Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization
Abstract
:1. Introduction
2. Material and Methods
3. Agronomic Characteristics of Main Tropical and Subtropical Fruits
3.1. Mango (Mangifera indica L.)
3.2. Avocado (Persea americana L.)
3.3. Pineapple (Ananas comosus L.)
3.4. Papaya (Carica papaya L.)
3.5. Other Subtropical Fruits
3.5.1. Custard Apple or Cherimoya
3.5.2. Litchi
3.5.3. Passion Fruit
3.5.4. Guava
4. Obtainment of Enriched Bioactive Extracts from Tropical and Subtropical Fruit By-Products
5. Therapeutic Targets of Cosmeceuticals from Tropical Fruit By-Products Related to Skin Health
5.1. Oxidative Stress and Skin Aging
5.2. Photoprotection
5.3. Other Targets
5.3.1. Wound Healing
5.3.2. Hyperpigmentation
5.3.3. Skin Cancer
5.3.4. Acne
6. Bioactive Content and Therapeutical Application of Tropical and Subtropical Fruit By-Products
6.1. Mango (Mangifera indica L.)
6.2. Avocado (Persea americana L.)
6.3. Pineapple (Ananas comosus L.)
6.4. Papaya (Carica papaya L.)
6.5. Other Subtropical Fruits
6.5.1. Annona cherimola L.
6.5.2. Litchi chinensis S.
6.5.3. Passiflora edulis S.
6.5.4. Psidium guajava L.
7. Conclusions
Fruit | Wastes | Extract Type | Assay | Activity | Effect | Results | Ref. |
---|---|---|---|---|---|---|---|
Mango | Seed | 95% ethanolic shook, refluxed or using acid hydrolysis extracts | In vitro | Anti-tyrosinase (skin lighter) | In vitro antioxidant activity (DPPH, chelating activity, etc.) and inhibition of tyrosinase; in vivo acute skin irritation tests | TPC: 286–90 mg GAE/g ID50: 4.13–7.45 mg/mL Competitive inhibitory effects of MSE due to binding with copper (metal at the center of the active site of tyrosinase). No irritating on skin. | [166,167] |
Two different 95% ethanolic extracts from Kaew and Choke species | In vitro | Anti-wrinkle and anti-hyperpigmentation | Antioxidant activity, inhibition of tyrosinase and hyaluronidase and skin irritation on in vivo clinical tests | TPC: 138.71/170.63 mg GAE/g DPPH: 197/254.64 mg Trolox/g Tyrosinase: 20.64/19.86 μg/mL (IC50) Hyaluronidase: 47.61/37.28 μg/mL (IC50) Cosmetic cream 1% MSE physically stable and safe for humans. | [168] | ||
Ethanolic extract | In vitro | Anti-acne | Antimicrobial activity against P. acnes, S. aureus and S. epidermidis | P. acnes: 1.56 mg/mL S. aureus and S. epidermidis: 3.13 mg/mL | [128] | ||
Mango oil | In vivo | Anti-wrinkle, wound healing, emollient effect | Antiseptic, healing, soothing and cooling activities, wound repair and closure, minimum scar formation | Foot-care cream provided emolliency, which rebuilt the skin’s protective lipid barrier and actively replenished moisture. No irritation or sensitivity after its application. Re-epithelization of wounds. Scars free of marks or lesions. | [169] | ||
Hydroethanolic extract | In vitro | Anti-aging and anti-hyperpigmentation | Antioxidant and anti-enzymatic activity; anti-inflammatory and cytotoxic activities, ability to prevent DNA damage and to inhibit NO | TPC: 800 mg GAE/g; DPPH: 7.35 mg Tr./g Tyrosinase: 1.09 μg/mL (IC50) MMPases 2 and 9: 0.46 and 0.11 mg/mL (IC50) HAase: 0.2 mg/mL (IC50) Depigmenting and moisturizing extract for the prevention of atypical brown spot and skin dehydration. | [9] | ||
Leaves | Hydroethanolic extract | In vitro | Anti-tyrosinase (skin lighter) | In vitro antioxidant activity (DPPH) and inhibition of tyrosinase | TPC: (40.00 ± 0.84) mg GAE/g DPPH: 7.35 mg Trolox/g Tyrosinase: (17.62 ± 1.26) μg/mL (IC50) | [170] | |
Pulp | Aqueous extract | In vivo | Photoprotection | UVB protection and anti-photoaging activity | 100 mg of mango extract/kg body weight per day inhibited UVB-induced increases in skin thickness, wrinkle formation and collagen fiber loss. | [120] | |
Ethanolic and aqueous extracts | In vitro | Photoprotection | UVB protection | TPC Ethanol: (3.04 ± 2.52) mg GAE/g TPC Aqueous: (3.22 ± 0.11) mg GAE/g 250 μg/mL of aqueous extract was able to significantly reduce cellular apoptosis. | [171] | ||
Leaves, peel and bark | Mangiferin | In vitro and ex vivo | Anti-elastase and anti-collagenase | Anti-aging activity | Mangiferin’s ability to permeate through the stratum corneum barrier and to the living skin layers verified. Elastase: (139.64 ± 9.34) μM (IC50) Collagenase: (253.57 ± 7.56) μM (IC50) | [103] | |
Avocado | Seed | Ethanolic extract (polyhydric fatty alcohols) | In vitro | Anti-inflammatory and photoprotection | Increased cell viability, decreased sunburn cells, improves DNA repair in and reduces UVB-induced IL-6 and PGE 2 production in keratinocytes | CPD (photoproducts) removal in cells treated with PFA at concentrations 1 and 5 μg/mL was 92.3% and 74.5%. Protective properties against UVB cytotoxicity in cultured keratinocytes and human skin explants. | [136] |
Ethyl acetate extract (catechin) | In vitro | Anti-hyperpigmentation | Tyrosinase inhibition | Skin lightening agents through inhibiting the tyrosinase action. IC50 < 100 ug/mL | [172] | ||
Leaves | Hydroethanolic extract in gel form at 10% (catechin, chlorogenic acid and rutin) | In vivo | Photoprotection | Reduced UVB radiation-induced mechanical allodynia in rats and presented an antinociceptive effect in a UVB radiation-induced burn model | Compounds in highest concentration: (+) Catechin (302.2 ± 4.9 μg/g), chlorogenic acid (130 ± 5.1 μg/g) and rutin (102.4 ± 0.9 μg/g). Successful treatment against skin lesions caused by UVB radiation with P. americana gel (3%). | [119] | |
Pulp | Avocado oil (phytochemicals) | In vivo | Wound healing and anti-inflammatory | Significant increase of epithelial tissue from wounds and in tensile strength proportional to collagen deposition, and reduction of inflammatory cells in scar tissue | Promote collagen synthesis and decrease the number of inflammatory cells during the skin wound healing process. | [173] | |
Ethanolic extract of avocado (100 mg/kg) | In vivo | Wound healing | Suppression of symptoms of induced atopic dermatitis, of serum levels of IgE, of histamine and of inflammatory cytokines (TNF-α and IL-6), NF-ΚB and caspase-1 in skins lesions similar to atopic dermatitis | Significant reduction in the symptoms of atopic dermatitis such as itching, erythema, edema and dryness in mice | [174] | ||
Seed and Peel | Ethanolic extract of avocado peels and seeds (epicatechin and procyanidin B2) | In vitro | Anti-oxidant and anti-inflammatory | HOCl, ROO· and O2· removal capacity, and suppression of TNF-α and NO release on RAW macrophages at a concentration of 10 ug/mL of extract | TPC APE: 120.3 mg/g and ASE: 59.2 mg/g. DPPH APE: (420.5 ± 23.2) μmol/g and ASE (464.9 ± 32.7) μmol/g. FRAP APE: (1881.4 ± 75.3) μmol Fe2+/g and ASE: (931.7 ± 65.6) μmol Fe2+/g. O2· APE: (52 ± 5) μg/mL and ASE: (70 ± 2). | [26] | |
Pineapple | Stem | Tacorin | In vitro and in vivo (rats) | Wound healing | Decrease of wound area by reducing the expression of TNF-α, promoting the expression of TGF-β and maintaining the expression of MMP-2 on treated rats | Tacorin treatment (80 mg/kg body weight per day) increased cell viability promoting regeneration, proliferation, cell growth and maturation. Its wound healing activity is suggested to be related to its ability to promote fibroblast cell growth, important in the formation of granulation tissue that is needed for wound closure. | [142] |
Crown | Dialyzed extract | In vitro | Anti-collagenase activity | Tissue remodeling and wound healing process | Topical application of the leaf extract in soft tissue injuries and hematomas where the extract can prevent the microbes to invade the host through the wound. | [175] | |
Pulp, stem, peel, core and crown | Dialyzed extract (Bromelain) | In vitro | Anti-acne | Antimicrobial activity against S. aureus, P. acnes, E. coli, C. diphtheria and P. aeruginosa | PPPE exhibited highest inhibitory effects. DPPH PPPE: 13.158 μg/mL (IC50). P. acnes: 30 μg/mL (PPPE MIC). S. aureus: 15 μg/mL (PPPE MIC). | [143] | |
Papaya | Seed | Ethanolic extracts | In vivo | Wound healing and antimicrobial | Significant collagen deposition and fibroblast activity, antimicrobial activity against S. choleraesuis and S. aureus, and high wound shrinkage. | Powerful healing, antimicrobial and anti-inflammatory activity. Concentration of 50, 100, 150, 200 and 150 mg/kg body weight for 13 days. | [11] |
Pulp | Hydroethanolic extract | In vitro | Anti-oxidant and anti-aging | H2O2 scavenging activity and free radical scavenging (DPPH) | Anti-aging and skin renewing activity. Concentration of 0.62 to 4.96 mg/mL and 50 to 400 μg/mL, respectively | [176] | |
PBS extracts | In vivo | Anti-inflammatory and anti-oxidant | Significantly increased activity of SOD, catalase and glutathione peroxidase, and suppression of COX-2 activity | Important antioxidant, anti-inflammatory and healing effect on skin wounds. Concentration of 5 mg/mL. | [177] | ||
Leaves | Ethanolic extracts (caffeic acid and rutin) | In vitro | Photoprotection | Free radical scavenging (DPPH), decreased UVB-induced expression of MMP-1, MMP-3 and IL-6 and increased TGF-β1 and expression of procollagen mRNA | Possible agent for treating skin conditions and photoaging. | [148] | |
Methanolic extracts | In vitro | Wound healing | Free radical removal (DPPH), migration and proliferation of new cells in the wound area and increased collagen synthesis | In vitro wound healing ability using human skin fibroblasts. Collagen synthesis: 12.5 μg/mL for 24 h. DPPH IC50: 0.377 mg/mL (UAE), 0.236 mg/mL (Reflux), 0.404 mg/mL (Agitation). | [12] | ||
Fermented preparation | Fermented papaya preparation | In vivo | Anti-aging, anti-oxidant and skin improvement | Improved hydration, elasticity and skin color, and increased expression of aquaporin-3, decreased levels of MDA and significantly increased levels of SOD and NO production | Significant improvement in skin hydration and elasticity. Double-blinded study in subjects: 9 gr per day for 90 days. | [178] | |
Custard Apple | Pericarp | Proanthocyanidin extract (catechin and epicatechin) | In vitro | Anti-hyperpigmentation | Tyrosinase inhibition | Prevent melanin build-up and serious skin conditions, such as melasma, freckles, age spots and actinic damage. | [10] |
Pulp, peel and seed | Ethanolic extracts | In vitro | Anti-oxidant | Antioxidant capacity by scavenging free radicals (ORAC, ABTS and FOLIN) | Eliminate free radicals, reduce oxidative stress and prevent cell damage. | [150] | |
Leaves | Methanolic extracts | In vitro | Anti-hyperpigmentation | Inhibit α-MSH-induced melanogenesis in B16F10 cells and melanogenic-related enzymes, such as tyrosinase, TRP1 and TRP2 | Dermatological anti-hyperpigmenting agent for the treatment of skin diseases. Concentration of 1.25 to 5 ng/mL. | [179] | |
Litchi | Leaves | Ethanolic 70% | In vitro | Photoprotection | Antioxidant and photochemoprotective activity against H2O2, UVA and UVB; photoprotector agent against UV-induced DNA damage | No irritating agent/do not promote cytotoxicity in fibroblasts (0.1–100 μg/mL). Preserved cell viability (75% UVA 0.1 μg/mL–120% UVB 100 μg/mL) and protected UV induced DNA damage (10/100 μg/mL) after significant exposures. Reduced ROS generation and increased endogenous antioxidant SOD levels. Highest SPF at 1 mg/mL (18.90 ± 0.23) with good absorption in the UVA region. | [155] |
Seed | Ethanolic 75% | In vivo | Anti-oxidant and anti-inflammatory | Reduce cytokines and proinflammatory factors, and induce endogenous antioxidant protein expression | Decreased levels of NF-κB, TNF-α, IL-6 and IL-1β. Inhibition of the production of MDA and ROS. Activation of Nrf2 to induce the expression of H0-1, SOD and GSH. | [180] | |
Peel | Standardized extract | In vitro and in vivo | Antioxidant, anti-hyperpigmentation and anti-tyrosinase (skin lighter) | Anti-melanogenesis and anti-tyrosinase effects | TPC: (35.91 ± 2.14) g GAE/g. DPPH: (2.29 ± 0.06) μg/mL (IC50). Tyrosinase: (197.80 ± 1.23) (IC50). No irritation observed. Litchi peel extract added to the base at 0, 0.05 or 0.1%. Skin brightening efficacy via the suppression of tyrosinase and TRP-2. | [181] | |
Pericarp | Standardized extract (quercetin, rosmarinic acid and gallic acid) | In vivo | Anti-aging and anti-hyperpigmentation | Suppression of cellular melanin production via tyrosinase and tyrosinase-related protein inhibitory mechanisms; inhibition against MMP-2 | Formulated into a stable non-irritating topical serum at 0.05% and 0.1%. Melanin content reduction due to its tyrosinase and TRP-2 inhibitory activities. 0.1% LC serum significantly better than control in skin lightening, skin elasticity and skin wrinkle reduction. Biological activity profile in B16F10 melanoma cells. | [154] | |
Vinegar and juice | In vitro | Photoprotection | Reduce oxidative stress and proinflammatory factors and prevent photo-damage in HaCaT keratinocytes, resulting in an anti-photoaging effect | Cell viability improved after UVB exposure (vinegar 0.06% and juice 0.63%). Significant reduction of cell death after UVB irradiation. Suppression of oxidative stress by enhancing SOD and GSH-Px activity. Decrease in the mRNA level of all proinflammatory factors. | [182] | ||
Passion Fruit | Seed | Ethanolic 96% | In vitro | Anti-acne | Antimicrobial activity against Propionibacterium acnes | The minimum concentration of the extract to have an antibacterial effect was 5% (MIZ: 8.5 mm). Comparable inhibitory effects with controls support its application in the management of acne vulgaris. | [159] |
40% methanolic water extract | In vitro | Photoprotection | Enhancement of the UVB protective efficacy with PFE for skin cancer and photo-damage protection | Different compositions of cosmetics with 0, 0.1 and 0.3% of PFE. DPPH (IC50): (4.41 ± 0.02) μg/mL; SPF F0.3: (9.77 ± 1.37)/M0.3: (18.99 ± 0.71) | [183] | ||
40% methanolic water extract divided in hexane, EtOAc and aqueous fractions | In vitro | Antioxidant and anti-tyrosinase (skin lighter) | Anti-aging and anti-wrinkle effects based on its potent antioxidant activity; UV protection efficacy and photoaging protection | TPC (EtOAc): (58.3 ± 1.1) g GAE/100 g. DPPH (EtOAc IC50): (2.7 ± 0.2) μg/mL. Antityrosinase: 39.9% (EtOAc), 33% (Aq.) SPF (EtOAc): 1.3. | [184] | ||
Piceatannol | In vitro | Photoprotection | Suppression of MMP-1 induction in the fibroblasts by piceatannol pre-treatment | Increased GSH level by 17% (6.25 μg/mL), 33% (12.5 μg/mL) and 77% (25 μg/mL). ROS level was decreased by 13% (0.5 μg/mL), 21% (1 μg/mL) and 58% (2 μg/mL) in irradiated keratinocytes. | [157] | ||
Guava | Leaves | Methanolic extract | In vitro | Anti-hyperpigmentation | Anti-melanogenesis and anti-tyrosinase effects, inhibition of ORAI1 channel | Tyrosinase: 59.8% ± 1.3% (330 μg/mL). ORAI1 Inh: 80.30% ± 2.22% (100 μg/mL). ET-1 Inh: 69.96% ± 0.38%. Therapeutic potential for the treatment of melasma or the prevention of direct and indirect UV-induced melanogenesis. | [185] |
Commercial extract | In vivo | Anti-sebum | Reduction of greasiness of T-zone skin | Tannin content: (85.90 ± 1.90) mg/l. Sebum level suppression nose: 21.43 ± 3.21%; forehead: 10.72 ± 3.51% after 28 days. No irritation tested. | [164] | ||
Methanolic extract (triterpenes) | In vivo | Antitumor | Inhibitory effect on inflammation in ear edema and on tumor promotion | Inh. Rat. edema: 75 (1 mg/ear). w/o extract all mice had tumor, with extract 40% had tumor → 73% reduction Suppression of COX-2, TNF-α, iNOS and MMP-9. | [165] | ||
Pulp, peels and seeds | Water/ethyl alcohol standardized in ellagic acid | In vitro | Photoprotection | Relevant antioxidant activity | DPPH (IC50): 19.80 μg/mL. The phytocosmetic presented an increment of 17.99% of photoprotection efficacy. SPF: 22.3 ± 1.1. | [163] |
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Análisis del mercado de las principales frutas tropicales Panorama general de febrero de 2020. FAO Food Agric. Organ. United Nations 2020, 6. [Google Scholar]
- De la Luz Cádiz-Gurrea, M.; del Carmen Villegas-Aguilar, M.; Leyva-Jiménez, F.J.; Pimentel-Moral, S.; Fernández-Ochoa, Á.; Alañón, M.E.; Segura-Carretero, A. Revalorization of bioactive compounds from tropical fruit by-products and industrial applications by means of sustainable approaches. Food Res. Int. 2020, 138. [Google Scholar] [CrossRef]
- Rinaldo, D. Carbohydrate and bioactive compounds composition of starchy tropical fruits and tubers, in relation to pre and postharvest conditions: A review. J. Food Sci. 2020, 85, 249–259. [Google Scholar] [CrossRef]
- Pereira-Netto, A.B. Tropical Fruits as Natural, Exceptionally Rich, Sources of Bioactive Compounds. Int. J. Fruit Sci. 2018, 18, 231–242. [Google Scholar] [CrossRef]
- Faria, J.V.; Valido, I.H.; Paz, W.H.P.; da Silva, F.M.A.; de Souza, A.D.L.; Acho, L.R.D.; Lima, E.S.; Boleti, A.P.A.; Marinho, J.V.N.; Salvador, M.J.; et al. Comparative evaluation of chemical composition and biological activities of tropical fruits consumed in Manaus, central Amazonia, Brazil. Food Res. Int. 2021, 139. [Google Scholar] [CrossRef] [PubMed]
- Septembre-Malaterre, A.; Stanislas, G.; Douraguia, E.; Gonthier, M.P. Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island. Food Chem. 2016, 212, 225–233. [Google Scholar] [CrossRef] [PubMed]
- FAO. Pérdidas y Desperdicio de Alimentos en el Mundo—Alcance, Causas y Prevención; FAO: Rome, Italy, 2011; ISBN 978-92-5-307205-7. [Google Scholar]
- FAO. La pérdida y el desperdicio de alimentos es un problema mundial. SOFA 2019, 2019, 1–16. [Google Scholar]
- Poomanee, W.; Khunkitti, W.; Chaiyana, W.; Intasai, N.; Lin, W.C.; Lue, S.C.; Leelapornpisid, P. Multifunctional biological properties and phytochemical constituents of Mangifera indica L. seed kernel extract for preventing skin aging. Toxicol. Res. 2021, 37, 459–472. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.M.; Lin, M.Z.; Wang, Y.X.; Xu, K.L.; Huang, W.Y.; Pan, D.D.; Zou, Z.R.; Peng, Y.Y. Inhibition of tyrosinase by cherimoya pericarp proanthocyanidins: Structural characterization, inhibitory activity and mechanism. Food Res. Int. 2017, 100, 731–739. [Google Scholar] [CrossRef]
- Nayak, B.S.; Ramdeen, R.; Adogwa, A.; Ramsubhag, A.; Marshall, J.R. Wound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds. Int. Wound J. 2012, 9, 650–655. [Google Scholar] [CrossRef]
- Soib, H.H.; Ismail, H.F.; Husin, F.; Abu Bakar, M.H.; Yaakob, H.; Sarmidi, M.R. Bioassay-guided different extraction techniques of Carica papaya (Linn.) leaves on in vitro wound-healing activities. Molecules 2020, 25, 517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; Gabrić, D.; Bilušić, T.; Krešić, G.; Stulić, V.; Barba, F.J.; Chemat, F.; Barbosa-Cánovas, G.; et al. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Res. Int. 2018, 113, 245–262. [Google Scholar] [CrossRef]
- Da Silva Francischini, D.; Lopes, A.P.; Segatto, M.L.; Stahl, A.M.; Zuin, V.G. Development and application of green and sustainable analytical methods for flavonoid extraction from Passiflora waste. BMC Chem. 2020, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H. Bin Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem. 2017, 217, 552–559. [Google Scholar] [CrossRef]
- Pandey, A.; Jatana, G.K.; Sonthalia, S. Cosmeceuticals. Adv. Integr. Dermatology 2021, 393–411. [Google Scholar] [CrossRef]
- Siddiq, M.; Brecht, J.K.; Sidhu, J.S. Handbook of Mango Fruit; Siddiq, M., Brecht, J.K., Sidhu, J.S., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; ISBN 9781119014362. [Google Scholar]
- Ibarra-Garza, I.P.; Ramos-Parra, P.A.; Hernández-Brenes, C.; Jacobo-Velázquez, D.A. Effects of postharvest ripening on the nutraceutical and physicochemical properties of mango (Mangifera indica L. cv Keitt). Postharvest Biol. Technol. 2015, 103, 45–54. [Google Scholar] [CrossRef]
- Asif, A.; Farooq, U.; Akram, K.; Hayat, Z.; Shafi, A.; Sarfraz, F.; Sidhu, M.A.I.; Rehman, H.; Aftab, S. Therapeutic potentials of bioactive compounds from mango fruit wastes. Trends Food Sci. Technol. 2016, 53, 102–112. [Google Scholar] [CrossRef]
- United Nations. Mango; UNICTAD: New York, NY, USA, 2016. [Google Scholar]
- Mwaurah, P.W.; Kumar, S.; Kumar, N.; Panghal, A.; Attkan, A.K.; Singh, V.K.; Garg, M.K. Physicochemical characteristics, bioactive compounds and industrial applications of mango kernel and its products: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2421–2446. [Google Scholar] [CrossRef]
- Oliver-Simancas, R.; Muñoz, R.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Alañón, M.E. Mango by-products as a natural source of valuable odor-active compounds. J. Sci. Food Agric. 2020, 100, 4688–4695. [Google Scholar] [CrossRef]
- Lebaka, V.R.; Wee, Y.-J.; Ye, W.; Korivi, M. Nutritional Composition and Bioactive Compounds in Three Different Parts of Mango Fruit. Int. J. Environ. Res. Public Health 2021, 18, 741. [Google Scholar] [CrossRef] [PubMed]
- Mirza, B.; Croley, C.R.; Ahmad, M.; Pumarol, J.; Das, N.; Sethi, G.; Bishayee, A. Mango (Mangifera indica L.): A magnificent plant with cancer preventive and anticancer therapeutic potential. Crit. Rev. Food Sci. Nutr. 2020, 61, 1–27. [Google Scholar] [CrossRef]
- Tremocoldi, M.A.; Rosalen, P.L.; Franchin, M.; Massarioli, A.P.; Denny, C.; Daiuto, É.R.; Paschoal, J.A.R.; Melo, P.S.; De Alencar, S.M. Exploration of avocado by-products as natural sources of bioactive compounds. PLoS ONE 2018, 13, e0192577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar-López, N.J.; Domínguez-Avila, J.A.; Yahia, E.M.; Belmonte-Herrera, B.H.; Wall-Medrano, A.; Montalvo-González, E.; González-Aguilar, G.A. Avocado fruit and by-products as potential sources of bioactive compounds. Food Res. Int. 2020, 138. [Google Scholar] [CrossRef]
- Dreher, M.L.; Davenport, A.J. Hass Avocado Composition and Potential Health Effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saavedra, J.; Córdova, A.; Navarro, R.; Díaz-Calderón, P.; Fuentealba, C.; Astudillo-Castro, C.; Toledo, L.; Enrione, J.; Galvez, L. Industrial avocado waste: Functional compounds preservation by convective drying process. J. Food Eng. 2017, 198, 81–90. [Google Scholar] [CrossRef]
- FAO. Las principales frutas tropicales Análisis del mercado 2018. Organ. Nac. Unidas Para Aliment. Agric. 2018, 18. [Google Scholar]
- Freitas, A.; Moldão-Martins, M.; Costa, H.S.; Albuquerque, T.G.; Valente, A.; Sanches-Silva, A. Effect of UV-C radiation on bioactive compounds of pineapple (Ananas comosus L. Merr.) by-products. J. Sci. Food Agric. 2015, 95, 44–52. [Google Scholar] [CrossRef]
- Ramli, A.N.M.; Aznan, T.N.T.; Illias, R.M. Bromelain: From production to commercialisation. J. Sci. Food Agric. 2017, 97, 1386–1395. [Google Scholar] [CrossRef]
- Campos, D.A.; Ricardo, G.; Vilas-boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of Fruit Industrial By-Products—A Case. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [Green Version]
- Rico, X.; Gullón, B.; Alonso, J.L.; Yáñez, R. Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Res. Int. 2020, 132, 109086. [Google Scholar] [CrossRef] [PubMed]
- De Ancos, B.; Sánchez-Moreno, C.; González-Aguilar, G.A. Pineapple composition and nutrition. In Handbook of Pineapple Technology; John Wiley & Sons, Ltd: Chichester, UK, 2016; pp. 221–239. ISBN 9781118967355. [Google Scholar]
- Campos, D.A.; Ribeiro, T.B.; Teixeira, J.A.; Pastrana, L.; Pintado, M.M. Integral valorization of pineapple (Ananas comosus L.) By-products through a green chemistry approach towards Added Value Ingredients. Foods 2020, 9, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, J.A.; Rashid, Z.; Tan, D.; Dharini, N.; Gera, A.; Teixeira, M.S.; Tennant, P. Papaya (Carica papaya L.) Biology and Biotechnology. Tree For. Sci. Biotechnol. 2007, 1, 47–73. [Google Scholar]
- Altendorf, S. Perspectivas Mundiales De Las Principales Frutas Tropicales 1; FAO: Rome, Italy, 1970; pp. 1–15. [Google Scholar]
- FAO. Análisis Del Mercado de Las Principales Frutas Tropicales 2019; FAO: Rome, Italy, 2019; p. 6. [Google Scholar]
- Santana, L.F.; Inada, A.C.; Espirito Santo, B.L.S.D.; Filiú, W.F.O.; Pott, A.; Alves, F.M.; de Cassia A. Guimaraes, R.; de Cassia Freitas, K.; Hiane, P.A. Nutraceutical Potential of Carica papaya in Metabolic Syndrome. Nutrients 2019, 11, 1608. [Google Scholar] [CrossRef] [Green Version]
- Haykal, T.; Nasr, P.; Hodroj, M.H.; Taleb, R.I.; Sarkis, R.; El Moujabber, M.N.; Rizk, S. Annona cherimola seed extract activates extrinsic and intrinsic apoptotic pathways in leukemic cells. Toxins 2019, 11, 506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González Vega, M.E. Revisión bibliográfica CHIRIMOYA (Annona cherimola Miller), FRUTAL TROPICAL Y SUB-TROPICAL DE VALORES PROMISORIOS Review Cherimoya (Annona cherimola Miller), fruit-bearing tropical and sub-tropical of promissory values. Cultiv. Trop. 2013, 34, 52–63. [Google Scholar]
- Shivamathi, C.S.; Moorthy, I.G.; Kumar, R.V.; Soosai, M.R.; Maran, J.P.; Kumar, R.S.; Varalakshmi, P. Optimization of ultrasound assisted extraction of pectin from custard apple peel: Potential and new source. Carbohydr. Polym. 2019, 225, 115240. [Google Scholar] [CrossRef]
- Mannino, G.; Gentile, C.; Porcu, A.; Agliassa, C.; Caradonna, F.; Bertea, C.M. Chemical Profile and Biological Activity of Cherimoya (Annona cherimola Mill.) and Atemoya (Annona atemoya) Leaves. Molecules 2020, 25, 2612. [Google Scholar] [CrossRef]
- Gentile, C.; Mannino, G.; Palazzolo, E.; Gianguzzi, G.; Perrone, A.; Serio, G.; Farina, V. Pomological, sensorial, nutritional and nutraceutical profile of seven cultivars of Cherimoya (Annona cherimola Mill). Foods 2021, 10, 35. [Google Scholar] [CrossRef]
- Younes, M.; Ammoury, C.; Haykal, T.; Nasr, L.; Sarkis, R.; Rizk, S. The selective anti-proliferative and pro-apoptotic effect of A. cherimola on MDA-MB-231 breast cancer cell line. BMC Complement. Med. Ther. 2020, 20, 343. [Google Scholar] [CrossRef]
- De Sousa, G.F.; Santos, D.K.D.D.N.; da Silva, R.S.; Barros, B.R.D.S.; da Cruz-Filho, I.J.; Ramos, B.D.A.; da Silva, T.D.; da Silva, P.A.; de Lima-Neto, R.G.; de Gusmão, N.B.; et al. Evaluation of cytotoxic, immunomodulatory effects, antimicrobial activities and phytochemical constituents from various extracts of Passiflora edulis F. flavicarpa (Passifloraceae). Nat. Prod. Res. 2020, 35, 1–5. [Google Scholar] [CrossRef]
- Cao, Q.; Teng, J.; Wei, B.; Huang, L.; Xia, N. Phenolic compounds, bioactivity, and bioaccessibility of ethanol extracts from passion fruit peel based on simulated gastrointestinal digestion. Food Chem. 2021, 356, 129682. [Google Scholar] [CrossRef]
- Altendorf, S. Minor Tropical Fruits Mainstreaming a Niche Market; FAO: Rome, Italy, 2018; pp. 67–74. [Google Scholar]
- Liu, X.; Yan, X.; Bi, J.; Liu, J.; Zhou, M.; Wu, X.; Chen, Q. Determination of phenolic compounds and antioxidant activities from peel, flesh, seed of guava (Psidium guajava L.). Electrophoresis 2018, 39, 1654–1662. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A. (Ed.) Guava: Cultivation, Antioxidant Properties and Health Benefits; Nova Science Publishers: New York, NY, USA, 2017; ISBN 9781536107876. [Google Scholar]
- Donno, D.; Mellano, M.G.; Gamba, G.; Riondato, I.; Beccaro, G.L. Analytical strategies for fingerprinting of antioxidants, nutritional substances, and bioactive compounds in foodstuffs based on high performance liquid chromatography-mass spectrometry: An overview. Foods 2020, 9, 1734. [Google Scholar] [CrossRef]
- Pagano, I.; Campone, L.; Celano, R.; Piccinelli, A.L.; Rastrelli, L. Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. J. Chromatogr. A 2021, 1651, 462295. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo-Llamosas, A.; del Río, P.G.; Pérez-Pérez, A.; Yáñez, R.; Garrote, G.; Gullón, B. Recent advances to recover value-added compounds from avocado by-products following a biorefinery approach. Curr. Opin. Green Sustain. Chem. 2021, 28, 100433. [Google Scholar] [CrossRef]
- Moreira, S.A.; Alexandre, E.M.C.; Pintado, M.; Saraiva, J.A. Effect of emergent non-thermal extraction technologies on bioactive individual compounds profile from different plant materials. Food Res. Int. 2019, 115, 177–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trujillo-Mayol, I.; Céspedes-Acuña, C.; Silva, F.L.; Alarcón-Enos, J. Improvement of the polyphenol extraction from avocado peel by assisted ultrasound and microwaves. J. Food Process Eng. 2019, 42, 1–11. [Google Scholar] [CrossRef]
- Kaur, B.; Panesar, P.S.; Anal, A.K. Standardization of ultrasound assisted extraction for the recovery of phenolic compounds from mango peels. J. Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Khor, B.K.K.; Chear, N.J.Y.; Azizi, J.; Khaw, K.Y. Chemical composition, antioxidant and cytoprotective potentials of carica papaya leaf extracts: A comparison of supercritical fluid and conventional extraction methods. Molecules 2021, 26, 1489. [Google Scholar] [CrossRef]
- Prasad, K.M.N.; Ismail, A.; John, S.; Jiang, Y.M. High Pressure–Assisted Extraction: Method, Technique, and Application. In Enhancing Extraction Processes in the Food Industry; CRC Press: Boca Raton, FL, USA, 2016; pp. 303–322. [Google Scholar]
- Darvin, M.E.; Sterry, W.; Lademann, J.; Vergou, T. The role of carotenoids in human skin. Molecules 2011, 16, 10491–10506. [Google Scholar] [CrossRef] [Green Version]
- Meléndez-Martínez, A.J.; Stinco, C.M.; Mapelli-Brahm, P. Skin Carotenoids in Public Health and Nutricosmetics: The Emerging Roles and Applications of the UV Radiation-Absorbing Colourless Carotenoids Phytoene and Phytofluene. Nutrients 2019, 11, 1093. [Google Scholar] [CrossRef] [Green Version]
- Anunciato, T.P.; da Rocha Filho, P.A. Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. J. Cosmet. Dermatol. 2012, 11, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mendoza, M.P.; Paula, J.T.; Paviani, L.C.; Cabral, F.A.; Martinez-Correa, H.A. Extracts from mango peel by-product obtained by supercritical CO2 and pressurized solvent processes. LWT—Food Sci. Technol. 2015, 62, 131–137. [Google Scholar] [CrossRef]
- Mercado-Mercado, G.; Montalvo-González, E.; González-Aguilar, G.A.; Alvarez-Parrilla, E.; Sáyago-Ayerdi, S.G. Ultrasound-assisted extraction of carotenoids from mango (Mangifera indica L. ‘Ataulfo’) by-products on in vitro bioaccessibility. Food Biosci. 2018, 21, 125–131. [Google Scholar] [CrossRef]
- Kapoor, S.; Gandhi, N.; Tyagi, S.K.; Kaur, A.; Mahajan, B.V.C. Extraction and characterization of guava seed oil: A novel industrial byproduct. Lwt 2020, 132, 109882. [Google Scholar] [CrossRef]
- Steinmann, D.; Ganzera, M. Recent advances on HPLC/MS in medicinal plant analysis. J. Pharm. Biomed. Anal. 2011, 55, 744–757. [Google Scholar] [CrossRef]
- Lim, K.J.A.; Cabajar, A.A.; Lobarbio, C.F.Y.; Taboada, E.B.; Lacks, D.J. Extraction of bioactive compounds from mango (Mangifera indica L. var. Carabao) seed kernel with ethanol–water binary solvent systems. J. Food Sci. Technol. 2019, 56, 2536–2544. [Google Scholar] [CrossRef] [PubMed]
- Guandalini, B.B.V.; Rodrigues, N.P.; Marczak, L.D.F. Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Res. Int. 2019, 119, 455–461. [Google Scholar] [CrossRef]
- Pal, C.B.T.; Jadeja, G.C. Microwave-assisted extraction for recovery of polyphenolic antioxidants from ripe mango (Mangifera indica L.) peel using lactic acid/sodium acetate deep eutectic mixtures. Food Sci. Technol. Int. 2020, 26, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Ordoñez-Torres, A.; Torres-León, C.; Hernández-Almanza, A.; Flores-Guía, T.; Luque-Contreras, D.; Aguilar, C.N.; Ascacio-Valdés, J. Ultrasound-microwave-assisted extraction of polyphenolic compounds from Mexican “Ataulfo” mango peels: Antioxidant potential and identification by HPLC/ESI/MS. Phytochem. Anal. 2020, 1–8. [Google Scholar] [CrossRef]
- Rojas, L.F.; Cortés, C.F.; Zapata, P.; Jiménez, C. Extraction and identification of endopeptidases in convection dried papaya and pineapple residues: A methodological approach for application to higher scale. Waste Manag. 2018, 78, 58–68. [Google Scholar] [CrossRef]
- Sepúlveda, L.; Romaní, A.; Aguilar, C.N.; Teixeira, J. Valorization of pineapple waste for the extraction of bioactive compounds and glycosides using autohydrolysis. Innov. Food Sci. Emerg. Technol. 2018, 47, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Orodu, V.; Akpedi, I. Extraction and GC-MS analysis of oil extracted from pineapple (Ananas comosus) peels. Mod. Phys. Chem. Res. 2021, 1, 1–8. [Google Scholar] [CrossRef]
- Araújo, R.G.; Rodriguez-jasso, R.M.; Ruiz, H.A.; Govea-salas, M.; Pintado, M.E.; Aguilar, C.N. Industrial Crops & Products Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Ind. Crop. Prod. 2020, 154, 112623. [Google Scholar] [CrossRef]
- Figueroa, J.G.; Borrás-Linares, I.; Del Pino-García, R.; Curiel, J.A.; Lozano-Sánchez, J.; Segura-Carretero, A. Functional ingredient from avocado peel: Microwave-assisted extraction, characterization and potential applications for the food industry. Food Chem. 2021, 352, 129300. [Google Scholar] [CrossRef]
- Rosero, J.C.; Cruz, S.; Osorio, C.; Hurtado, N. Analysis of Phenolic Composition of Byproducts (Seeds and Peels) of Avocado (Persea americana Mill.) Cultivated in Colombia. Molecules 2019, 24, 3209. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, J.G.; Borrás-linares, I.; Lozano-sánchez, J.; Segura-Carretero, A. Comprehensive characterization of phenolic and other polar compounds in the seed and seed coat of avocado by HPLC-DAD-ESI-QTOF-MS. Food Res. Int. 2018, 105, 752–763. [Google Scholar] [CrossRef] [PubMed]
- García-Salas, P.; Gómez-Caravaca, A.M.; Morales-Soto, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Identification and quantification of phenolic and other polar compounds in the edible part of Annona cherimola and its by-products by HPLC-DAD-ESI-QTOF-MS. Food Res. Int. 2015, 78, 246–257. [Google Scholar] [CrossRef]
- Galarce-bustos, O.; Fernández-ponce, M.T.; Montes, A.; Casas, L.; Mantell, C.; Aranda, M. Usage of supercritical fluid techniques to obtain bioactive alkaloid-rich extracts from cherimoya peel and leaves: Extract profiles and their correlation with antioxidant properties and acetylcholinesterase and α-glucosidase inhibitory. Food Funct. 2020, 11, 4224–4235. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Barrow, C.J.; Dunshea, F.R. Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef]
- Díaz-De-Cerio, E.; Aguilera-Saez, L.M.; María Gómez-Caravaca, A.; Verardo, V.; Fernández-Gutiérrez, A.; Fernández, I.; Arráez-Román, D.; Laganà, A.; Capriotti, A.L.; Cavaliere, C. Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR Published in the topical collection Discovery of Bioactive Compounds with guest editors. Anal. Bioanal. Chem. 2018, 410, 3607–3619. [Google Scholar] [CrossRef]
- Castro-Vargas, H.I.; Baumann, W.; Ferreira, S.R.S.; Parada-Alfonso, F. Valorization of papaya (Carica papaya L.) agroindustrial waste through the recovery of phenolic antioxidants by supercritical fluid extraction. J. Food Sci. Technol. 2019, 56, 3055–3066. [Google Scholar] [CrossRef] [PubMed]
- Gustavo, L.; Rodrigues, G.; Mazzutti, S.; Vitali, L.; Micke, G.A.; Regina, S.; Ferreira, S. Biocatalysis and Agricultural Biotechnology Recovery of bioactive phenolic compounds from papaya seeds agroindustrial residue using subcritical water extraction. Biocatal. Agric. Biotechnol. 2019, 22, 101367. [Google Scholar] [CrossRef]
- Vallejo-Castillo, V.; Muñoz-Mera, J.; Pérez-Bustos, M.F.; Rodriguez-Stouvenel, A. Recovery of antioxidants from papaya (Carica papaya L.) Peeland. Acad. Mex. Investig. Docencia Ing. Química A.C 2020, 19, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Jaji, S.O.; Damazio, O.A.; Aiyelero, T.S.; Oluwole, F.S.; Olagbaye, G.A.; Ajetunmobi, O.A.; Ejire, A.A. Phytochemical Contents, Characterization and Elemental Analysis of Pawpaw Leave Extract (Carica papaya) S. J. Chem. Soc. Niger. 2020, 45, 72. [Google Scholar] [CrossRef]
- Espadas, J.L.; Castaño, E.; Marina, M.L.; Rodríguez, L.C.; Plaza, M. Phenolic compounds increase their concentration in Carica papaya leaves under drought stress. Acta Physiol. Plant. 2019, 41, 1–17. [Google Scholar] [CrossRef]
- Narváez-cuenca, C.; Inampues-charfuelan, M.; Hurtado-Benavides, A.-M.; Parada-Alfonso, F.; Vincken, J.-P. The phenolic compounds, tocopherols, and phytosterols in the edible oil of guava (Psidium guava) seeds obtained by supercritical CO2 extraction. J. Food Compos. Anal. 2020, 89, 103467. [Google Scholar] [CrossRef]
- da Silva Lima, R.; Ferreira, S.R.S.; Vitali, L.; Block, J.M. May the superfruit red guava and its processing waste be a potential ingredient in functional foods? Food Res. Int. 2019, 115, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Rojas-garbanzo, C.; Winter, J.; Laura, M.; Zimmermann, B.F.; Schieber, A. Characterization of phytochemicals in Costa Rican guava (Psidium friedrichsthalianum-Nied.) fruit and stability of main compounds during juice processing-(U) HPLC-DAD-ESI-TQD-MS n. J. Food Compos. Anal. 2019, 75, 26–42. [Google Scholar] [CrossRef]
- Kumar, N.S.S.; Sarbon, N.M.; Rana, S.S.; Chintagunta, A.D.; Prathibha, S.; Ingilala, S.K.; Kumar, S.P.J.; Anvesh, B.S.; Dirisala, V.R. Extraction of bioactive compounds from Psidium guajava leaves and its utilization in preparation of jellies. AMB Express 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Wang, L.; WU, Y.; Bei, Q.; Shi, K.; Wu, Z. Fingerprint profiles of flavonoid compounds from different Psidium guajava leaves and their antioxidant activities. J. Sep. Sci. 2017, 40, 3817–3829. [Google Scholar] [CrossRef]
- Wang, L.; Lou, G.; Ma, Z.; Liu, X. Chemical constituents with antioxidant activities from litchi (Litchi chinensis Sonn.) seeds. Food Chem. 2011, 126, 1081–1087. [Google Scholar] [CrossRef]
- Islam, M.R.; Haque, A.R.; Kabir, M.R.; Hasan, M.M.; Khushe, K.J.; Hasan, S.M.K. Fruit by-products: The potential natural sources of antioxidants and α-glucosidase inhibitors. J. Food Sci. Technol. 2021, 58, 1715–1726. [Google Scholar] [CrossRef] [PubMed]
- De Santana, F.C.; de Oliveira Torres, L.R.; Shinagawa, F.B.; de Oliveira e Silva, A.M.; Yoshime, L.T.; de Melo, I.L.P.; Marcellini, P.S.; Mancini-Filho, J. Optimization of the antioxidant polyphenolic compounds extraction of yellow passion fruit seeds (Passiflora edulis Sims) by response surface methodology. J. Food Sci. Technol. 2017, 54, 3552–3561. [Google Scholar] [CrossRef] [PubMed]
- Moucková, K.; Pacheco-Fernández, I.; Ayala, J.H.; Bajerová, P.; Pino, V. Evaluation of Structurally Di ff erent Ionic Liquid-Based Surfactants in a Green. Molecules 2020, 25, 4734. [Google Scholar]
- Abla, M.J.; Banga, A.K. Quantification of skin penetration of antioxidants of varying lipophilicity. Int. J. Cosmet. Sci. 2013, 35, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Van Tran, V.; Moon, J.; Lee, Y. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies. J. Control. Release 2019, 300, 114–140. [Google Scholar] [CrossRef]
- Bilal, M. New Insights on Unique Features and Role of Nanostructured Materials in Cosmetics. Cosmetics 2020, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Chandan, N.; Rajkumar, J.R.; Shi, V.Y.; Lio, P.A. A new era of moisturizers. J. Cosmet. Dermatol. 2021, 20, 2425–2430. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Garcia-Lara, S. Current Methods for the Discovery of New Active Ingredients from Natural Products for Cosmeceutical Applications. Planta Med. 2019, 85, 535–551. [Google Scholar] [CrossRef] [Green Version]
- Merecz-Sadowska, A.; Sitarek, P.; Kucharska, E.; Kowalczyk, T.; Zajdel, K.; Cegliński, T.; Zajdel, R. Antioxidant properties of plant-derived phenolic compounds and their effect on skin fibroblast cells. Antioxidants 2021, 10, 726. [Google Scholar] [CrossRef]
- Rodrigues, F.; Cádiz-Gurrea, M.D.L.L.; Nunes, M.A.; Pinto, D.; Vinha, A.F.; Linares, I.B.; Oliveira, M.B.P.P.; Carretero, A.S. Cosmetics; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128135723. [Google Scholar]
- Ochocka, R.; Hering, A.; Stefanowicz-Hajduk, J.; Cal, K.; Barańska, H. The effect of mangiferin on skin: Penetration, permeation and inhibition of ECM enzymes. PLoS ONE 2017, 12, e0181542. [Google Scholar] [CrossRef] [Green Version]
- Shanbhag, S.; Nayak, A.; Narayan, R.; Nayak, U.Y. Anti-aging and Sunscreens: Paradigm Shift in Cosmetics. Adv. Pharm. Bull. 2019, 9, 348–359. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi Ashtiani, H.; Rastegar, H.; Salarian, A.; Rahmani, F.; Rezazadeh, S.; Sedghi Zadeh, H. Study the Effect of Silymarin and Vitamin C in Skin Aging Induced by UVB Rays on the Mice Skin Redox System. J. Med. Plants 2019, 3, 130–144. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, D.J.; Bae, J.S.; Lee, J.H.; Jeon, S.; Choi, H.D.; Kim, N.; Kim, H.G.; Kim, H.R. Activation of matrix metalloproteinases and FoxO3a in HaCaT keratinocytes by radiofrequency electromagnetic field exposure. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.R.; Jong, Y.X.; Balakrishnan, M.; Bok, Z.K.; Weng, J.K.K.; Tay, K.C.; Goh, B.H.; Ong, Y.S.; Chan, K.G.; Lee, L.H.; et al. Beneficial role of Carica papaya extracts and phytochemicals on oxidative stress and related diseases: A mini review. Biology 2021, 10, 287. [Google Scholar] [CrossRef]
- Sarangarajan, R.; Meera, S.; Rukkumani, R.; Sankar, P.; Anuradha, G. Antioxidants: Friend or foe? Asian Pac. J. Trop. Med. 2017, 10, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Samani, M.; Farkhad, N.K.; Mahmoudian-Sani, M.R.; Shirzad, H. Antioxidants as a Double-Edged Sword in the Treatment of Cancer. Antioxidants 2019. [Google Scholar] [CrossRef] [Green Version]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef]
- Mates, J.M. Antioxidant enzymes and their implications in pathophysiologic processes. Front. Biosci. 1999, 4, d339. [Google Scholar] [CrossRef] [Green Version]
- Pullar, J.M.; Vissers, M.C.M.; Winterbourn, C.C. Living with a killer: The effects of hypochlorous acid on mammalian cells. IUBMB Life 2000, 50, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.; Fernandes, E.; Silva, A.M.S.; Santos, C.M.M.; Pinto, D.C.G.A.; Cavaleiro, J.A.S.; Lima, J.L.F.C. 2-Styrylchromones: Novel strong scavengers of reactive oxygen and nitrogen species. Bioorganic Med. Chem. 2007, 15, 6027–6036. [Google Scholar] [CrossRef] [PubMed]
- Morlière, P.; Santus, R. Pro-oxidant role of superoxide dismutase in ultraviolet-A-induced lipid peroxidation in cultured normal human skin fibroblasts. Eur. J. Biochem. 1998, 256, 184–189. [Google Scholar] [CrossRef] [Green Version]
- De Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef]
- Wagemaker, T.A.L.; Maia Campos, P.M.B.G.; Shimizu, K.; Kyotani, D.; Yoshida, D. Antioxidant-based topical formulations influence on the inflammatory response of Japanese skin: A clinical study using non-invasive techniques. Eur. J. Pharm. Biopharm. 2017, 117, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Ae, J.L.; Hekimi, S. When a theory of aging ages badly. Vis. Reflect. 2010, 67, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Mota, M.D.; Costa, R.Y.S.; Guedes, A.A.S.; Silva, L.C.R.C.E.; Chinalia, F.A. Guava-fruit extract can improve the UV-protection efficiency of synthetic filters in sun cream formulations. J. Photochem. Photobiol. B Biol. 2019, 201, 111639. [Google Scholar] [CrossRef]
- Deuschle, V.C.K.N.; Brusco, I.; Piana, M.; Faccin, H.; de Carvalho, L.M.; Oliveira, S.M.; Viana, C. Persea americana Mill. crude extract exhibits antinociceptive effect on UVB radiation-induced skin injury in mice. Inflammopharmacology 2019, 27, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Bae, E.Y.; Choi, G.; Hyun, J.W.; Lee, M.Y.; Lee, H.W.; Chae, S. Protective effect of mango (Mangifera indica L.) against UVB-induced skin aging in hairless mice. Photodermatol. Photoimmunol. Photomed. 2013, 29, 84–89. [Google Scholar] [CrossRef]
- Nayak, B.; Ramadeen, R.; Sivach, S. Evaluation of Persea americana L. Leaf extract for wound healing activity—A preclinical study in rats. World J. Pharm. Res. 2012, 1, 786–795. [Google Scholar]
- Singh, S.; Young, A.; McNaught, C.E. The physiology of wound healing. Surgery 2017, 35, 473–477. [Google Scholar] [CrossRef]
- Burlando, B.; Clericuzio, M.; Cornara, L. Moraceae Plants with Tyrosinase Inhibitory Activity: A Review. Mini-Rev. Med. Chem. 2016, 17, 108–121. [Google Scholar] [CrossRef]
- Lianza, M.; Mandrone, M.; Chiocchio, I.; Tomasi, P.; Marincich, L.; Poli, F. Screening of ninety herbal products of commercial interest as potential ingredients for phytocosmetics. J. Enzyme Inhib. Med. Chem. 2020, 35, 1287–1291. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Lourith, N. Plants and Natural Products for the Treatment of Skin Hyperpigmentation—A Review. Planta Med. 2018, 84, 988–1006. [Google Scholar] [CrossRef] [Green Version]
- Sajadimajd, S.; Bahramsoltani, R.; Iranpanah, A.; Kumar Patra, J.; Das, G.; Gouda, S.; Rahimi, R.; Rezaeiamiri, E.; Cao, H.; Giampieri, F.; et al. Advances on Natural Polyphenols as Anticancer Agents for Skin Cancer. Pharmacol. Res. 2020, 151, 104584. [Google Scholar] [CrossRef]
- Amawi, H.; Ashby, C.R.; Samuel, T.; Peraman, R.; Tiwari, A.K. Polyphenolic nutrients in cancer chemoprevention and metastasis: Role of the epithelial-to-mesenchymal (EMT) pathway. Nutrients 2017, 9, 911. [Google Scholar] [CrossRef] [Green Version]
- Poomanee, W.; Chaiyana, W.; Mueller, M.; Viernstein, H.; Khunkitti, W.; Leelapornpisid, P. In-vitro investigation of anti-acne properties of Mangifera indica L. kernel extract and its mechanism of action against Propionibacterium acnes. Anaerobe 2018, 52, 64–74. [Google Scholar] [CrossRef]
- Soleymani, S.; Farzaei, M.H.; Zargaran, A.; Niknam, S.; Rahimi, R. Promising plant-derived secondary metabolites for treatment of acne vulgaris: A mechanistic review. Arch. Dermatol. Res. 2020, 312, 5–23. [Google Scholar] [CrossRef]
- Batool, N.; Ilyas, N.; Shabir, S.; Saeed, M.; Mazhar, R.; Amjid, M.W. A mini-review of therapeutic potential of mangifera indiica L. Pak. J. Pharm. Sci. 2018, 31, 1441–1448. [Google Scholar]
- Sáyago-Ayerdi, S.G.; Zamora-Gasga, V.M.; Venema, K. Prebiotic effect of predigested mango peel on gut microbiota assessed in a dynamic in vitro model of the human colon (TIM-2). Food Res. Int. 2019, 118, 89–95. [Google Scholar] [CrossRef]
- Burton-Freeman, B.M.; Sandhu, A.K.; Edirisinghe, I. Mangos and their bioactive components: Adding variety to the fruit plate for health. Food Funct. 2017, 8, 3010–3032. [Google Scholar] [CrossRef]
- Li, W.; Qin, L.; Feng, R.; Hu, G.; Sun, H.; He, Y.; Zhang, R. Emerging senolytic agents derived from natural products. Mech. Ageing Dev. 2019, 181, 1–6. [Google Scholar] [CrossRef]
- Zhu, Y.; Tchkonia, T.; Pirtskhalava, T.; Gower, A.C.; Ding, H.; Giorgadze, N.; Palmer, A.K.; Ikeno, Y.; Hubbard, G.B.; Lenburg, M. The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell 2015, 14, 644–658. [Google Scholar] [CrossRef]
- Roberts, R.L.; Green, J.; Lewis, B. Lutein and zeaxanthin in eye and skin health. Clin. Dermatol. 2009, 27, 195–201. [Google Scholar] [CrossRef]
- Rosenblat, G.; Meretski, S.; Segal, J.; Tarshis, M.; Schroeder, A.; Gilead, A.Z.; Ingber, A.; Hochberg, M. Polyhydroxylated fatty alcohols derived from avocado suppress in X ammatory response and provide non-sunscreen protection against UV-induced damage in skin cells. Arch. Dermatol. Res. 2010, 303, 239–246. [Google Scholar] [CrossRef]
- Roda, A.; Lambri, M. Food uses of pineapple waste and by-products: A review. Int. J. Food Sci. Technol. 2019, 54, 1009–1017. [Google Scholar] [CrossRef]
- Campos, D.A.; Coscueta, E.R.; Valetti, N.W.; Pastrana-Castro, L.M.; Teixeira, J.A.; Picó, G.A.; Pintado, M.M. Optimization of bromelain isolation from pineapple byproducts by polysaccharide complex formation. Food Hydrocoll. 2019, 87, 792–804. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, C.B.; Ataide, J.A.; Cefali, L.C.; Novaes, L.C.D.L.; Moriel, P.; Silveira, E.; Tambourgi, E.B.; Mazzola, P.G. Evaluation of the enzymatic activity and stability of commercial bromelain incorporated in topical formulations. Int. J. Cosmet. Sci. 2016, 38, 535–540. [Google Scholar] [CrossRef]
- Banerjee, S.; Ranganathan, V.; Patti, A.; Arora, A. Valorisation of pineapple wastes for food and therapeutic applications. Trends Food Sci. Technol. 2018, 82, 60–70. [Google Scholar] [CrossRef]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahayu, P.; Agustina, L.; Tjandrawinata, R.R. Tacorin, an extract from Ananas comosus stem, stimulates wound healing by modulating the expression of tumor necrosis factor α, transforming growth factor β and matrix metalloproteinase 2. FEBS Open Bio 2017, 7, 1017–1025. [Google Scholar] [CrossRef]
- Abbas, S.; Shanbhag, T.; Kothare, A. Applications of bromelain from pineapple waste towards acne. Saudi J. Biol. Sci. 2021, 28, 1001–1009. [Google Scholar] [CrossRef]
- Da Silva, A.C.; Jorge, N. Potential of mangaba (Hancornia speciosa), mango (Mangifera indica L.), and papaya (Carica papaya L.) seeds as sources of bioactive compounds. Rev. Ceres 2020, 67, 439–447. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Shaw, P.N.; Parat, M.O.; Hewavitharana, A.K. Anticancer activity of Carica papaya: A review. Mol. Nutr. Food Res. 2013, 57, 153–164. [Google Scholar] [CrossRef]
- Yogiraj, V.; Goyal, P.K.; Chauhan, C.S.; Goyal, A.; Vyas, B. Carica papaya Linn: An overview. Int. J. Herb. Med. 2014, 2, 1–8. [Google Scholar]
- Pandey, S.; Cabot, P.J.; Shaw, P.N.; Hewavitharana, A.K. Anti-inflammatory and immunomodulatory properties of Carica papaya. J. Immunotoxicol. 2016, 13, 590–602. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.A.; Ngo, H.T.T.; Hwang, E.; Park, B.; Yi, T.H. Protective effects of Carica papaya leaf against skin photodamage by blocking production of matrix metalloproteinases and collagen degradation in UVB-irradiated normal human dermal fibroblasts. South African J. Bot. 2020, 131, 398–405. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Vilela, C.; Camacho, J.F.; Cordeiro, N.; Gouveia, M.; Freire, C.S.R.; Silvestre, A.J.D. Profiling of lipophilic and phenolic phytochemicals of four cultivars from cherimoya (Annona cherimola Mill.). Food Chem. 2016, 211, 845–852. [Google Scholar] [CrossRef] [PubMed]
- De Moraes, M.R.; da Silveira, T.F.F.; Coutinho, J.P.; Souza, D.S.; Duarte, M.C.T.; Duarte, R.T.; Filho, J.T.; Godoy, H.T. Bioactivity of atemoya fruits and by-products. Food Biosci. 2021, 41. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, K.; Wang, K.; Zhu, J.; Hu, Z. Nutrient components, health benefits, and safety of litchi (Litchi chinensis Sonn.): A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2139–2163. [Google Scholar] [CrossRef]
- Zhu, X.R.; Wang, H.; Sun, J.; Yang, B.; Duan, X.W.; Jiang, Y. ming Pericarp and seed of litchi and longan fruits: Constituent, extraction, bioactive activity, and potential utilization. J. Zhejiang Univ. Sci. B 2019, 20, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Kanlayavattanakul, M.; Ospondpant, D.; Ruktanonchai, U.; Lourith, N. Biological activity assessment and phenolic compounds characterization from the fruit pericarp of Litchi chinensis for cosmetic applications. Pharm. Biol. 2012, 50, 1384–1390. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M. Formulation and clinical evaluation of the standardized Litchi chinensis extract for skin hyperpigmentation and aging treatments. Ann. Pharm. Françaises 2020, 78, 142–149. [Google Scholar] [CrossRef]
- Thiesen, L.C.; Baccarin, T.; Fischer-Muller, A.F.; Meyre-Silva, C.; Couto, A.G.; Bresolin, T.M.B.; Santin, J.R. Photochemoprotective effects against UVA and UVB irradiation and photosafety assessment of Litchi chinensis leaves extract. J. Photochem. Photobiol. B Biol. 2017, 167, 200–207. [Google Scholar] [CrossRef] [PubMed]
- De Toledo, N.; de Camargo, A.; Ramos, P.; Button, D.; Granato, D.; Canniatti-Brazaca, S. Potentials and Pitfalls on the Use of Passion Fruit By-Products in Drinkable Yogurt: Physicochemical, Technological, Microbiological, and Sensory Aspects. Beverages 2018, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Maruki-Uchida, H.; Kurita, I.; Sugiyama, K.; Sai, M.; Maeda, K.; Ito, T. The protective effects of piceatannol from passion fruit (Passiflora edulis) seeds in UVB-irradiated keratinocytes. Biol. Pharm. Bull. 2013, 36, 845–849. [Google Scholar] [CrossRef] [Green Version]
- Krambeck, K.; Oliveira, A.; Santos, D.; Manuela Pintado, M.; Baptista Silva, J.; Manuel Sousa Lobo, J.; Helena Amaral, M. Identification and quantification of stilbenes (Piceatannol and resveratrol) in passiflora edulis by-products. Pharmaceuticals 2020, 13, 73. [Google Scholar] [CrossRef] [Green Version]
- Jusuf, N.K.; Putra, I.B.; Dewi, N.K. Antibacterial activity of passion fruit purple variant (Passiflora edulis sims var. edulis) seeds extract against propionibacterium acnes. Clin. Cosmet. Investig. Dermatol. 2020, 13, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, S.S.; Cantó, C. The molecular targets of resveratrol. Biochim. Biophys. Acta Mol. Basis Dis. 2015, 1852, 1114–1123. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-J.; Ahmad, F.; Philp, A.; Baar, K.; Williams, T.; Luo, H.; Ke, H.; Rehmann, H.; Taussig, R.; Brown, A.L.; et al. Resveratrol Ameliorates Aging-Related Metabolic Phenotypes by Inhibiting cAMP Phosphodiesterases. Cell 2012, 148, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Díaz-de-Cerio, E.; Gómez-Caravaca, A.M.; Verardo, V.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Determination of guava (Psidium guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS. J. Funct. Foods 2016, 22, 376–388. [Google Scholar] [CrossRef]
- Milani, L.P.G.; Garcia, N.O.S.; Morais, M.C.; Dias, A.L.S.; Oliveira, N.L.; Conceição, E.C. Extract from byproduct Psidium guajava standardized in ellagic acid: Additivation of the in vitro photoprotective efficacy of a cosmetic formulation. Rev. Bras. Farmacogn. 2018, 28, 692–696. [Google Scholar] [CrossRef]
- Pongsakornpaisan, P.; Lourith, N.; Kanlayavattanakul, M. Anti-sebum efficacy of guava toner: A split-face, randomized, single-blind placebo-controlled study. J. Cosmet. Dermatol. 2019, 18, 1737–1741. [Google Scholar] [CrossRef] [PubMed]
- Yasukawa, K.; Kakegawa, T. Inhibitory effects of leaves of guava (Psidium guajava) on TPA-induced inflammation and tumor promotion in two-stage carcinogenesis in mouse skin. J. Pharm. Nutr. Sci. 2015, 5, 216–221. [Google Scholar] [CrossRef]
- Maisuthisakul, P.; Gordon, M.H. Antioxidant and tyrosinase inhibitory activity of mango seed kernel by product. Food Chem. 2009, 117, 332–341. [Google Scholar] [CrossRef]
- Maisuthisakul, P.; Gordon, M.H. Characterization and storage stability of the extract of Thai mango (Mangifera indica Linn. Cultivar Chok-Anan) seed kernels. J. Food Sci. Technol. 2014, 51, 1453–1462. [Google Scholar] [CrossRef]
- Namngam, C.; Pinsirodom, P. Antioxidant properties, selected enzyme inhibition capacities, and a cosmetic cream formulation of Thai mango seed kernel extracts. Trop. J. Pharm. Res. 2017, 16, 9. [Google Scholar] [CrossRef] [Green Version]
- Poljšak, N.; Kreft, S.; Kočevar Glavač, N. Vegetable butters and oils in skin wound healing: Scientific evidence for new opportunities in dermatology. Phyther. Res. 2020, 34, 254–269. [Google Scholar] [CrossRef]
- Shi, F.; Xie, L.; Lin, Q.; Tong, C.; Fu, Q.; Xu, J.; Xiao, J.; Shi, S. Profiling of tyrosinase inhibitors in mango leaves for a sustainable agro-industry. Food Chem. 2020, 312, 126042. [Google Scholar] [CrossRef] [PubMed]
- Ronpirin, C.; Pattarachotanant, N.; Tencomnao, T. Protective effect of Mangifera indica Linn., Cocos nucifera Linn., and Averrhoa carambola Linn. Extracts against ultraviolet B-induced damage in human keratinocytes. Evid. Based Complement. Altern. Med. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Laksmiani, N.P.L.; Sanjaya, I.K.N.; Leliqia, N.P.E. The activity of avocado (Persea americana Mill.) seed extract containing catechin as a skin lightening agent. J. Pharm. Pharmacogn. Res. 2020, 8, 449–456. [Google Scholar]
- De Oliveira, A.P.; Franco, E.D.S.; Rodrigues Barreto, R.; Cordeiro, D.P.; De Melo, R.G.; De Aquino, C.M.F.; E Silva, A.A.R.; De Medeiros, P.L.; Da Silva, T.G.; Góes, A.J.D.S.; et al. Effect of semisolid formulation of persea americana mill (Avocado) oil on wound healing in rats. Evidence-Based Complement. Altern. Med. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Myung, N.; Kim, S. The Beneficial Effect of Avocado on Skin Inflammation in a Mouse Model of AD-like Skin Lesions. Korean J. Plant Resour. 2019, 32, 705–713. [Google Scholar]
- Dutta, S.; Bhattacharyya, D. Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf. J. Ethnopharmacol. 2013, 150, 451–457. [Google Scholar] [CrossRef]
- Saini, R.; Mittal, A.; Rathi, V. Formulation & in-vitro antioxidant analysis of anti-ageing cream of Carica papaya fruit extract. Indian J. Drugs 2016, 4, 8–14. [Google Scholar]
- Nafiu, A.B.; Rahman, M.T. Anti-inflammatory and antioxidant properties of unripe papaya extract in an excision wound model Anti-inflammatory and antioxidant properties of unripe papaya extract in an excision wound model. Pharm. Biol. 2014, 53, 662–671. [Google Scholar] [CrossRef]
- Bertuccelli, G.; Zerbinati, N.; Marcellino, M.; Kumar, N.S.N.; He, F.; Tsepakolenko, V.; Cervi, J.; Lorenzetti, A.; Marotta, F. Effect of a quality-controlled fermented nutraceutical on skin aging markers: An antioxidant-control, double-blind study. Exp. Ther. Med. 2016, 11, 909–916. [Google Scholar] [CrossRef] [Green Version]
- Ko, G.-A.; Kang, H.R.; Moon, J.Y.; Ediriweera, M.K.; Eum, S.; Bach, T.T.; Kim, S. Annona squamosa L. leaves inhibit alpha-melanocyte- stimulating hormone (α -MSH) stimulated melanogenesis via p38 signaling pathway in B16F10 melanoma cells. J. Cosmet. Dermatol. 2020, 19, 1785–1792. [Google Scholar] [CrossRef]
- Man, S.; Ye, S.; Ma, L.; Yao, Y.; Liu, T.; Yin, L. Polyphenol-rich extract from litchi chinensis seeds alleviates hypertension-induced renal damage in rats. J. Agric. Food Chem. 2021, 69, 2138–2148. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M. Litchi Peel Extract for Natural Brightening. Cosmet. Toilet. 2021, 136, 55–60. [Google Scholar]
- Huang, D.; Gu, Q.; Sun, Z.; Soeberdt, M.; Kilic, A.; Abels, C.; Xu, J. Litchi Products as Dermatological Agents and Their Active Components. ACS Food Sci. Technol. 2021, 1, 66–76. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M.; Chingunpitak, J. Development of sunscreen products containing passion fruit seed extract. Brazilian J. Pharm. Sci. 2017, 53, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lourith, N.; Kanlayavattanakul, M. Antioxidant Activities and Phenolics of Passiflora edulis Seed Recovered from Juice Production Residue. J. Oleo Sci. 2013, 62, 235–240. [Google Scholar] [CrossRef]
- Lee, D.U.; Weon, K.Y.; Nam, D.Y.; Nam, J.H.; Kim, W.K. Skin protective effect of guava leaves against UV-induced melanogenesis via inhibition of ORAI1 channel and tyrosinase activity. Exp. Dermatol. 2016, 25, 977–982. [Google Scholar] [CrossRef] [PubMed]
Fruit | By-Product | Composition Solvent | Extraction Method | Characterization Method | Major Compounds Extracted/Identified | Ref. |
---|---|---|---|---|---|---|
Mango | Seed Kernel | EtOH (50%) | Agitation for 1 h at room temperature and 2000 rpm | HPLC-UV/Vis | Gallic acid, caffeic acid, rutin, Penta-O-galloyl-b-D-glucose, galloylglucose species with galloyl moieties (greater than five) | [67] |
Peel | EtOH | UAE at 25 kHz; MAE at 2450 mHz | HPLC/ESI/MS | Phenolic compounds and flavonoids | [68] | |
Lactic acid, NaOAc and H2O (3:1:4) | MAE at 436.45 W, 19.66 min | HPLC | Mangiferin | [69] | ||
EtOH | MAE + UAE (2450 MHz and 25 KHz, respectively) | HPLC/ESI/MS | Polyphenols | [70] | ||
Pineapple | Core | Phosphate buffer | Agitation | MALDI-TOF-TOF | Glycylendopeptidases | [71] |
H2O | Autohydrolysis | HPLC | Gallic, hydroxybenzoic, chlorogenic, coumaric and caffeic acids and epicatechin | [72] | ||
Rind | N-Hexane | Cold extraction | GC-MS | Limonene, alpha-farnesene, trans caryophyllene and myrcene | [73] | |
Avocado | Seed | EtOH | MAE at 71.64 °C for 14.69 min | HPLC-ESI-MS | Perseitol, procyanidins, hydroxytyrosol glycoside, caffeoylquinic acid, coumaroylquinic acid, catechin and epicatechin | [74] |
EtOH/H2O (80:20, v/v) | UAE for 15 min at 25 °C | HPLC-MS/MS | Procyanidin B1, catechin, epicatechin and trans-5- O-cafeoyl-D-quinic acid | [26] | ||
Peel | EtOH (36%) | MAE for 39 min at 130 °C | HPLC-ESI-TOF/ QTOF-MS | Quinic acid, citric acid, syringic acid, procyanidins, catechin, epicatechin, rutin, quercetin derivates, naringenin and kaempferol | [75] | |
MeOH (80%) | Maceration at 15 °C for 24 h | UPLC-ESI-MS/MS | Procyanidins, quinic acid, citric acid, catechin, epicatechin, rutin, quercetin, caffeic acid, ferulic acid and kaempferol | [76] | ||
EtOH/H2O (50:50, v/v) | PLE at 200 °C for 20 min at 11 MPa | HPLC-DAD-ESI-TOF-MS | Pyrocatechol, vanillic acid, catechin, epicatechin, procyanidins, rutin, quercetin, kaempferol, sakuranetina and naringenin | [77] | ||
Custard Apple | Seed | EtOH (80%) | Agitation at 200 rpm for 1 week | GC-MS | β -stigmasterol, β -sitosterol and dihydrobrassicasterol | [41] |
MeOH/H2O (80:20, v/v) | UAE for 15 min at room temperature | HPLC-DAD-ESI-QTOF-MS | Catechin, epicatechin, procyanidins, vanillic acid, quinic acid, hydroxybenzoic acid and syringic acid | [78] | ||
Peel | MeOH (15%) | SFE with CO2 for 3 h at 75 °C and 100 bars | UPLC-ESI-MS | Aporphine, boldine, flaucine, anonaine, xilopine and pehnolamide | [79] | |
EtOH (70%) | Agitation in the dark for 12 h at 4 °C and 120 rpm | LC-ESI-QTOF-MS/MS and HPLC-PDA | Kaphtaric acid, chlorogenic acid, p-hydroxybenzoic acid, coumaric acid, ferulic acid, sinapinic acid and resveratrol | [80] | ||
Leaves | EtOH/H2O (75:25, v/v) | Maceration for 3 days in the dark at room temperature | HPLC-ESI-DAD-MS/MS | Catequin, epicatechin, kaempferol-3- O- glucoside, anonaine, quercetin-3- O -glucoside and pronuciferin | [44] | |
EtOH/H2O (80:20) and Acetone/H2O (70:30) | UAE for 20 min | HPLC-ESI-TOF-MS | Neochlorogenic acid, rutin, epicatechin, catechin, procyanidins, trigonelline, quinic acid, citric acid, kaempferol and quercetin | [81] | ||
Papaya | Seed | CO2-EtOH(5, 8%) | SFE with CO2-EtOH for 180 min at 50 °C and 20 MPa | HPLC-ESI-MS/MS | Chlorogenic acid, caffeic acid, ferulic acid, p-hydroxybenzoic acid and p-coumaric acid | [82] |
Distilled Water | SWE for 5 min at 150 °C | LC-ESI-MS/MS | Ferulic acid, mandelic acid, vanillic acid, caffeic acid, chlorogenic acid and myricetin | [83] | ||
Peel | EtOH (70%) | Agitation for 12 h at 4 °C and 120 rpm | LC-ESI-QTOF-MS/MS y HPLC-PDA | Gallic acid, kaphtharic acid, p-hydroxybenzoic acid, syringic acid, ferulic acid, epicatechin, kaempferol and quercetin | [80] | |
EtOH (23.32%) | MAE for 3 min at 340 W | GC-MS | Phenolic compounds and flavonoids | [84] | ||
Leaves | MeOH | Maceration for 72 h at room temperature | - | Phytol, β-sitosterol, γ-tocopherol, δ-tocopherol and hexadecanoic acid | [85] | |
H2O | UAE for 10–20 min | HPLC-DAD-QTOF-MS/MS | Caffeoylquinic acid, coumaric acid derivatives, ferulic acid derivatives, rutin, kaempferol glucoside and rhamnoside | [86] | ||
Guava | Seed | MeOH | Guava seed oil: Agitation for 1 min at 20 °C | RP-UHPLC-DAD-HESI-MS/MS; GC-MS | Vanillic acid, vanillin, syringaldehyde, abscisic acid and cinnamic acid, β-sitosterol, α-tocopherol, γ-tocopherol and campesterol | [87] |
EtOH/H2O (30:70, v/v) | UAE for 2 min at 25 °C, 20 kHz and 500 W | LC-ESI-MS/MS | Salicylic acid, cinnamic acid, p-coumaric acid, vanillic acid, ferulic acid, ellagic acid, gallic acid, galangin, naringenin, catechin and quercetin | [88] | ||
Peel | MeOH/H2O (9:1, v/v) +1% formic acid | UAE | UHPLC-DAD-MS/MS | Gallic acid and derivatives, derivatives of cinnamic acid, caffeoylquinic acids, flavanols, proanthocyanidins, ellagitannins and anthocyanidins | [89] | |
Leaves | Distilled H2O | Boiling at 90 °C for 30 min | LC/MS | Quercetin, 3-synapoylquinic acid, esculin, gallocatequin, ellagic acid, gallic acid and citric acid | [90] | |
EtOH (70%) | UAE for 30 min at 340 W | HPLC-ESI-TOF-MS | Rutin, quercetin, quercitrin, kaempferol and avicularin | [91] | ||
Litchi | Seed | EtOH (95%) | Direct reflux extraction for 2 h at 90 °C | HPLC | Catechin, epicatechin, litchiol A and litchiol B | [92] |
Peel | Phosphate buffer Hot H2O | Enzyme extractionPressurized hot-water extraction | HPLC | Polyphenolic content | [93] | |
Pass. Fruit | Seed | EtOH (70%) | Agitation for 30 min at 80 °C | HPLC-DAD LC-ESI-MS/MS | Flavonoids | [94] |
Peel | EtOH (70%) | HAE for 2 min | UHPLC-PDA | Isoorientin, orientin and sovitexin | [15] | |
Leaves | Aqueous solutions of ionic liquids (ILs) | IL-MA-SLE | HPLC-PDA | Rutin, quercetin and apigenin | [95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Villegas, A.; Rojas-García, A.; Villegas-Aguilar, M.d.C.; Fernández-Moreno, P.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.d.l.L.; Arráez-Román, D.; Segura-Carretero, A. Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. Antioxidants 2022, 11, 203. https://doi.org/10.3390/antiox11020203
García-Villegas A, Rojas-García A, Villegas-Aguilar MdC, Fernández-Moreno P, Fernández-Ochoa Á, Cádiz-Gurrea MdlL, Arráez-Román D, Segura-Carretero A. Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. Antioxidants. 2022; 11(2):203. https://doi.org/10.3390/antiox11020203
Chicago/Turabian StyleGarcía-Villegas, Abigail, Alejandro Rojas-García, María del Carmen Villegas-Aguilar, Patricia Fernández-Moreno, Álvaro Fernández-Ochoa, María de la Luz Cádiz-Gurrea, David Arráez-Román, and Antonio Segura-Carretero. 2022. "Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization" Antioxidants 11, no. 2: 203. https://doi.org/10.3390/antiox11020203
APA StyleGarcía-Villegas, A., Rojas-García, A., Villegas-Aguilar, M. d. C., Fernández-Moreno, P., Fernández-Ochoa, Á., Cádiz-Gurrea, M. d. l. L., Arráez-Román, D., & Segura-Carretero, A. (2022). Cosmeceutical Potential of Major Tropical and Subtropical Fruit By-Products for a Sustainable Revalorization. Antioxidants, 11(2), 203. https://doi.org/10.3390/antiox11020203