Enrichment of Refined Olive Oils with Phenolic Extracts of Olive Leaf and Exhausted Olive Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of OL and EOP Phenolic Extracts
2.2. Addition of Extracts to Refined Oils
2.3. Analysis Methods
2.3.1. Extraction Yield
2.3.2. Contents of Phenolic Compounds
2.3.3. Antioxidant Capacity
2.3.4. Oxidative Stability
2.4. Kinetic Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Extract Characterization
3.2. Refined Oil Enrichment
3.3. Oil Stability
3.4. Kinetic Models
3.4.1. Enriched ROO Models
3.4.2. Enriched ROPO Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CROO | commercial refined olive oil |
CROPO | commercial refined olive pomace oil |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
EOP | exhausted olive pomace |
EVOO | extra virgin olive oil |
FRAP | ferric ion reducing antioxidant power |
OL | olive leaf |
OSI | oxidative stability index |
ROO | refined olive oil |
ROPO | refined olive pomace oil |
TE | Trolox equivalent |
References
- Manzanares, P.; Ballesteros, I.; Negro, M.J.; González, A.; Oliva, J.M.; Ballesteros, M. Processing of extracted olive oil pomace residue by hydrothermal or dilute acid pretreatment and enzymatic hydrolysis in a biorefinery context. Renew. Energy 2020, 145, 1235–1245. [Google Scholar] [CrossRef]
- Contreras, M.d.M.; Romero, I.; Moya, M.; Castro, E. Olive-derived biomass as a renewable source of value-added products. Process Biochem. 2020, 97, 43–56. [Google Scholar] [CrossRef]
- Özcan, M.M.; Matthäus, B. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur. Food Res. Technol 2017, 243, 89–99. [Google Scholar] [CrossRef]
- Fernandes-Klajn, F.; Romero-García, J.M.; Díaz, M.J.; Castro, E. Comparison of fermentation strategies for ethanol production from olive tree pruning biomass. Ind. Crop. Prod. 2018, 122, 98–106. [Google Scholar] [CrossRef]
- Nunes, A.M.; Pawlowski, S.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P.; Velizarov, S. Valorization of olive pomace by a green integrated approach applying sustainable extraction and membrane-assisted concentration. Sci. Total Environ. 2019, 652, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Huang, L.; Zhang, C.; Deng, Y.; Wang, X.; Cheng, J. Enhanced extraction of hydroxytyrosol, maslinic acid and oleanolic acid from olive pomace: Process parameters, kinetics and thermodynamics, and greenness assessment. Food Chem. 2019, 276, 662–674. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cruz, I.; Contreras, M.d.M.; Romero, I.; Castro, E. A biorefinery approach to obtain antioxidants, lignin and sugars from exhausted olive pomace. J. Ind. Eng. Chem. 2021, 96, 356–363. [Google Scholar] [CrossRef]
- Gavahian, M.; Mousavi Khaneghah, A.; Lorenzo, J.M.; Munekata, P.E.S.; Garcia-Mantrana, I.; Collado, M.C.; Meléndez-Martínez, A.J.; Barba, F.J. Health benefits of olive oil and its components: Impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends Food Sci. Technol. 2019, 88, 220–227. [Google Scholar] [CrossRef]
- Gorzynik, M.; PrzychodzeÅ, P.; Cappello, F.; Kuban-Jankowska, A.; Gammazza, A.; Knap, N.; Wozniak, M.; Gorska, M. Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, L.; Cicerale, S. The health benefiting mechanisms of virgin olive oil phenolic compounds. Molecules 2016, 21, 1734. [Google Scholar] [CrossRef] [Green Version]
- Cecchi, L.; Innocenti, M.; Melani, F.; Migliorini, M.; Conte, L.; Mulinacci, N. New isobaric lignans from refined olive oils as quality markers for virgin olive oils. Food Chem. 2017, 219, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Romeo, R.; De Bruno, A.; Imeneo, V.; Piscopo, A.; Poiana, M. Impact of stability of enriched oil with phenolic extract from olive mill wastewaters. Foods 2020, 9, 856. [Google Scholar] [CrossRef]
- Sánchez de Medina, V.; Priego-Capote, F.; Luque de Castro, M.D. Characterization of refined edible oils enriched with phenolic extracts from olive leaves and pomace. J. Agric. Food Chem. 2012, 60, 5866–5873. [Google Scholar] [CrossRef]
- Suárez, M.; Romero, M.; Ramo, T.; Motilva, M. Stability of a phenol-enriched olive oil during storage. Eur. J. Lipid Sci. Technol. 2011, 113, 894–903. [Google Scholar] [CrossRef]
- Rubió, L.; Motilva, M.; Macià, A.; Ramo, T.; Romero, M. Development of a phenol-enriched olive oil with both its own phenolic compounds and complementary phenols from thyme. J. Agric. Food Chem. 2012, 60, 3105–3112. [Google Scholar] [CrossRef]
- Lucci, P.; Bertoz, V.; Pacetti, D.; Moret, S.; Conte, L. Effect of the refining process on total hydroxytyrosol, tyrosol, and tocopherol contents of olive oil. Foods 2020, 9, 292. [Google Scholar] [CrossRef] [Green Version]
- Biel, S.; Mesa, M.; de la Torre, R.; Espejo, J.; Fernández-Navarro, J.; Fitó, M.; Sánchez-Rodriguez, E.; Rosa, C.; Marchal, R.; Alche, J.d.D.; et al. The NUTRAOLEOUM Study, a randomized controlled trial, for achieving nutritional added value for olive oils. BMC Complement. Altern. Med. 2016, 16, 404. [Google Scholar] [CrossRef] [Green Version]
- Gullón, P.; Gullón, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res. Int. 2020, 137, 109683. [Google Scholar] [CrossRef]
- Difonzo, G.; Russo, A.; Trani, A.; Paradiso, V.M.; Ranieri, M.; Pasqualone, A.; Summo, C.; Tamma, G.; Silletti, R.; Caponio, F. Green extracts from Coratina olive cultivar leaves: Antioxidant characterization and biological activity. J. Funct. Foods 2017, 31, 63–70. [Google Scholar] [CrossRef]
- Romeo, R.; De Bruno, A.; Imeneo, V.; Piscopo, A.; Poiana, M. Evaluation of enrichment with antioxidants from olive oil mill wastes in hydrophilic model system. J. Food Process. Preserv. 2019, 43, e14211. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Contreras, M.d.M.; Espínola, F.; Moya, M.; de Torres, A.; Romero, I.; Castro, E. Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chem. 2019, 293, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cruz, I.; Cara, C.; Romero, I.; Castro, E.; Gullón, B. Valorisation of exhausted olive pomace by an eco-friendly solvent extraction process of natural antioxidants. Antioxidants 2020, 9, 1010. [Google Scholar] [CrossRef] [PubMed]
- Espínola, F.; Vidal, A.M.; Espínola, J.M.; Moya, M. Processing effect and characterization of olive oils from spanish wild olive trees (olea europaea var. sylvestris). Molecules 2021, 26, 1304. [Google Scholar] [CrossRef] [PubMed]
- Contreras, M.d.M.; Gómez-Cruz, I.; Romero, I.; Castro, E. Olive pomace-derived biomasses fractionation through a two-step extraction based on the use of ultrasounds: Chemical characteristics. Foods 2021, 10, 111. [Google Scholar] [CrossRef]
- Vidal, A.M.; Alcalá, S.; de Torres, A.; Moya, M.; Espínola, F. Use of talc in oil mills: Influence on the quality and content of minor compounds in olive oils. LWT—Food Sci. Technol. 2018, 98, 31–38. [Google Scholar] [CrossRef]
- AOAC. Oils and Fats. In Official Methods of Analysis of AOAC International, 17th ed.; Chapter 41; Cd 12b-92; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000; p. 26. [Google Scholar]
- ISO 6886:2016. Animal and vegetable fats and oils—Determination of oxidative stability (accelerated oxidation test). 2016. Available online: https://www.iso.org/standard/69594.html (accessed on 12 April 2021).
- Nunes, A.M.; Costa, A.S.G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M.B.P.P. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total Environ. 2018, 644, 229–236. [Google Scholar] [CrossRef]
- Delgado-Adámez, J.; Franco Baltasar, M.N.; Ayuso Yuste, M.C.; Martín-Vertedor, D. Oxidative stability, phenolic compounds and antioxidant potential of a virgin olive oil enriched with natural bioactive compounds. J. Oleo Sci. 2014, 63, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Carrasco-Pancorbo, A.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Del Carlo, M.; Gallina-Toschi, T.; Lercker, G.; Compagnone, D.; Fernández-Gutiérrez, A. Evaluation of the antioxidant capacity of individual phenolic compounds in virgin olive oil. J. Agric. Food Chem. 2005, 53, 8918–8925. [Google Scholar] [CrossRef]
- Franco, M.N.; Galeano-Díaz, T.; Sánchez, J.; De Miguel, C.; Martín-Vertedor, D. Antioxidant capacity of the phenolic fraction and its effect on the oxidative stability of olive oil varieties grown in the southwest of Spain. Grasas Aceites 2014, 65, e004. [Google Scholar] [CrossRef] [Green Version]
- Stamatopoulos, K.; Katsoyannos, E.; Chatzilazarou, A. Antioxidant activity and thermal stability of oleuropein and related phenolic compounds of olive leaf extract after separation and concentration by salting-out-assisted cloud point extraction. Antioxidants 2014, 3, 229–244. [Google Scholar] [CrossRef] [Green Version]
Olive Leaves (OL) | Exhausted Olive Pomace (EOP) | |
---|---|---|
Extraction yield, g dry extract/kg dry biomass | 269.13 ± 1.81 | 484.71 ± 5.20 |
FRAP, mg Trolox eq/g dry extract | 217.53 ± 2.71 | 147.41 ± 0.66 |
DPPH, mg Trolox eq/g dry extract | 175.71 ± 3.61 | 92.71 ± 0.39 |
Concentrated Extract | Hydroxytyrosol | Tyrosol | Verbascoside | Luteolin-7-O-Glucoside | Oleuropein | Apigenin | Apigenin-7-O-Glucoside |
---|---|---|---|---|---|---|---|
Olive leaves (OL) | 1.68 ± 0.01 | - | 30.21 ± 0.04 | 12.85 ± 0.05 | 180.11 ± 0.04 | 0.10 ± 0.01 | 0.34 ± 0.01 |
Exhausted olive pomace (EOP) | 16.69 ± 0.00 | 2.08 ± 0.01 | 0.46 ± 0.00 | - | 0.54 ± 0.00 | - | - |
Sample | OSI, h | FRAP, mg Trolox eq/kg oil | DPPH, mg Trolox eq/kg oil |
---|---|---|---|
ROO | 38.84 ± 0.09 a | 79.47 ± 5.41 a | 3.21 ± 1.68 a |
ROO-0.5 | 45.83 ± 0.01 b | 162.34 ± 8.99 b | 79.24 ± 5.22 b |
ROO-1.0 | 58.01 ± 0.11 c | 317.51 ± 7.42 c | 173.44 ± 5.64 c |
ROO-2.0 | 70.10 ± 0.85 d | 605.05 ± 5.05 d | 390.93 ± 6.14 d |
CROO | 46.81 ± 0.64 b | 176.11 ± 3.04 b | 88.72 ± 4.37 b |
ROPO | 38.20 ± 0.05 a | 71.21 ± 2.87 a | 2.80 ± 1.23 a |
ROPO-0.5 | 42.01 ± 0.03 a,e | 165.84 ± 1.93 b | 15.63 ± 2.03 a |
ROPO-1.0 | 42.83 ± 0.49 e | 226.51 ± 18.29 e | 48.81 ± 1.85 e |
ROPO-2.0 | 44.08 ± 0.23 b,e | 327.41 ± 13.32 c | 172.25 ± 8.23 c |
CROPO | 38.86 ± 0.86 a,e | 77.96 ± 3.64 a | 4.23 ± 1.89 a |
EVOO-A | 84.56 ± 1.58 f | 705.19 ± 14.76 f | 368.94 ± 7.81 f |
EVOO-B | 77.75 ± 0.81 g | 649.18 ± 15.06 g | 337.75 ± 6.58 g |
Antioxidant Capacity | |||
---|---|---|---|
Oleuropein | FRAP | DPPH | |
CA0 | 357.10 | 441.61 | 257.69 |
k0, d−1 | 5.2519·1011 | 8.0972·108 | 1.7152·108 |
Ea, kJ/mol | 82.036 | 67.814 | 61.556 |
ε | 8.81 | 5.34 | 5.87 |
R2 | 0.951 | 0.918 | 0.933 |
Temperature, °C | k, d−1 | ||
25 | 0.0022 | 0.0011 | 0.0028 |
35 | 0.0065 | 0.0026 | 0.0063 |
45 | 0.0179 | 0.0060 | 0.0134 |
Antioxidant Capacity | |||
---|---|---|---|
Hydroxytyrosol | FRAP | DPPH | |
CA0 | 35.91 | 312.25 | 165.54 |
a | −0.1327 | −2.1673 | −1.0804 |
b | 59.771 | 779.44 | 405.45 |
k0, d−1 | 0.6708 | 2.3784 | 1897.78 |
Ea, kJ/mol | 5.862 | 4.436 | 20.179 |
ε | 1.24 | 8.74 | 3.55 |
R2 | 0.964 | 0.981 | 0.988 |
Temperature, °C | K, d−1 | ||
25 | 0.0630 | 0.3973 | 0.5534 |
35 | 0.0681 | 0.4211 | 0.7207 |
45 | 0.0731 | 0.4446 | 0.9231 |
Temperature, °C | CAm | ||
25 | 20.21 | 133.28 | 83.32 |
35 | 18.88 | 111.60 | 72.52 |
45 | 17.55 | 89.93 | 61.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal, A.M.; Moya, M.; Alcalá, S.; Romero, I.; Espínola, F. Enrichment of Refined Olive Oils with Phenolic Extracts of Olive Leaf and Exhausted Olive Pomace. Antioxidants 2022, 11, 204. https://doi.org/10.3390/antiox11020204
Vidal AM, Moya M, Alcalá S, Romero I, Espínola F. Enrichment of Refined Olive Oils with Phenolic Extracts of Olive Leaf and Exhausted Olive Pomace. Antioxidants. 2022; 11(2):204. https://doi.org/10.3390/antiox11020204
Chicago/Turabian StyleVidal, Alfonso M., Manuel Moya, Sonia Alcalá, Inmaculada Romero, and Francisco Espínola. 2022. "Enrichment of Refined Olive Oils with Phenolic Extracts of Olive Leaf and Exhausted Olive Pomace" Antioxidants 11, no. 2: 204. https://doi.org/10.3390/antiox11020204
APA StyleVidal, A. M., Moya, M., Alcalá, S., Romero, I., & Espínola, F. (2022). Enrichment of Refined Olive Oils with Phenolic Extracts of Olive Leaf and Exhausted Olive Pomace. Antioxidants, 11(2), 204. https://doi.org/10.3390/antiox11020204