Results
3.1. Synthesis and Purification of C10-Ester Derivatives of Cinnamic, Cumaric, and Ferulic Acids
3.2. Antioxidant Properties of C10 Derivatives of Cinnamic, Cumaric, and Ferulic Acid
3.3. Emulsion Preparation and Characterization
3.4. Distribution Coefficient Determination of Cumaric Acid and Its C10 Ester Derivative in EVO Oil and Nigella Oil
3.5. Antioxidant Activity of Cumaric Acid and Cumaric C10-Ester in EVO and Nigella-Based Emulsions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Teixeira, J.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic Acid Antioxidants: An Electrochemical Overview. BioMed Res. Int. 2013, 2013, 251754. [Google Scholar] [CrossRef]
- Taofiq, O.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review. Molecules 2017, 22, 281. [Google Scholar] [CrossRef]
- Granata, G.; Consoli, G.M.L.; Lo Nigro, R.; Geraci, C. Hydroxycinnamic acids loaded in lipid-core nanocapsules. Food Chem. 2018, 245, 551–556. [Google Scholar] [CrossRef]
- Abramovič, H. Antioxidant Properties of Hydroxycinnamic Acid Derivatives: A Focus on Biochemistry, Physicochemical Parameters, Reactive Species, and Biomolecular Interactions. Coffee Health Dis. Prev. 2015, 843–852. [Google Scholar] [CrossRef]
- Rafael León-Carmona, J.; Raúl Alvarez-Idaboy, J.; Galano, A. On the peroxyl scavenging activity of hydroxycinnamic acid derivatives: Mechanisms, kinetics, and importance of the acid–base equilibrium. Phys. Chem. Chem. Phys. 2012, 14, 12534–12543. [Google Scholar] [CrossRef]
- Mazzone, G.; Russo, N.; Toscano, M. Antioxidant properties comparative study of natural hydroxycinnamic acids and structurally modified derivatives: Computational insights. Comput. Theor. Chem. 2016, 1077, 39–47. [Google Scholar] [CrossRef]
- Adeyemi, O.S.; Atolani, O.; Banerjee, P.; Arolasafe, G.; Preissner, R.; Etukudoh, P.; Ibraheem, O. Computational and experimental validation of antioxidant properties of synthesized bioactive ferulic acid derivatives. Int. J. Food Prop. 2018, 21, 101–113. [Google Scholar] [CrossRef]
- Li, Y.; Dai, F.; Jin, X.; Ma, M.; Wang, Y.; Ren, X.; Zhou, B. An effective strategy to develop active cinnamic acid-directed antioxidants based on elongating the conjugated chains. Food Chem. 2014, 158, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Razzaghi-Asl, N.; Garrido, J.; Khazraei, H.; Borges, F.; Firuzi, O. Antioxidant properties of hydroxycinnamic acids: A review of structure- activity relationships. Curr. Med. Chem. 2013, 20, 4436–4450. [Google Scholar] [CrossRef] [Green Version]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants 2021, 10, 1044. [Google Scholar] [CrossRef]
- Ambati, R.R.; Ramadan, M.F. Nigella sativa Seed Extracts in Functional Foods and Nutraceutical Applications. In Black Cumin (Nigella Sativa) Seeds: Chemistry, Technology, Functionality, and Applications; Springer: Cham, Switzerland, 2021; pp. 501–520. [Google Scholar]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, G.; Cofelice, M.; Venditti, F. Veiled Extra Virgin Olive Oils: Role of Emulsion, Water and Antioxidants. Colloids Interfaces 2020, 4, 38. [Google Scholar] [CrossRef]
- Yimer, E.M.; Tuem, K.B.; Karim, A.; Ur-Rehman, N.; Anwar, F. Nigella sativa L. (Black Cumin): A Promising Natural Remedy for Wide Range of Illnesses. Evid. Based. Complement. Alternat. Med. 2019, 2019, 1528635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholamnezhad, Z.; Havakhah, S.; Boskabady, M.H. Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: A review. J. Ethnopharmacol. 2016, 190, 372–386. [Google Scholar] [CrossRef]
- Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; Caterina, R.D.; Gabbianelli, R. Antioxidant and Anti-Inflammatory Properties of Nigella sativa Oil in Human Pre-Adipocytes. Antioxidants 2019, 8, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordoni, L.; Fedeli, D.; Fiorini, D.; Gabbianelli, R. Extra Virgin Olive Oil and Nigella sativa Oil Produced in Central Italy: A Comparison of the Nutrigenomic Effects of Two Mediterranean Oils in a Low-Grade Inflammation Model. Antioxidants 2019, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Nasuti, C.; Fedeli, D.; Bordoni, L.; Piangerelli, M.; Servili, M.; Selvaggini, R.; Gabbianelli, R. Anti-Inflammatory, Anti-Arthritic and Anti-Nociceptive Activities of Nigella sativa Oil in a Rat Model of Arthritis. Antioxidants 2019, 8, 342. [Google Scholar] [CrossRef] [Green Version]
- Pacetti, D.; Boarelli, M.C.; Giovannetti, R.; Ferraro, S.; Conti, P.; Alfei, B.; Caprioli, G.; Ricciutelli, M.; Sagratini, G.; Fedeli, D.; et al. Chemical and Sensory Profiling of Monovarietal Extra Virgin Olive Oils from the Italian Marche Region. Antioxidants 2020, 9, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannan, M.A.; Rahman, M.A.; Sohag, A.A.M.; Uddin, M.J.; Dash, R.; Sikder, M.H.; Rahman, M.S.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; et al. Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021, 13, 1784. [Google Scholar] [CrossRef]
- Cai, W.; Calder, P.; Cury-Boaventura, M.; De Waele, E.; Jakubowski, J.; Zaloga, G. Biological and Clinical Aspects of an Olive Oil-Based Lipid Emulsion-A Review. Nutrients 2018, 10, 776. [Google Scholar] [CrossRef] [Green Version]
- Perinelli, D.R.; Petrelli, D.; Vitali, L.A.; Vllasaliu, D.; Cespi, M.; Giorgioni, G.; Elmowafy, E.; Bonacucina, G.; Palmieri, G.F. Quaternary ammonium surfactants derived from leucine and methionine: Novel challenging surface active molecules with antimicrobial activity. J. Mol. Liq. 2019, 283, 249–256. [Google Scholar] [CrossRef] [Green Version]
- OECD. Test No. 107: Partition Coefficient (n-octanol/water): Shake Flask Method. In OECD Guidelines for the Testing of Chemicals, Section 1; OECD Publishing: Paris, France, 1995; ISBN 9789264069626. [Google Scholar] [CrossRef]
- Farhan, N.; Salih, N.; Salimon, J. Physiochemical properties of Saudi Nigella sativa L. (Black cumin) seed oil. Oilseeds Fats Crop. Lipids 2021, 28, 11. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; El-Said, A.M.A.; Khalifa, S.A.M.; Göransson, U.; Bohlin, L.; Borg-Karlson, A.K.; Verpoorte, R. Biosynthesis, Natural Sources, Dietary Intake, Pharmacokinetic Properties, and Biological Activities of Hydroxycinnamic Acids. J. Agric. Food Chem. 2012, 60, 10877–10895. [Google Scholar] [CrossRef]
- Garrido, J.; Gaspar, A.; Garrido, E.M.; Miri, R.; Tavakkoli, M.; Pourali, S.; Saso, L.; Borges, F.; Firuzi, O. Alkyl esters of hydroxycinnamic acids with improved antioxidant activity and lipophilicity protect PC12 cells against oxidative stress. Biochimie 2012, 94, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Son, S.; Lewis, B.A. Free Radical Scavenging and Antioxidative Activity of Caffeic Acid Amide and Ester Analogues: Structure−Activity Relationship. J. Agric. Food Chem. 2002, 50, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant Properties of Ferulic Acid and Its Related Compounds. J. Agric. Food Chem. 2002, 50, 2161–2168. [Google Scholar] [CrossRef]
- Costa, M.; Losada-Barreiro, S.; Magalhães, J.; Monteiro, L.S.; Bravo-Díaz, C.; Paiva-Martins, F. Effects of the Reactive Moiety of Phenolipids on Their Antioxidant Efficiency in Model Emulsified Systems. Foods 2021, 10, 1028. [Google Scholar] [CrossRef] [PubMed]
- Jitareanu, A.; Tataringa, G.; Zbancioc, A.M.; Tuchilus, C.; Balan, M.; Stanescu, U. Cinnamic acid Derivatives and 4-Aminoantipyrine Amides-Synthesis and Evaluation of Biological Properties. Res. J. Chem. Sci. 2013, 3, 9–13. [Google Scholar]
- Gaspar, A.; Martins, M.; Silva, P.; Garrido, E.M.; Garrido, J.; Firuzi, O.; Miri, R.; Saso, L.; Borges, F. Dietary Phenolic Acids and Derivatives. Evaluation of the Antioxidant Activity of Sinapic Acid and Its Alkyl Esters. J. Agric. Food Chem. 2010, 58, 11273–11280. [Google Scholar] [CrossRef] [PubMed]
- Alkis, H.; Demir, E.; Taysi, M.R.; Sagir, S.; Taysi, S. Effects of Nigella sativa oil and thymoquinone on radiation-induced oxidative stress in kidney tissue of rats. Biomed. Pharmacother. 2021, 139, 111540. [Google Scholar] [CrossRef]
- Demir, E.; Taysi, S.; Ulusal, H.; Kaplan, D.S.; Cinar, K.; Tarakcioglu, M. Nigella sativa oil and thymoquinone reduce oxidative stress in the brain tissue of rats exposed to total head irradiation. Int. J. Radiat. Biol. 2020, 96, 228–235. [Google Scholar] [CrossRef] [PubMed]
Inhibition (%) of Hydroperoxide Accumulation | ||||
---|---|---|---|---|
Nigella Oil | EVO Oil | |||
Incubation Time (h) | Cumaric Acid | Cumaric C10-Ester | Cumaric Acid | Cumaric C10-Ester |
0 | 84.4 ± 2.72 | 73.4 ± 2.14 | 84.6 ± 18.80 | 85.6 ± 10.05 |
1 | 82.4 ± 3.45 | 66.2 ± 2.32 | 69.3 ± 17.55 | 86.3 ± 3.24 |
2 | 83.5 ± 8.76 | 64.7 ± 17.92 | 96.7 ± 0.81 | 98.3 ± 1.99 |
3 | 77.1 ± 16.31 | 73.8 ± 10.31 | 83.4 ± 9.87 | 85.8 ± 7.04 |
4 | 73.7 ± 11.55 | 74.3 ± 10.65 | 83.0 ± 12.64 | 90.8 ± 21.30 |
5 | 81.4 ± 2.13 | 70.2 ± 13.71 | 83.8 ± 6.70 | 88.8 ± 25.75 |
6 | 77.1 ± 16.79 | 73.1 ± 24.71 | 89.4 ± 4.88 | 82.9 ± 7.35 |
7 | 93.2 ± 13.61 | 75.7 ± 5.70 | 92.6 ± 7.54 | 88.7 ± 9.31 |
EVO Oil | Nigella Oil | |||||
---|---|---|---|---|---|---|
% of Total Compound in Oil Phase | % of Total Compound in Water Phase | Log P | % of Total Compoundin Oil Phase | % of Total Compound in Water Phase | Log P | |
Cumaric Acid | 39.01 ± 1.33 | 60.99 ± 1.33 | −0.194 ± 0.024 | 57.77 ± 0.45 | 42.23 ± 0.45 | 0.136 ± 0.008 |
Cumaric C10-Ester | >99.99 | ˂0.01 | >2.76 | >99.99 | ˂0.01 | >2.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perinelli, D.R.; Torregiani, E.; Bonacucina, G.; Cespi, M.; Palmieri, G.F.; Gabbianelli, R. Antioxidant Properties of Ester Derivatives of Cinnamic and Hydroxycinnamic Acids in Nigella sativa and Extra-Virgin Olive Oils-Based Emulsions. Antioxidants 2022, 11, 194. https://doi.org/10.3390/antiox11020194
Perinelli DR, Torregiani E, Bonacucina G, Cespi M, Palmieri GF, Gabbianelli R. Antioxidant Properties of Ester Derivatives of Cinnamic and Hydroxycinnamic Acids in Nigella sativa and Extra-Virgin Olive Oils-Based Emulsions. Antioxidants. 2022; 11(2):194. https://doi.org/10.3390/antiox11020194
Chicago/Turabian StylePerinelli, Diego Romano, Elisabetta Torregiani, Giulia Bonacucina, Marco Cespi, Giovanni Filippo Palmieri, and Rosita Gabbianelli. 2022. "Antioxidant Properties of Ester Derivatives of Cinnamic and Hydroxycinnamic Acids in Nigella sativa and Extra-Virgin Olive Oils-Based Emulsions" Antioxidants 11, no. 2: 194. https://doi.org/10.3390/antiox11020194
APA StylePerinelli, D. R., Torregiani, E., Bonacucina, G., Cespi, M., Palmieri, G. F., & Gabbianelli, R. (2022). Antioxidant Properties of Ester Derivatives of Cinnamic and Hydroxycinnamic Acids in Nigella sativa and Extra-Virgin Olive Oils-Based Emulsions. Antioxidants, 11(2), 194. https://doi.org/10.3390/antiox11020194