Comparative Extraction of Phenolic Compounds from Olive Leaves Using a Sonotrode and an Ultrasonic Bath and the Evaluation of Both Antioxidant and Antimicrobial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Samples
2.3. Extraction of Phenolic Compounds from Olive Leaves by Sonotrode and Ultrasonic Bath Extraction
2.4. Experimental Design
2.5. Analysis of Phenolic Compounds by HPLC–MS
2.6. Antioxidant Capacity
2.6.1. DPPH Radical Scavenging
2.6.2. ABTS Cation Radical Scavenging
2.6.3. Ferric Reducing Antioxidant Power (FRAP)
2.7. Antimicrobial Activity
2.7.1. Test Microorganisms
2.7.2. Agar-Well Diffusion Method
2.7.3. Determination of Minimum Inhibitory Concentration and Minimum Bactericidal Concentration
3. Results and Discussion
3.1. Characterization of Phenolic and Other Compounds from Olive Leaf Extracts by HPLC–MS
3.2. Fitting the Model
3.3. Analysis of Response Surfaces
3.4. Optimization of Sonotrode Parameters
3.5. Antioxidant Activity of Olive Leaves
3.6. Antimicrobial Activity of Olive Leaves
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahmanian, N.; Jafari, S.M.; Wani, T.A. Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends Food Sci. Technol. 2015, 42, 150–172. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; Roldán, C.; León, L.; De la Rosa, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Chemometric analysis for the evaluation of phenolic patterns in olive leaves from six cultivars at different growth stages. J. Agric. Food Chem. 2015, 63, 1722–1729. [Google Scholar] [CrossRef]
- Sánchez-Gutiérrez, M.; Bascón-Villegas, I.; Rodríguez, A.; Pérez-Rodríguez, F.; Fernández-Prior, Á.; Rosal, A.; Carrasco, E. Article valorisation of Olea europaea L. Olive leaves through the evaluation of their extracts: Antioxidant and antimicrobial activity. Foods 2021, 10, 966. [Google Scholar] [CrossRef] [PubMed]
- Quirantes-Piné, R.; Lozano-Sánchez, J.; Herrero, M.; Ibáñez, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-ESI-QTOF-MS as a powerful analytical tool for characterising phenolic compounds in olive-leaf extracts. Phytochem. Anal. 2013, 24, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.M.; Rabii, N.S.; Garbaj, A.M.; Abolghait, S.K. Antibacterial effect of olive (Olea europaea L.) leaves extract in raw peeled undeveined shrimp (Penaeus semisulcatus). Int. J. Vet. Sci. Med. 2014, 2, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Brahmi, F.; Mechri, B.; Dabbou, S.; Dhibi, M.; Hammami, M. The efficacy of phenolics compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. Ind. Crops Prod. 2012, 38, 146–152. [Google Scholar] [CrossRef]
- Bilgin, M.; Şahin, S. Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea europaea) leaves. J. Taiwan Inst. Chem. Eng. 2013, 44, 8–12. [Google Scholar] [CrossRef]
- Rafiee, Z.; Jafari, S.M.; Alami, M.; Khomeiri, M. Microwave-assisted extraction of phenolic compounds from olive leaves; a comparison with maceration. J. Anim. Plant Sci. 2011, 21, 738–745. [Google Scholar]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of phenolic compounds of ‘Sikitita’ olive leaves by HPLC-DAD-TOF-MS. Comparison with its parents ‘Arbequina’ and ‘Picual’ olive leaves. LWT—Food Sci. Technol. 2014, 58, 28–34. [Google Scholar] [CrossRef]
- Mohagheghi, F.; Bigdeli, M.R.; Rasoulian, B.; Hashemi, P.; Pour, M.R. The neuroprotective effect of olive leaf extract is related to improved blood-brain barrier permeability and brain edema in rat with experimental focal cerebral ischemia. Phytomedicine 2011, 18, 170–175. [Google Scholar] [CrossRef]
- Wang, L.; Geng, C.; Jiang, L.; Gong, D.; Liu, D.; Yoshimura, H.; Zhong, L. The anti-atherosclerotic effect of olive leaf extract is related to suppressed inflammatory response in rabbits with experimental atherosclerosis. Eur. J. Nutr. 2008, 47, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Vezza, T.; Rodríguez-Nogales, A.; Algieri, F.; Garrido-Mesa, J.; Romero, M.; Sánchez, M.; Toral, M.; Martín-García, B.; Gómez-Caravaca, A.M.; Arráez-Román, D.; et al. The metabolic and vascular protective effects of olive (Olea europaea L.) leaf extract in diet-induced obesity in mice are related to the amelioration of gut microbiota dysbiosis and to its immunomodulatory properties. Pharmacol. Res. 2019, 150, 104487. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Sánchez, C.; Olivares-Vicente, M.; Rodríguez-Pérez, C.; Herranz-López, M.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Encinar, J.A.; Micol, V. AMPK modulatory activity of olive—Tree leaves phenolic compounds: Bioassay-guided isolation on adipocyte model and in silico approach. PLoS ONE 2017, 12, e0173074. [Google Scholar] [CrossRef] [PubMed]
- Fki, I.; Sayadi, S.; Mahmoudi, A.; Daoued, I.; Marrekchi, R.; Ghorbel, H. Comparative study on beneficial effects of hydroxytyrosol- and oleuropein-rich olive leaf extracts on high-fat diet-induced lipid metabolism disturbance and liver injury in rats. Biomed Res. Int. 2020, 2020, 1315202. [Google Scholar] [CrossRef] [PubMed]
- Karkovic Markovic, A.; Toric, J.; Barbaric, M.; Jakobušic Brala, C. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules 2019, 24, 2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borjan, D.; Leitgeb, M.; Knez, Ž.; Hrnčič, M.K. Microbiological and antioxidant activity of phenolic compounds in olive leaf extract. Molecules 2020, 25, 5946. [Google Scholar] [CrossRef]
- Plaza, M.; Domínguez-Rodríguez, G.; Castro-Puyana, M.; Marina, M.L. Polyphenols analysis and related challenges. In Polyphenols: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 177–220. [Google Scholar]
- Cifá, D.; Skrt, M.; Pittia, P.; Di Mattia, C.; Poklar Ulrih, N. Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Sci. Nutr. 2018, 6, 1128–1137. [Google Scholar] [CrossRef]
- Xynos, N.; Papaefstathiou, G.; Gikas, E.; Argyropoulou, A.; Aligiannis, N.; Skaltsounis, A.-L. Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Sep. Purif. Technol. 2014, 122, 323–330. [Google Scholar] [CrossRef]
- Taamalli, A.; Arráez-Román, D.; Ibañez, E.; Zarrouk, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC-ESI-TOF-MS/IT-MS2. J. Agric. Food Chem. 2012, 60, 791–798. [Google Scholar] [CrossRef]
- Xynos, N.; Papaefstathiou, G.; Psychis, M.; Argyropoulou, A.; Aligiannis, N.; Skaltsounis, A.L. Development of a green extraction procedure with super/subcritical fluids to produce extracts enriched in oleuropein from olive leaves. J. Supercrit. Fluids 2012, 67, 89–93. [Google Scholar] [CrossRef]
- Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 2018, 124, 382–388. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications—A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Sukor, N.; Jusoh, R.; Rahim, S.A.; Kamarudin, N. Ultrasound assisted methods for enhanced extraction of phenolic acids from Quercus Infectoria galls. Mater. Today Proc. 2018, 5, 21990–21999. [Google Scholar] [CrossRef]
- Martínez-Patiño, J.C.; Gullón, B.; Romero, I.; Ruiz, E.; Brnčić, M.; Žlabur, J.Š.; Castro, E. Optimization of ultrasound-assisted extraction of biomass from olive trees using response surface methodology. Ultrason. Sonochem. 2019, 51, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Leb. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [Green Version]
- Hayes, A.J.; Markovic, B. Toxicity of Australian essential oil Backhousia citriodora (Lemon myrtle). Part 1. Antimicrobial activity and in vitro cytotoxicity. Food Chem. Toxicol. 2002, 40, 535–543. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Fu, S.; Arráez-Roman, D.; Segura-Carretero, A.; Menéndez, J.A.; Menéndez-Gutiérrez, M.P.; Micol, V.; Fernández-Gutiérrez, A. Qualitative screening of phenolic compounds in olive leaf extracts by hyphenated liquid chromatography and preliminary evaluation of cytotoxic activity against human breast cancer cells. Anal. Bioanal. Chem. 2010, 397, 643–654. [Google Scholar] [CrossRef]
- Taamalli, A.; Arráez-Román, D.; Barrajón-catalán, E.; Ruiz-Torres, V.; Pérez-Sánchez, A.; Herrero, M.; Ibañez, E.; Micol, V.; Zarrouk, M.; Segura-Carretero, A.; et al. Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves: Phenolic composition and cytotoxicity against human breast cancer cells. Food Chem. Toxicol. 2012, 50, 1817–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alañón, M.E.; Ivanović, M.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Segura-Carretero, A. Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. Arab. J. Chem. 2020, 13, 1685–1701. [Google Scholar] [CrossRef]
- Olmo-García, L.; Kessler, N.; Neuweger, H.; Wendt, K.; Olmo-Peinado, J.M.; Fernández-Gutierrez, A.; Baessmann, C.; Carrasco-Pancorbo, A. Unravelling the distribution of secondary metabolites in Olea europaea L.: Exhaustive characterization of eight olive-tree derived matrices by complementary platforms (LC-ESI/APCI-MS and GC-APCI-MS). Molecules 2018, 23, 2419. [Google Scholar] [CrossRef] [Green Version]
- Vural, N.; Algan Cavuldak, Ö.; Akay, M.A. D-Optimal design and multi-objective optimization for green extraction conditions developed with ultrasonic probe for oleuropein. J. Appl. Res. Med. Aromat. Plants 2021, 20, 100279. [Google Scholar] [CrossRef]
- Giacometti, J.; Žauhar, G.; Žuvić, M. Optimization of ultrasonic-assisted extraction of major phenolic compounds from olive leaves (Olea europaea L.) using response surface methodology. Foods 2018, 7, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Rosa, G.S.; Martiny, T.R.; Dotto, G.L.; Vanga, S.K.; Parrine, D.; Gariepy, Y.; Lefsrud, M.; Raghavan, V. Eco-friendly extraction for the recovery of bioactive compounds from Brazilian olive leaves. Sustain. Mater. Technol. 2021, 28, e00276. [Google Scholar] [CrossRef]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Talhaoui, N.; Vezza, T.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Gálvez, J.; Segura-Carrretero, A. Phenolic compounds and in vitro immunomodulatory properties of three Andalusian olive leaf extracts. J. Funct. Foods 2016, 22, 270–277. [Google Scholar] [CrossRef]
- Olmo-García, L.; Bajoub, A.; Benlamaalam, S.; Hurtado-Fernández, E.; Bagur-González, M.G.; Chigr, M.; Mbarki, M.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Establishing the phenolic composition of Olea europaea L. Leaves from cultivars grown in Morocco as a crucial step towards their subsequent exploitation. Molecules 2018, 23, 2524. [Google Scholar] [CrossRef] [Green Version]
- Ortega-García, F.; Peragón, J. Phenol metabolism in the leaves of the olive tree (Olea europaea L.) cv. Picual, Verdial, Arbequina, and Frantoio during ripening. J. Agric. Food Chem. 2010, 58, 12440–12448. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Orak, H.H.; Karamać, M.; Amarowicz, R.; Orak, A.; Penkacik, K. Genotype-related differences in the phenolic compound profile and antioxidant activity of extracts from olive (Olea europaea L.) leaves. Molecules 2019, 24, 1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lfitat, A.; Zejli, H.; Bousraf, F.Z.; Bousselham, A.; El Atki, Y.; Gourch, A.; Lyoussi, B.; Abdellaoui, A. Comparative assessment of total phenolics content and in vitro antioxidant capacity variations of macerated leaf extracts of Olea europaea L. and Argania spinosa (L.) Skeels. Mater. Today Proc. 2021, 45, 7271–7277. [Google Scholar] [CrossRef]
- McCabe-Sellers, B.J.; Beattie, S.E. Food safety: Emerging trends in foodborne illness surveillance and prevention. J. Am. Diet. Assoc. 2004, 104, 1708–1717. [Google Scholar] [CrossRef]
- Gram, L.; Ravn, L.; Rasch, M.; Bruhn, J.B.; Christensen, A.B.; Givskov, M. Food spoilage—Interactions between food spoilage bacteria. Int. J. Food Microbiol. 2002, 78, 79–97. [Google Scholar] [CrossRef]
- Sergelidis, D.; Angelidis, A.S. Methicillin-resistant Staphylococcus aureus: A controversial food-borne pathogen. Lett. Appl. Microbiol. 2017, 64, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef]
- Testa, B.; Lombardi, S.J.; Macciola, E.; Succi, M.; Tremonte, P.; Iorizzo, M. Efficacy of olive leaf extract (Olea europaea L. cv Gentile di Larino) in marinated anchovies (Engraulis encrasicolus, L.) process. Heliyon 2019, 5, e01727. [Google Scholar] [CrossRef] [Green Version]
- Karygianni, L.; Cecere, M.; Skaltsounis, A.L.; Argyropoulou, A.; Hellwig, E.; Aligiannis, N.; Wittmer, A.; Al-Ahmad, A. High-level antimicrobial efficacy of representative Mediterranean natural plant extracts against oral microorganisms. Biomed Res. Int. 2014, 2014, 839019. [Google Scholar] [CrossRef]
- Sudjana, A.N.; D’Orazio, C.; Ryan, V.; Rasool, N.; Ng, J.; Islam, N.; Riley, T.V.; Hammer, K.A. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents 2009, 33, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.P.; Ferreira, I.C.F.R.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 2007, 12, 1153. [Google Scholar] [CrossRef] [PubMed]
- Proestos, C.; Chorianopoulos, N.; Nychas, G.J.E.; Komaitis, M. RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. J. Agric. Food Chem. 2005, 53, 1190–1195. [Google Scholar] [CrossRef] [PubMed]
- Rauha, J.-P.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P.; Kahkonen, M. Antimicrobial effects of Finnish plant extracts containing flavoniods and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef]
- Soler-Rivas, C.; Espiń, J.C.; Wichers, H.J. Oleuropein and related compounds. J. Sci. Food Agric. 2000, 80, 1013–1023. [Google Scholar] [CrossRef]
Runs | X1 | X2 | X3 | Oleuropein (mg g−1 d.w.) | Hydroxytyrosol (mg g−1 d.w.) | Total Compounds (mg g−1 d.w.) |
---|---|---|---|---|---|---|
1 | 20 (38 W) | 30 | 5.5 | 13.6 ± 0.1 i | 0.697 ± 0.006 b,c | 26.5 ± 0.6 e,f |
2 | 100 (149 W) | 30 | 5.5 | 21.0 ± 0.4 c,d,e | 0.79 ± 0.02 a | 33.7 ± 0.8 a |
3 | 20 (29 W) | 100 | 5.5 | 19.0 ± 0.4 f,g | 0.709 ± 0.002 a,b,c | 27.5 ± 0.5 d,e |
4 | 100 (126 W) | 100 | 5.5 | 19.13 ± 0.04 f,g | 0.73 ± 0.03 a,b | 28.31 ± 0.06 d |
5 | 20 (36 W) | 65 | 1 | 20.10 ± 0.05 e,f | 0.736 ± 0.006 a,b | 31.20 ± 0.05 c |
6 | 100 (136 W) | 65 | 1 | 21.2 ± 0.5 b,c,d,e | 0.72 ± 0.01 a,b,c | 32.5 ± 0.5 a,b,c |
7 | 20 (37 W) | 65 | 10 | 21.47 ± 0.01 b,c,d | 0.76 ± 0.02 a,b | 33.0 ± 0.3 a,b |
8 | 100 (140 W) | 65 | 10 | 21.8 ± 0.2 a,b,c | 0.746 ± 0.008 a,b | 33.0 ± 0.3 a,b |
9 | 60 (89 W) | 30 | 1 | 18.1 ± 0.3 g,h | 0.73 ± 0.03 b | 28.9 ± 0.5 d |
10 | 60 (88 W) | 100 | 1 | 17.5 ± 0.3 h | 0.64 ± 0.01 c | 24.92 ± 0.06 f |
11 | 60 (87 W) | 30 | 10 | 20.32 ± 0.07 e | 0.75 ± 0.05 a,b | 31.82 ± 0.08 c |
12 | 60 (85 W) | 100 | 10 | 20.4 ± 0.4 d,e | 0.72 ± 0.02 a,b,c | 29.2 ± 0.5 d |
13 | 60 (86 W) | 65 | 5.5 | 22.771 ± 0.007 a | 0.76 ± 0.02 a,b | 34.153 ± 0.001 a |
14 | 60 (87 W) | 65 | 5.5 | 22.30 ± 0.02 a,b | 0.768 ± 0.001 a,b | 33.29 ± 0.4 a,b |
15 | 60 (85 W) | 65 | 5.5 | 22.8 ± 0.5 a | 0.75 ± 0.03 a,b | 34.0 ± 0.7 a |
Responses | |||
---|---|---|---|
Regression Coefficients | Oleuropein | Hydroxytyrosol | Total Compounds |
β0 | −0.227440 | 0.414128 * | 11.80061 * |
Linear | |||
β1 | 0.207086 * | 0.005551 * | 0.15374 * |
β2 | 0.428329 * | 0.009575 * | 0.46774 * |
β3 | 0.367820 ** | 0.004871 * | 0.68413 ** |
Cross product | |||
β12 | −0.001293 * | −0.000154 ** | −0.00114 * |
β13 | −0.001110 | 0.000153 | −0.00190 |
β23 | 0.001030 | 0.000098 ** | 0.00225 |
Quadratic | |||
β11 | −0.000743 * | −0.000014 | −0.00034 |
β22 | −0.002661 * | −0.000069 * | −0.00347 * |
β33 | −0.015611 | −0.000981 * | −0.04123 ** |
Adequacy of the model | |||
R2 | 0.89055 | 0.99282 | 0.92365 |
p (model) | 0.046761 | 0.011786 | 0.008413 |
p (lack of fit) | 0.055317 | 0.076639 | 0.103196 |
Optimal Conditions | Oleuropein | Hydroxytyrosol | Total Compounds |
---|---|---|---|
Amplitude (%) (Power) | 100 (151 W) | 100 (151 W) | 100 (151 W) |
EtOH (% (v/v)) | 55 | 55 | 55 |
Time (min) | 8 | 8 | 8 |
Predicted (mg g−1 d.w.) | 23 ± 2 | 0.8 ± 0.3 | 36 ± 5 |
Experimental (mg g−1 d.w.) | 24.6 ± 0.2 | 1.01 ± 0.02 | 40.9 ± 0.2 |
Significant differences | N.S. | N.S. | N.S. |
Phenolic Compound | ‘Arbequina’ | ‘Arbosana’ | ‘Changlot Real’ | ‘Frantoio’ | ‘Koroneiki’ | ‘Picual’ | ‘Sikitita’ |
---|---|---|---|---|---|---|---|
Hydroxytyrosol–hexose isomer a | 0.0081 ±0.0003 b | 0.0080 ± 0.0005 b | 0.0079 ± 0.0003 b | 0.00497 ± 0.00004 c | 0.0048 ± 0.0005 c | 0.0070 ± 0.0002 b | 0.00938 ± 0.00003 a |
Oleoside | 0.5751 ± 0.0007 b | 0.49 ± 0.01 b | 0.71 ± 0.05 a | 0.47 ± 0.06 b | 0.48 ± 0.01 b | 0.27 ± 0.02 c | 0.510 ± 0.003 b |
Hydroxytyrosol–hexose isomer b | 0.61 ± 0.02 d | 0.46 ± 0.01 e | 0.359 ± 0.003 f | 0.742 ± 0.001 c | 0.90 ± 0.02 a | 0.274 ± 0.009 g | 0.811 ± 0.008 b |
Hydroxytyrosol | 0.112 ± 0.003 b | 0.091 ± 0.004 c | 0.0252 ± 0.0004 d | 0.125 ± 0.003 a | 0.1031 ± 0.0004 b | 0.089 ± 0.005 c | 0.107 ± 0.002 b |
Secologanoside isomer a | 5.0 ± 0.1 b | 3.76 ± 0.06 c | 5.9 ± 0.2 a | 2.0 ± 0.2 d | 3.2 ± 0.2 c | 1.8 ± 0.2 d | 5.9 ± 0.3 a |
Tyrosol glucoside | 0.156 ± 0.002 c | 0.066 ± 0.001 d | 0.136 ± 0.004 c | 0.081 ± 0.005 d | 0.196 ± 0.007 b | 0.016 ± 0.001 | 0.30 ± 0.01 a |
Caffeoyl glucoside | 0.26 ± 0.01 b | 0.32 ± 0.01 a | 0.134 ± 0.002 c | 0.0168 ±0.0005 d | 0.039 ± 0.007 d | 0.020 ± 0.003 d | 0.044 ± 0.005 d |
Tyrosol | 0.012 ± 0.003 a | 0.00439 ± 0.00005 c | 0.005 ± 0.001 c | 0.005 ± 0.001 c | 0.007 ± 0.001 b | 0.0016 ± 0.0003 c | 0.014 ± 0.002 a,b |
Elenolic acid glucoside isomer a | 0.249 ± 0.009 b | 0.389 ± 0.008 a | 0.144 ± 0.007 d | 0.10 ± 0.01 e | 0.21 ± 0.01 c | 0.094 ± 0.005 e,f | 0.064 ± 0.003 f |
Secologanoside isomer b | 0.99 ± 0.09 c,d | 1.12 ± 0.03 c | 0.78 ± 0.01 d | 2.64 ± 0.01 a | 2.149 ± 0.004 b | 2.6 ± 0.2 a | 0.87 ± 0.03 c,d |
Elenolic acid glucoside isomer b | 0.737 ± 0.007 c | 0.86 ± 0.01 b | 0.780 ± 0.006 b,c | 1.02 ± 0.07 a | 0.94 ± 0.06 a | 0.907 ± 0.007 a | 0.685 ± 0.007 c |
Oleuropein aglycon | 0.74 ± 0.05 d | 1.6 ± 0.1 b | 1.7 ± 0.1 b | 1.20 ± 0.08 c | 2.7147 ± 0.0002 a | 1.63 ± 0.02 b | 1.0 ± 0.04 c,d |
Elenolic acid glucoside isomer c | 0.26 ± 0.02 d | 0.36 ± 0.03 c,d | 0.92 ± 0.04 a | 0.40 ± 0.03 c | 0.53 ± 0.02 b | 0.87 ± 0.03 a | 0.65 ± 0.02 b |
Luteolin diglucoside | 0.0279 ± 0.0004 a | 0.029 ± 0.002 a | 0.00792 ± 0.00005 d | 0.0091 ± 0.0006 c,d | 0.013 ± 0.002 b,c,d | 0.014 ± 0.001 b,c | 0.0180 ± 0.0009 b,c |
Elenolic acid glucoside isomer d | 0.146 ± 0.006 c,d | 0.164 ± 0.004 b,c,d | 0.1313 ± 0.0002 d | 0.166 ± 0.002 b,c,d | 0.202 ± 0.008 b | 0.181 ± 0.002 b,c | 0.26 ± 0.03 a |
Demethyloleuropein | 0.36 ± 0.01 b | 0.200 ± 0.003 c | 0.17 ± 0.01 c,d | 0.417 ± 0.005 a | 0.37 ± 0.01 b | 0.37 ± 0.02 b | 0.134 ± 0.005 d |
Hydroxyoleuropein isomer a | 0.2237 ± 0.0008 c | 0.215 ± 0.002 c | 0.394 ± 0.001 b | 0.45 ± 0.03 b | 0.40 ± 0.02 b | 0.66 ± 0.05 a | 0.27 ± 0.01 c |
Rutin | 0.391 ± 0.005 b | 0.924 ± 0.005 a | 0.131 ± 0.006 d | 0.28 ± 0.01 c | 0.46 ± 0.05 b | 0.109 ± 0.004 d | 0.29 ± 0.01 c |
Luteolin rutinoside | 0.0633 ± 0.0004 a | 0.064 ± 0.002 a | 0.0082 ± 0.0006 e | 0.0181 ± 0.0003 d | 0.038 ± 0.002 b | 0.0207 ± 0.0008 d | 0.031 ± 0.001 c |
Luteolin glucoside isomer a | 3.0 ± 0.2 b | 3.8 ± 0.1 a | 1.49 ± 0.06 d | 2.017 ± 0.008 c | 1.74 ± 0.03 c,d | 1.42 ± 0.08 d | 2.05 ± 0.07 c |
Verbascoside | 0.0129 ± 0.0001 a | 0.0108 ± 0.0006 b | 0.0107 ± 0.0006 b | 0.0053 ± 0.0006 c | 0.0054 ± 0.0004 c | 0.0066 ± 0.0002 c | 0.0092 ± 0.0004 b |
Hydroxyoleuropein isomer b | 0.08 ± 0.02 b | 0.240 ± 0.006 a | 0.11 ± 0.02 b | 0.011 ± 0.002 c | 0.0166 ± 0.0009 c | 0.070 ± 0.001 b | 0.017 ± 0.006 c |
Apigenin rutinoside | 0.0146 ± 0.0002 c | 0.027 ± 0.001 a | 0.0172 ± 0.0006 b | 0.0116 ± 0.0009 d | 0.0157 ± 0.0004 b, | 0.01656 ± 0.00005 b,c | 0.01631 ± 0.00004 b,c |
Oleuropein diglucoside isomer a | 0.01441 ± 0.00008 b | 0.0129 ± 0.0002 b | 0.01445 ± 0.00003 b | 0.015 ± 0.006 a | 0.0135 ± 0.0004 b | 0.0108 ± 0.0006 c | 0.0136 ± 0.0006 b |
Apigenin-7-glucoside | 0.054 ± 0.002 f | 0.158 ± 0.002 b | 0.182 ± 0.006 a | 0.0994 ± 0.0004 c | 0.064 ± 0.002 e,f | 0.06735 ± 0.00002 e | 0.084 ± 0.001 d |
Oleuropein diglucoside isomer b | 0.017 ± 0.001 a,b | 0.017 ± 0.004 a,b | 0.013 ± 0.002 a,b | 0.0113 ± 0.0009 b,b | 0.021 ± 0.002 a | 0.012 ± 0.002 a,b | 0.018 ± 0.003 a,b |
Luteolin glucoside isomer b | 1.11 ± 0.01 a | 1.19 ± 0.05 a | 0.60 ± 0.03 c | 0.81 ± 0.01 b | 0.68 ± 0.01 c | 0.85 ± 0.01 b | 0.90 ± 0.02 b |
Oleuropein diglucoside isomer c | 0.021 ± 0.002 c,d | 0.029 ± 0.003 b,c | 0.043 ± 0.003 a | 0.01496 ± 0.00007 d,e | 0.0391 ± 0.0003 a,b | 0.00959 ± 0.00004 e | 0.034 ± 0.005 a,b |
Chrysoeriol-7-O-glucoside | 0.0316 ± 0.0003 a,b | 0.0192 ± 0.0007 d | 0.0179 ± 0.0005 d | 0.0345 ± 0.0001 a | 0.029 ± 0.002 b | 0.0259 ± 0.0003 c | 0.0303 ± 0.0002 b |
Luteolin glucoside isomer c | 0.155 ± 0.007 b,c | 0.219 ± 0.002 a | 0.075 ± 0.001 d,e | 0.06 ± 0.01 e | 0.19 ± 0.01 a,b | 0.21 ± 0.02 a | 0.115 ± 0.008 c,d |
Oleuropein isomer a | 24 ± 1 b | 21.4 ± 0.5 b | 32 ± 1 a | 21.8 ± 0.3 b | 22.5 ± 0.5 b | 13.7 ± 0.3 c | 23.1 ± 0.3 b |
Oleuropein isomer b | 0.430 ± 0.004 a | 0.38 ± 0.09 a | 0.49 ± 0.02 a | 0.38 ± 0.01 a | 0.6 ± 0.1 a | 0.075 ± 0.009 b | 0.495 ± 0.005 a |
Oleuropein/Oleuroside | 1.54 ± 0.02 a | 1.3 ± 0.2 a | 1.47 ± 0.07 a | 1.382 ± 0.003 a | 1.5 ± 0.1 a | 0.59 ± 0.02 b | 1.58 ± 0.07 a |
Ligstroside aglycone | 0.51 ± 0.02 c | 0.624 ± 0.003 b | 0.302 ± 0.003 d | 0.65 ± 0.02 b | 0.075 ± 0.004 e | 0.76 ± 0.02 a | 0.335 ± 0.003 d |
Ligstroside | 0.5202 ± 0.0008 a | 0.29 ± 0.01 d,e | 0.27 ± 0.02 e | 0.33 ± 0.02 c,d | 0.35 ± 0.02 c | 0.129 ± 0.008 f | 0.44 ± 0.01 b |
Luteolin | 0.0447 ± 0.0003 a | 0.0334 ± 0.0004 b,c | 0.0307 ± 0.0007 c | 0.01881 ± 0.00003 d | 0.0061 ± 0.0003 f | 0.036 ± 0.003 b | 0.0130 ± 0.0003 e |
Sum oleuropein | 26 ± 1 b | 23.1 ± 0.3 b | 34 ± 1 a | 23.5 ± 0.3 b | 24.6 ± 0.2 b | 14.4 ± 0.2 c | 25.2 ± 0.2 b |
Sum hydroxytyrosol | 0.74 ± 0.02 d | 0.557 ± 0.008 e | 0.393 ± 0.003 f | 0.872 ± 0.002 c | 1.01 ± 0.02 a | 0.37 ± 0.01 f | 0.928 ± 0.006 b |
Total | 42 ± 1 b,c | 41.0 ± 0.3 b,c | 49 ± 2 a | 37.8 ± 0.5 c | 40.9 ± 0.2 b,c | 28.1 ± 0.3 d | 41.26 ± 0.08 b,c |
Cultivars | DPPH | ABTS | FRAP |
---|---|---|---|
‘Arbequina’ | 43.7 ± 0.4 b | 29.73 ± 0.04 d | 49.76 ± 0.03 c |
‘Arbosana’ | 36.9 ± 0.3 c | 32.33 ± 0.01 c | 51.03 ± 0.008 b |
‘Changlot Real’ | 46.8 ± 0.2 a | 35.7 ± 0.1 a | 53.87 ± 0.04 a |
‘Frantoio’ | 41.2 ± 0.2 b | 28.14 ± 0.04 e | 38.61 ± 0.09 e |
‘Koroneiki’ | 36.7 ± 0.4 c | 26.92 ± 0.03 f | 39.27 ± 0.01 d |
‘Picual’ | 33.03 ± 0.04 d | 28.12 ± 0.04 e | 37.17 ± 0.01 f |
‘Sikitita’ | 45.83 ± 0.08 a | 33.24 ± 0.06 b | 50.7 ± 0.3 b |
DPPH | ABTS | FRAP | |
---|---|---|---|
Hydroxytyrosol–hexose isomer a | 0.46 | 0.74 * | 0.79 * |
Oleoside | 0.82 * | 0.67 * | 0.75 * |
Hydroxytyrosol–hexose isomer b | 0.21 | −0.34 | −0.17 |
Hydroxytyrosol | −0.26 | −0.68 * | −0.48 |
Secologanoside isomer a | 0.82 * | 0.80 * | 0.90 * |
Tyrosol glucoside | 0.62 * | 0.28 | 0.39 |
Caffeoyl glucoside | 0.10 | 0.37 | 0.66 * |
Tyrosol | 0.65 * | 0.21 | 0.43 |
Elenolic acid glucoside isomer a | −0.26 | 0.04 | 0.33 |
Secologanoside isomer b | −0.70 * | −0.83 * | −0.98 * |
Elenolic acid glucoside isomer b | −0.61 * | −0.66 * | −0.78 * |
Oleuropein aglycon | −0.51 | −0.28 | −0.37 |
Elenolic acid glucoside isomer c | 0.01 | 0.34 | −0.02 |
Luteolin diglucoside | −0.11 | 0.05 | 0.40 |
Elenolic acid glucoside isomer d | 0.00 | −0.07 | −0.12 |
Demethyloleuropein | −0.50 | −0.91 | −0.82 * |
Hydroxyoleuropein isomer a | −0.51 | −0.43 | −0.74 * |
Rutin | −0.27 | 0.01 | 0.25 |
Luteolin rutinoside | −0.18 | −0.13 | 0.27 |
Luteolin glucoside isomer a | −0.05 | 0.13 | 0.43 |
Verbascoside | 0.50 | 0.64 * | 0.87 * |
Hydroxyoleuropein isomer b | −0.18 | 0.46 | 0.51 |
Apigenin rutinoside | −0.28 | 0.41 | 0.45 |
Oleuropein diglucoside isomer a | 0.38 | −0.13 | −0.15 |
Apigenin-7-glucoside | 0.29 | 0.76 * | 0.58 * |
Oleuropein diglucoside isomer b | 0.01 | 0.00 | 0.23 |
Luteolin glucoside isomer b | −0.17 | −0.02 | 0.26 |
Oleuropein diglucoside isomer c | 0.47 | 0.56 * | 0.58 * |
Chrysoeriol-7-O-glucoside | 0.03 | −0.66 * | −0.53 |
Luteolin glucoside isomer c | −0.78 * | −0.36 | −0.21 |
Oleuropein isomer a | 0.81 * | 0.67 * | 0.70 * |
Oleuropein isomer b | 0.57 * | 0.27 | 0.42 |
Oleuropein/Oleuroside | 0.71 * | 0.32 | 0.53 |
Ligstroside aglycone | −0.36 | −0.15 | −0.22 |
Ligstroside | 0.62 | 0.09 | 0.42 |
Luteolin | −0.02 | 0.20 | 0.32 |
Sum oleuropein | 0.77 * | 0.66 * | 0.77 * |
Sum Hydroxytyrosol | 0.17 | −0.40 | −0.22 |
Total | 0.82 * | 0.65 * | 0.70 * |
Cultivars | MBC (mg mL−1) | ||||
---|---|---|---|---|---|
S. aureus | MRSA | E. coli | S. Typhimurium | L. monocytogenes | |
‘Arbequina’ | 5.6 | 22.5 | 22.4 | 22.5 | 11.3 |
‘Arbosana’ | 11.0 | 11.0 | 22.0 | 44.0 | 22.0 |
‘Sikitita’ | 5.9 | 11.8 | 11.8 | 23.5 | 11.8 |
‘Picual’ | 10.0 | 10.0 | 20.0 | 40.0 | 10.0 |
‘Changlot Real’ | 10.9 | 10.9 | 21.8 | 21.8 | 10.9 |
‘Frantoio’ | 5.5 | 5.5 | 22.0 | 22.0 | 22.0 |
‘Koroneiki’ | 11.3 | 11.3 | 22.5 | 45.0 | 22.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-García, B.; De Montijo-Prieto, S.; Jiménez-Valera, M.; Carrasco-Pancorbo, A.; Ruiz-Bravo, A.; Verardo, V.; Gómez-Caravaca, A.M. Comparative Extraction of Phenolic Compounds from Olive Leaves Using a Sonotrode and an Ultrasonic Bath and the Evaluation of Both Antioxidant and Antimicrobial Activity. Antioxidants 2022, 11, 558. https://doi.org/10.3390/antiox11030558
Martín-García B, De Montijo-Prieto S, Jiménez-Valera M, Carrasco-Pancorbo A, Ruiz-Bravo A, Verardo V, Gómez-Caravaca AM. Comparative Extraction of Phenolic Compounds from Olive Leaves Using a Sonotrode and an Ultrasonic Bath and the Evaluation of Both Antioxidant and Antimicrobial Activity. Antioxidants. 2022; 11(3):558. https://doi.org/10.3390/antiox11030558
Chicago/Turabian StyleMartín-García, Beatriz, Soumi De Montijo-Prieto, Maria Jiménez-Valera, Alegría Carrasco-Pancorbo, Alfonso Ruiz-Bravo, Vito Verardo, and Ana María Gómez-Caravaca. 2022. "Comparative Extraction of Phenolic Compounds from Olive Leaves Using a Sonotrode and an Ultrasonic Bath and the Evaluation of Both Antioxidant and Antimicrobial Activity" Antioxidants 11, no. 3: 558. https://doi.org/10.3390/antiox11030558
APA StyleMartín-García, B., De Montijo-Prieto, S., Jiménez-Valera, M., Carrasco-Pancorbo, A., Ruiz-Bravo, A., Verardo, V., & Gómez-Caravaca, A. M. (2022). Comparative Extraction of Phenolic Compounds from Olive Leaves Using a Sonotrode and an Ultrasonic Bath and the Evaluation of Both Antioxidant and Antimicrobial Activity. Antioxidants, 11(3), 558. https://doi.org/10.3390/antiox11030558