Post-Distillation By-Products of Aromatic Plants from Lamiaceae Family as Rich Sources of Antioxidants and Enzyme Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction
2.2.1. Essential Oil Isolation
2.2.2. Preparation of Total, Spent, and Residual Water Extracts
2.3. GC-MS Analysis
2.4. LC-HRMS/MS Analysis
2.5. Total Phenolic, Flavonoid, Antioxidant, and Enzyme Inhibition Assays
2.6. Statistical and Data Processing
3. Results and Discussion
3.1. GC-MS Characterization of Essential Oils
3.2. LC-HRMS/MS Analysis of Total, Spent, and Residual Water Extracts
No | Compound | Class | TR (min) | [M–H]− (m/z) | MF | HRMS/MS (m/z) | Ref. | Thyme | Oregano | Basil |
---|---|---|---|---|---|---|---|---|---|---|
1 | Quinic acid * | Organic acid | 1.8 | 191.0575 | C7H12O6 | 177.0423, 159.0319, 129.0207 | [38] | W,S,T | W,S,T | W,S,T |
2 | Danshensu | Phenolic | 5.4 | 197.0445 | C9H10O5 | 179.0340, 135.0439, 123.0443 | [34] | W,S,T | W,S,T | W,S,T |
3 | Hydroxybenzoic acid-O-hexoside | Phenolic | 7.8 | 299.0764 | C13H16O8 | 137.0239 | [41] | W,S | W,S | – |
4 | Hydroxybenzoic acid | Phenolic | 9.4 | 137.0244 | C7H6O3 | 108.0185 | [1] | W,S,T | W,S | W,S,T |
5 | Caftaric acid | Phenolic | 11.8 | 311.0374 | C13H12O9 | 179.0309, 149.0059, 135.0423 | [22,40] | – | – | W,S,T |
6 | Caffeic acid-O-hexoside | Phenolic | 12.3 | 341.0351 | C15H18O9 | 179.0351, 135.0447 | [15] | W,S | W,S | – |
7 | Tuberonic acid-O-hexoside | Fatty acid | 13.7 | 387.1709 | C18H8O9 | 207.0956; 101.0232 | [14] | – | W,S,T | – |
8 | Roseoside | Phenolic | 13.4 | 385.1883 | C19H30O8 | 223.1321, 205.1197, 179.0539, 153.0914 | [14] | – | – | W,S,T |
9 | Caffeic acid * | Phenolic | 13.9 | 179.0357 | C9H8O4 | 135.0454, 107.0505 | [22,34,38] | W,S,T | – | W,S |
10 | Thymoquinol-O-hexoside | Monoterpene | 14.3 | 327.1457 | C16H24O7 | 165.0842, 149.0610, 101.0249 | [14,42] | – | W,S | – |
11 | Tuberonic acid | Fatty acid | 16.1 | 225.1150 | C12H18O4 | 207.0994, 165.0926, 147.0799, 135.0799 | [14] | W,S,T | W,S,T | – |
12 | Quercetin-C-deoxyhesoide-C-hexoside | Flavonoid | 16.7 | 609.1468 | C27H30O16 | 519.1140, 489.1047, 429.0832, 399.0724, 369.0621 | [5,34] | – | W,S,T | – |
13 | Fertaric acid | Phenolic | 17.3 | 325.0566 | C14H14O9 | 193.0506, 135.0371 | [22] | – | – | W,S,T |
14 | Luteolin-C-deoxyhexoside-C-hexoside | Flavonoid | 18.7 | 593.1521 | C27H30O15 | 503.1198, 473.1088, 383.0771, 353.0673 | [34] | W,S,T | W,S,T | W,S,T |
15 | Aromadendrin-O-hexoside | Flavonoid | 19.5 | 449.1102 | C21H22O11 | 287.0555, 151.0040, 135.0242 | [38] | T | – | – |
16 | p-Menth-1-ene-3,4-diol-O-hexoside | Monoterpene | 20.8 | 331.1761 | C16H28O7 | 179.0563, 161.0455, 143.0342, 119.0350 | [14,42] | W,S,T | W,S,T | – |
17 | Luteolin-di-O-glucuronide | Flavonoid | 21.8 | 637.1207 | C31H26O15 | 351.0663, 285.0488, 193.0405, 175.0296 | [14] | – | W,S,T | – |
18 | Quercetin-O-hexoside I | Flavonoid | 21.9 | 463.0938 | C21H20O12 | 301.0356, 300.0286 | [14,15] | W,S,T | – | – |
19 | Quercetin-O-pentoside-O-hexoside | Flavonoid | 22.3 | 595.1301 | C26H28O16 | 300.0265, 271.0251, 255.0289, 197.0452, 151.0032, 135.0438 | [14] | – | – | W,S |
20 | Taxifolin | Flavonoid | 22.7 | 303.0511 | C15H12O7 | 285.0338, 275.0543, 259.0598, 177.0181, 125.0235 | [14] | T | W,S,T | – |
21 | Salvianolic acid H | Phenolic | 23.2 | 537.0992 | C27H22O12 | 493.1259, 339.0598, 313.0792, 295.0686, 269.0892, 197.0506, 179.0392 | [22] | – | W,S,T | W,S,T |
22 | Quercetin-O-hexoside II | Flavonoid | 23.9 | 463.0988 | C21H20O12 | 301.0406, 271.0284, 179.0017, 151.0062 | [14,15] | W,S,T | – | W,S |
23 | Gallocatechin * | Flavonoid | 24.5 | 305.0745 | C15H14O7 | 225.1161 | [14] | W,S,T | W,S,T | – |
24 | Luteolin-O-deoxyhexoside-O-hexoside | Flavonoid | 24.7 | 593.1551 | C27H30O15 | 285.0406, 255.0282, 227.0314, 151.0032 | [14,15] | – | – | W,S |
25 | Salvianolic acid D | Phenolic | 25.4 | 417.0936 | C20H18O10 | 399.0816, 373.1028, 237.0463, 197.0507, 175.0448 | [43] | – | W,S,T | W,S |
26 | Rosmarinic acid * | Phenolic | 26.7 | 359.0829 | C18H16O8 | 197.0483, 179.0369, 135.0461, 123.0465 | [14,15,22,38] | W,S,T | W,S,T | W,S,T |
27 | Salvianolic acid B | Phenolic | 27.5 | 717.1659 | C36H30O16 | 537.1194, 519.1105, 493.1329, 475.1197, 359.0867, 339.0591, 321.0500, 197.0504, 179.0398 | [22] | – | W,S,T | – |
28 | Salvianolic acid A | Phenolic | 27.8 | 493.1286 | C26H22O10 | 313.0806, 295.0693, 185.0293 | [38] | – | W,S,T | – |
29 | Cichoric acid | Phenolic | 28.3 | 473.0701 | C22H18O12 | 311.0341, 293.0243, 179.0311, 149.0056 | [44] | – | – | W,S,T |
30 | Thymol-O-hexoside | Monoterpene | 28.5 | 311.1476 | C16H24O6 | 197.0453, 161.0256, 149.0970 | [14,42] | W,S,T | – | – |
31 | Salvianolic acid I | Phenolic | 28.8 | 537.1165 | C27H22O12 | 493.1131, 359.0766, 313.0702, 295.0606, 197.0443, 179.0342 | [22] | – | W,S,T | – |
32 | Eriodictyol | Flavonoid | 29.4 | 287.0573 | C15H12O6 | 151.0033, 127.0332 | [14] | W,S,T | – | – |
33 | Salvianolic acid E | Phenolic | 29.7 | 717.1654 | C36H30O16 | 537.1166, 519.1077, 339.0607, 321.0498, 295.0698, 197.0505 | [22] | – | W,S,T | – |
34 | Salvianolic acid A isomer | Phenolic | 30.2 | 493.1103 | C26H22O10 | 313.0654, 295.0554, 185.0202, | [34] | – | – | W,S,T |
35 | Luteolin * | Flavonoid | 31.1 | 285.0439 | C15H10O6 | 267.0320, 199.0413, 175.0413, 151.0046, 133.0303 | [3,14,18] | W,S,T | – | W,S |
36 | Trihydroxyoctadecadienoic acid I | Fatty acid | 32.2 | 327.2204 | C18H32O5 | 229.1451, 171.1020 | [14] | W,S,T | W,S,T | W,S,T |
37 | Apigenin * | Flavonoid | 32.8 | 271.0619 | C15H10O5 | 177.0183, 151.0030, 119.0496 | [3] | – | W,S,T | – |
38 | Cirsimaritin | Flavonoid | 33.0 | 313.0740 | C17H14O6 | 161.0246, 151.0399, 133.0297 | [14] | W,S,T | – | W,S,T |
39 | Trihydroxyoctadecenoic acid I | Fatty acid | 33.9 | 329.2336 | C18H34O5 | 229.1448, 211.1337, 171.1026 | [14,40] | W,S,T | – | – |
40 | Ladanein | Flavonoid | 34.2 | 313.0718 | C17H14O6 | 269.0828, 161.0246, 151.0396, 133.0290 | [45] | – | – | W,S |
41 | Kaempferol * | Flavonoid | 34.4 | 285.0387 | C15H10O6 | 255.0289, 239.0330, 185.0580, 151.0023 117.0332 | [3,34] | – | W,S,T | – |
42 | Carvone | Monoterpene | 35.2 | 165.0910 | C10H14O2 | 149.0608, 135.0441, 107.0486 | [40] | – | W,S,T | – |
43 | Trihydroxyoctadecadienoic acid II | Fatty acid | 35.5 | 327.2204 | C18H32O5 | 229.1443, 201.1133, 171.1007 | [14] | W,S,T | – | – |
44 | Pebrellin | Flavonoid | 39.1 | 373.0990 | C19H18O8 | 358.0702, 343.0469, 328.0224, 300.0285, 285.0056 | [14] | W,S,T | – | – |
45 | Cirsilineol | Flavonoid | 37.4 | 343.0847 | C18H16O7 | 328.0601, 313.0367, 298.0134, 285.0417, 270.0183, | [14] | W,S,T | – | W,S,T |
46 | Hydroperoxyoctadecadienoic acid | Fatty acid | 40.6 | 311.2230 | C18H32O4 | 293.2130, 275.2039, 223.1704 | [14] | W,S,T | – | S |
47 | Carnosol | Diterpene | 42.2 | 329.1764 | C22H26O4 | 314.1506, 299.1286, 271.0977 | [14,34] | W,S,T | S,T | – |
48 | Dehydrocarnosol | Diterpene | 45.5 | 327.1615 | C22H24O4 | 299.1680, 284.1334, 269.1113 | [14] | W,S,T | W,S,T | – |
49 | Hydroxyoctadecatrienoic acid | Fatty acid | 46.7 | 293.2125 | C18H30O3 | 275.2021, 183.1392 | [14] | W,S,T | S,T | W,S,T |
50 | 4′-Hydroxy-5,5′-diisopropyl-2,2′-dimethyl-3,4-biphenylquinone | Phenolic | 48.6 | 311.1663 | C20H24O3 | 283.1711, 268.1130, 253.1164, 240.1167, 225.0946, 187.1115 | [39] | S,T | S,T | – |
51 | Hydroxyoctadecadienoic acid | Fatty acid | 49.4 | 295.2296 | C18H32O3 | 277.2133, 195.1391, 171.1030 | [14] | S,T | S,T | S,T |
52 | 3,4,4′-Trihydroxy-5,5′-diisopropyl-2,2′-dimethylbiphenyl | Phenolic | 51.5 | 313.1810 | C20H26O3 | 297.1513, 283.1357, 270.1264, 255.1032 | [39] | W,S,T | W,S,T | W,S,T |
3.3. Total Phenolic and Flavonoid Content of Total, Spent, and Residual Water Extracts
3.4. Antioxidant Activity of Essential Oils, Total, Spent, and Residual Water Extracts
3.5. Enzyme Inhibitory Activity of Essential Oils, Total, Spent, and Residual Water Extracts
3.6. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trifan, A.; Zengin, G.; Brebu, M.; Skalicka-Woźniak, K.; Luca, S.V. Phytochemical characterization and evaluation of the antioxidant and anti-enzymatic activity of five common spices: Focus on their essential oils and spent material extractives. Plants 2021, 10, 2692. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, H.; Marzouki, M.; M’Rabet, Y.; Mezni, M.; Ouazzou, A.A.; Hosni, K. Enzyme pretreatment improves the recovery of bioactive phytochemicals from sweet basil (Ocimum basilicum L.) leaves and their hydrodistilled residue by-products, and potentiates their biological activities. Arab. J. Chem. 2020, 13, 6451–6460. [Google Scholar] [CrossRef]
- Desta, K.T.; Kim, G.S.; Abd El-Aty, A.; Raha, S.; Kim, M.-B.; Jeong, J.H.; Warda, M.; Hacımüftüoğlu, A.; Shin, H.-C.; Shim, J.-H. Flavone polyphenols dominate in Thymus schimperi Ronniger: LC–ESI–MS/MS characterization and study of anti-proliferative effects of plant extract on AGS and HepG2 cancer cells. J. Chromatogr. B 2017, 1053, 1–8. [Google Scholar] [CrossRef]
- Li, X.; He, T.; Wang, X.; Shen, M.; Yan, X.; Fan, S.; Wang, L.; Wang, X.; Xu, X.; Sui, H. Traditional uses, chemical constituents and biological activities of plants from the genus Thymus. Chem. Biodivers. 2019, 16, e1900254. [Google Scholar] [CrossRef]
- Sonmezdag, A.S.; Kelebek, H.; Selli, S. Characterization of bioactive and volatile profiles of thyme (Thymus vulgaris L.) teas as affected by infusion times. J. Food Measur. Charact. 2018, 12, 2570–2580. [Google Scholar] [CrossRef]
- Köksal, E.; Bursal, E.; Gülçin, İ.; Korkmaz, M.; Çağlayan, C.; Gören, A.C.; Alwasel, S.H. Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by liquid chromatography and tandem mass spectrometry. Int. J. Food Prop. 2017, 20, 514–525. [Google Scholar] [CrossRef] [Green Version]
- Micucci, M.; Protti, M.; Aldini, R.; Frosini, M.; Corazza, I.; Marzetti, C.; Mattioli, L.B.; Tocci, G.; Chiarini, A.; Mercolini, L. Thymus vulgaris L. essential oil solid formulation: Chemical profile and spasmolytic and antimicrobial effects. Biomolecules 2020, 10, 860. [Google Scholar] [CrossRef]
- Gavarić, N.; Kladar, N.; Mišan, A.; Nikolić, A.; Samojlik, I.; Mimica-Dukić, N.; Božin, B. Postdistillation waste material of thyme (Thymus vulgaris L., Lamiaceae) as a potential source of biologically active compounds. Ind. Crops Prod. 2015, 74, 457–464. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017, 220, 153–161. [Google Scholar] [CrossRef]
- Marrelli, M.; Statti, G.A.; Conforti, F. Origanum spp.: An update of their chemical and biological profiles. Phytochem. Rev. 2018, 17, 873–888. [Google Scholar] [CrossRef]
- Özer, Z.; Gören, A.C.; Kılıç, T.; Öncü, M.; Çarıkçı, S.; Dirmenci, T. The phenolic contents, antioxidant and anticholinesterase activity of section Amaracus (Gled.) Vogel and Anatolicon Ietsw. of Origanum L. species. Arab. J. Chem. 2020, 13, 5027–5039. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Berkay Yılmaz, Y.; Antika, G.; Salehi, B.; Tumer, T.B.; Kulandaisamy Venil, C.; Das, G.; Patra, J.K.; Karazhan, N.; Akram, M. Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum. Phytother. Res. 2021, 35, 95–121. [Google Scholar] [CrossRef] [PubMed]
- Pezzani, R.; Vitalini, S.; Iriti, M. Bioactivities of Origanum vulgare L.: An update. Phytochem. Rev. 2017, 16, 1253–1268. [Google Scholar] [CrossRef]
- Gök, H.N.; Luca, S.V.; Ay, S.T.; Komsta, Ł.; Salmas, R.E.; Orhan, I.E.; Skalicka-Woźniak, K. Profiling the annual change of the neurobiological and antioxidant effects of five Origanum species in correlation with their phytochemical composition. Food Chem. 2022, 368, 130775. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Ferrante, C.; Orlando, G.; Zheleva-Dimitrova, D.; Gevrenova, R.; Recinella, L.; Chiavaroli, A.; Leone, S.; Brunetti, L.; Aumeeruddy, M.Z. Chemical profiling and pharmaco-toxicological activity of Origanum sipyleum extracts: Exploring for novel sources for potential therapeutic agents. J. Food Biochem. 2019, 43, e13003. [Google Scholar] [CrossRef]
- Ozdemir, N.; Ozgen, Y.; Kiralan, M.; Bayrak, A.; Arslan, N.; Ramadan, M.F. Effect of different drying methods on the essential oil yield, composition and antioxidant activity of Origanum vulgare L. and Origanum onites L. J. Food Measur. Charact. 2018, 12, 820–825. [Google Scholar] [CrossRef]
- Khan, M.; Khan, S.T.; Khan, M.; Mousa, A.A.; Mahmood, A.; Alkhathlan, H.Z. Chemical diversity in leaf and stem essential oils of Origanum vulgare L. and their effects on microbicidal activities. AMB Express 2019, 9, 176. [Google Scholar] [CrossRef]
- Oniga, I.; Pușcaș, C.; Silaghi-Dumitrescu, R.; Olah, N.-K.; Sevastre, B.; Marica, R.; Marcus, I.; Sevastre-Berghian, A.C.; Benedec, D.; Pop, C.E. Origanum vulgare ssp. vulgare: Chemical composition and biological studies. Molecules 2018, 23, 2077. [Google Scholar]
- Zahran, E.M.; Abdelmohsen, U.R.; Khalil, H.E.; Desoukey, S.Y.; Fouad, M.A.; Kamel, M.S. Diversity, phytochemical and medicinal potential of the genus Ocimum L.(Lamiaceae). Phytochem. Rev. 2020, 19, 907–953. [Google Scholar] [CrossRef]
- Gurav, T.P.; Dholakia, B.B.; Giri, A.P. A glance at the chemodiversity of Ocimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil. Phytochem. Rev. 2021, 21, 879–913. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review. Int. J. Food Prop. 2020, 23, 1961–1970. [Google Scholar] [CrossRef]
- Darrag, H.M.; Almuhanna, H.T.; Hakami, E.H. Secondary metabolites in basil, bio-insecticide, inhibition effect, and in silico molecular docking against proteolytic enzymes of the red palm weevil (Rhynchophorus ferrugineus). Plants 2022, 11, 1087. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Bajpai, V.; Tiwari, S.; Pandey, R. Phytochemistry of Plants of Genus Ocimum; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Dhama, K.; Sharun, K.; Gugjoo, M.B.; Tiwari, R.; Alagawany, M.; Iqbal Yatoo, M.; Thakur, P.; Iqbal, H.M.; Chaicumpa, W.; Michalak, I. A comprehensive review on chemical profile and pharmacological activities of Ocimum basilicum. Food Rev. Int. 2021, 1–29. [Google Scholar] [CrossRef]
- Mkaddem Mounira, G.; Ahlem, Z.; Abdallah Mariem, B.; Romdhane, M.; Okla, M.K.; Al-Hashimi, A.; Alwase, Y.A.; Madnay, M.M.; AbdElgayed, G.; Asard, H. Essential oil composition and antioxidant and antifungal activities of two varieties of Ocimum basilicum L. (Lamiaceae) at two phenological stages. Agronomy 2022, 12, 825. [Google Scholar] [CrossRef]
- Hong, S.J.; Kim, D.S.; Lee, J.; Boo, C.G.; Youn, M.Y.; Le, B.; Kim, J.K.; Shin, E.C. Inhalation of low-dose basil (Ocimum basilicum) essential oil improved cardiovascular health and plasma lipid markers in high fat diet-induced obese rats. J. Food Sci. 2022, 87, 2450–2462. [Google Scholar] [CrossRef]
- Kačániová, M.; Galovičová, L.; Borotová, P.; Vukovic, N.L.; Vukic, M.; Kunová, S.; Hanus, P.; Bakay, L.; Zagrobelna, E.; Kluz, M. Assessment of Ocimum basilicum essential oil anti-insect activity and antimicrobial protection in fruit and vegetable quality. Plants 2022, 11, 1030. [Google Scholar] [CrossRef]
- Wang, M.; Cantrell, C.L.; Mathews, S.T.; Paudel, P.; Lee, J.; Mentreddy, S.R. Agronomy, chemical analysis, and antidiabetic activity of basil (Ocimum species). ACS Food Sci. Technol. 2022, 2, 1243–1256. [Google Scholar] [CrossRef]
- Peshev, D. Theoretical assessment of the use of nanofiltration for fractionation of waste aqueous fractions from the essential oil industry. Bulg. Chem. Commun. 2020, 52, 532–542. [Google Scholar]
- Shanaida, M.; Hudz, N.; Jasicka-Misiak, I.; Wieczorek, P.P. Polyphenols and pharmacological screening of a Monarda fistulosa L. dry extract based on a hydrodistilled residue by-product. Front. Pharmacol. 2021, 12, 563436. [Google Scholar] [CrossRef]
- Santana-Méridas, O.; Polissiou, M.; Izquierdo-Melero, M.; Astraka, K.; Tarantilis, P.A.; Herraiz-Peñalver, D.; Sánchez-Vioque, R. Polyphenol composition, antioxidant and bioplaguicide activities of the solid residue from hydrodistillation of Rosmarinus officinalis L. Ind. Crops Prod. 2014, 59, 125–134. [Google Scholar] [CrossRef]
- Singh, D.; Chaudhuri, P.K. A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Ind. Crops Prod. 2018, 118, 367–382. [Google Scholar] [CrossRef]
- Méndez-Tovar, I.; Herrero, B.; Pérez-Magariño, S.; Pereira, J.A.; Manzanera, M.C.A.S. By-product of Lavandula latifolia essential oil distillation as source of antioxidants. J. Food Drug Anal. 2015, 23, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.; Skendi, A.; Bouloumpasi, E.; Chatzopoulou, P.; Biliaderis, C.G. LC-MS identification and quantification of phenolic compounds in solid residues from the essential oil industry. Antioxidants 2021, 10, 2016. [Google Scholar] [CrossRef] [PubMed]
- Šikić Pogačar, M.; Klančnik, A.; Bucar, F.; Langerholc, T.; Smole Možina, S. Anti-adhesion activity of thyme (Thymus vulgaris L.) extract, thyme post-distillation waste, and olive (Olea europea L.) leaf extract against Campylobacter jejuni on polystyrene and intestine epithelial cells. J. Sci. Food Agric. 2016, 96, 2723–2730. [Google Scholar] [CrossRef] [PubMed]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. 2017, 8, 290. [Google Scholar] [CrossRef]
- Bendif, H.; Peron, G.; Miara, M.D.; Sut, S.; Dall’Acqua, S.; Flamini, G.; Maggi, F. Total phytochemical analysis of Thymus munbyanus subsp. coloratus from Algeria by HS-SPME-GC-MS, NMR and HPLC-MSn studies. J. Pharm. Biomed. Anal. 2020, 186, 113330. [Google Scholar] [CrossRef]
- Nakatani, N.; Miura, K.; Inagaki, T. Structure of new deodorant biphenyl compounds from thyme (Thymus vulgaris L.) and their activity against methyl mercaptan. Agric. Biol. Chem. 1989, 53, 1375–1381. [Google Scholar] [CrossRef]
- Kumar, S.; Bouic, P.J.; Rosenkranz, B. In vitro assessment of the interaction potential of Ocimum basilicum (L.) extracts on CYP2B6, 3A4, and rifampicin metabolism. Front. Pharmacol. 2020, 11, 517. [Google Scholar] [CrossRef]
- Trifan, A.; Wolfram, E.; Esslinger, N.; Grubelnik, A.; Skalicka-Woźniak, K.; Minceva, M.; Luca, S.V. Globoidnan A, rabdosiin and globoidnan B as new phenolic markers in European-sourced comfrey (Symphytum officinale L.) root samples. Phytochem. Anal. 2021, 32, 482–494. [Google Scholar] [CrossRef]
- Kamel, M.; Assaf, M.; Hasanean, H.; Ohtani, K.; Kasai, R.; Yamasaki, K. Monoterpene glucosides from Origanum syriacum. Phytochemistry 2001, 58, 1149–1152. [Google Scholar] [CrossRef] [Green Version]
- Ai, C.-B.; Li, L.-N. Salvianolic acids D and E: Two new depsides from Salvia miltiorrhiza. Planta Med. 1992, 58, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Liber, Z.; Carović-Stanko, K.; Politeo, O.; Strikić, F.; Kolak, I.; Milos, M.; Satovic, Z. Chemical characterization and genetic relationships among Ocimum basilicum L. cultivars. Chem. Biodiv. 2011, 8, 1978–1989. [Google Scholar] [CrossRef] [PubMed]
- Jamzad, Z.; Grayer, R.J.; Kite, G.C.; Simmonds, M.S.; Ingrouille, M.; Jalili, A. Leaf surface flavonoids in Iranian species of Nepeta (Lamiaceae) and some related genera. Biochem. Syst. Ecol. 2003, 31, 587–600. [Google Scholar] [CrossRef]
- Singh, N.; Yadav, S.S. A review on health benefits of phenolics derived from dietary spices. Curr. Res. Food Sci. 2022, 10, 1508–1523. [Google Scholar] [CrossRef] [PubMed]
- Dobravalskytė, D.; Venskutonis, P.R.; Talou, T. Antioxidant properties and essential oil composition of Calamintha grandiflora L. Food Chem. 2012, 135, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Berktas, S.; Cam, M. Peppermint leaves hydrodistillation by-products: Bioactive properties and incorporation into ice cream formulations. J. Food Sci. Technol. 2021, 58, 4282–4293. [Google Scholar] [CrossRef] [PubMed]
- De Elguea-Culebras, G.O.; Bravo, E.M.; Sánchez-Vioque, R. Potential sources and methodologies for the recovery of phenolic compounds from distillation residues of Mediterranean aromatic plants. An approach to the valuation of by-products of the essential oil market—A review. Ind. Crops Prod. 2022, 175, 114261. [Google Scholar] [CrossRef]
- Toydemir, G.; Subasi, B.G.; Hall, R.D.; Beekwilder, J.; Boyacioglu, D.; Capanoglu, E. Effect of food processing on antioxidants, their bioavailability and potential relevance to human health. Food Chem. X 2022, 14, 100334. [Google Scholar] [CrossRef]
- Gao, Q.; Li, Y.; Li, Y.; Zhang, Z.; Liang, Y. Antioxidant and prooxidant activities of phenolic acids commonly existed in vegetables and their relationship with structures. Food Sci. Technol. 2022, 42, e07622. [Google Scholar] [CrossRef]
- Lee, J.; Scagel, C.F. Chicoric acid: Chemistry, distribution, and production. Front. Chem. 2013, 1, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbaniak, A.; Kujawski, J.; Czaja, K.; Szelag, M. Antioxidant properties of several caffeic acid derivatives: A theoretical study. Compt. Rend. Chim. 2017, 20, 1072–1082. [Google Scholar] [CrossRef]
- De Carvalho Junior, A.R.; Oliveira Ferreira, R.; de Souza Passos, M.; da Silva Boeno, S.I.; Glória das Virgens, L.d.L.; Ventura, T.L.B.; Calixto, S.D.; Lassounskaia, E.; de Carvalho, M.G.; Braz-Filho, R. Antimycobacterial and nitric oxide production inhibitory activities of triterpenes and alkaloids from Psychotria nuda (Cham. & Schltdl.) Wawra. Molecules 2019, 24, 1026. [Google Scholar] [PubMed] [Green Version]
- Sutulienė, R.; Laužikė, K.; Pukas, T.; Samuolienė, G. Effect of light intensity on the growth and antioxidant activity of sweet basil and lettuce. Plants 2022, 11, 1709. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, K.; Karadag, A.; Sagdic, O. The effects of drying and fermentation on the bioaccessibility of phenolics and antioxidant capacity of Thymus vulgaris leaves. Acta Alimen. 2022, 51, 155–165. [Google Scholar] [CrossRef]
- Mora-Zúñiga, A.E.; Treviño-Garza, M.Z.; Amaya Guerra, C.A.; Galindo Rodríguez, S.A.; Castillo, S.; Martínez-Rojas, E.; Rodríguez-Rodríguez, J.; Báez-González, J.G. Comparison of chemical composition, physicochemical parameters, and antioxidant and antibacterial activity of the essential oil of cultivated and wild Mexican oregano Poliomintha longiflora Gray. Plants 2022, 11, 1785. [Google Scholar] [CrossRef]
- Papoutsis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef]
- Taqui, R.; Debnath, M.; Ahmed, S.; Ghosh, A. Advances on plant extracts and phytocompounds with acetylcholinesterase inhibition activity for possible treatment of Alzheimer’s disease. Phytomed. Plus 2022, 2, 100184. [Google Scholar] [CrossRef]
- Lankatillake, C.; Luo, S.; Flavel, M.; Lenon, G.B.; Gill, H.; Huynh, T.; Dias, D.A. Screening natural product extracts for potential enzyme inhibitors: Protocols, and the standardisation of the usage of blanks in α-amylase, α-glucosidase and lipase assays. Plant Methods 2021, 17, 3. [Google Scholar] [CrossRef]
- Mohammed, A.B.; Yagi, S.; Tzanova, T.; Schohn, H.; Abdelgadir, H.; Stefanucci, A.; Mollica, A.; Mahomoodally, M.F.; Adlan, T.A.; Zengin, G. Chemical profile, antiproliferative, antioxidant and enzyme inhibition activities of Ocimum basilicum L. and Pulicaria undulata (L.) CA Mey. grown in Sudan. S. Afr. J. Bot. 2020, 132, 403–409. [Google Scholar] [CrossRef]
- Carrasco, A.; Perez, E.; Cutillas, A.-B.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Origanum vulgare and Thymbra capitata essential oils from Spain: Determination of aromatic profile and bioactivities. Nat. Prod. Commun. 2016, 11, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, S.M.; Ramu, R.; Shirahatti, P.S.; Shivamallu, C.; Amachawadi, R.G. A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon 2021, 7, e07054. [Google Scholar] [CrossRef] [PubMed]
- Ali, A. Chemical composition, α-glucosidase inhibitory and anticancer activity of essential oil of Thymus vulgaris leaves. J. Essen. Oil Bear. Plants 2021, 24, 695–703. [Google Scholar] [CrossRef]
- Stefanis, I.; Hadjipavlou-Litina, D.; Bilia, A.-R.; Karioti, A. LC-MS-and NMR-guided isolation of monoterpene dimers from cultivated Thymus vulgaris varico 3 hybrid and their antityrosinase activity. Planta Med. 2019, 85, 941–946. [Google Scholar]
- Alu’datt, M.H.; Rababah, T.; Johargy, A.; Gammoh, S.; Ereifej, K.; Alhamad, M.N.; Brewer, M.S.; Saati, A.A.; Kubow, S.; Rawshdeh, M. Extraction, optimisation and characterisation of phenolics from Thymus vulgaris L.: Phenolic content and profiles in relation to antioxidant, antidiabetic and antihypertensive properties. Int. J. Food Sci. Technol. 2016, 51, 720–730. [Google Scholar] [CrossRef]
- Shanak, S.; Bassalat, N.; Albzoor, R.; Kadan, S.; Zaid, H. In vitro and in silico evaluation for the inhibitory action of O. basilicum methanol extract on α-glucosidase and α-amylase. Evid. Based Complement. Altern. Med. 2021, 2021, 5515775. [Google Scholar] [CrossRef] [PubMed]
- Tamfu, A.N.; Kucukaydin, S.; Ceylan, O.; Sarac, N.; Duru, M.E. Phenolic composition, enzyme inhibitory and anti-quorum sensing activities of cinnamon (Cinnamomum zeylanicum Blume) and basil (Ocimum basilicum Linn). Chem. Afr. 2021, 4, 759–767. [Google Scholar] [CrossRef]
- Lombrea, A.; Antal, D.; Ardelean, F.; Avram, S.; Pavel, I.Z.; Vlaia, L.; Mut, A.-M.; Diaconeasa, Z.; Dehelean, C.A.; Soica, C. A recent insight regarding the phytochemistry and bioactivity of Origanum vulgare L. essential oil. Int. J. Mol. Sci. 2020, 21, 9653. [Google Scholar] [CrossRef]
- Parra, C.; Muñoz, P.; Bustos, L.; Parra, F.; Simirgiotis, M.J.; Escobar, H. UHPLC-DAD Characterization of Origanum vulgare L. from Atacama desert Andean region and antioxidant, antibacterial and enzyme inhibition activities. Molecules 2021, 26, 2100. [Google Scholar] [CrossRef]
- Gonçalves, S.; Moreira, E.; Grosso, C.; Andrade, P.B.; Valentão, P.; Romano, A. Phenolic profile, antioxidant activity and enzyme inhibitory activities of extracts from aromatic plants used in Mediterranean diet. J. Food Sci. Technol. 2017, 54, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucl. Acid Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef] [PubMed]
Material | Yield EO [mL/%wt] | Yield WE [%wt] | Yield SE [%wt] | Yield TE [%wt] |
---|---|---|---|---|
Thyme | 2.3 ± 0.1 | 29.2 ± 1.1 | 9.3 ± 0.8 | 10.5 ± 1.0 |
Oregano | 4.3 ± 0.1 | 42.2 ± 1.4 | 9.3 ± 0.5 | 16.0 ± 2.2 |
Basil | 1.4 ± 0.2 | 32.8 ± 1.4 | 11.0 ± 1.4 | 18.4 ± 2.0 |
No. | Compound | LRI a | Thyme (%) b | Oregano (%) b | Basil (%) b |
---|---|---|---|---|---|
1 | Methyl 2-methylbutanoate | 785 | 0.18 ± 0.01 | Nd | Nd |
2 | α-Phellandrene | 927 | 0.62 ± 0.03 | 0.22 ± 0.01 | Nd |
3 | α-Pinene | 935 | 1.08 ± 0.03 | 0.34 ± 0.02 | 0.29 ± 0.03 |
4 | Camphene | 952 | 0.59 ± 0.02 | 0.10 ± 0.01 | 0.05 ± 0.01 |
5 | Sabinene | 974 | Nd | Nd | 0.16 ± 0.01 |
6 | β-Pinene | 980 | 1.33 ± 0.04 | 0.42 ± 0.02 | 0.53 ± 0.05 |
7 | 3-Octanone | 985 | 0.06 ± 0.00 | 0.08 ± 0.00 | Nd |
8 | β-Myrcene * | 989 | 0.83 ± 0.02 | 0.42 ± 0.02 | 0.19 ± 0.01 |
9 | 3-Octanol | 996 | 0.14 ± 0.01 | 0.04 ± 0.00 | Nd |
10 | 3-Thujene | 1007 | 0.10 ± 0.01 | 0.07 ± 0.00 | Nd |
11 | 3-Carene | 1009 | 0.08 ± 0.00 | Nd | Nd |
12 | α-Terpinene | 1018 | 1.16 ± 0.03 | 0.71 ± 0.02 | 0.09 ± 0.00 |
13 | p-Cymene | 1027 | 25.70 ± 0.39 | 6.71 ± 0.11 | 0.06 ± 0.00 |
14 | Limonene * | 1031 | 0.48 ± 0.01 | 0.27 ± 0.01 | 0.23 ± 0.02 |
15 | Eucalyptol | 1034 | 1.01 ± 0.02 | 0.03 ± 0.0 | 5.46 ± 0.48 |
16 | trans-β-Ocimene | 1045 | Nd | Nd | 0.05 ± 0.01 |
17 | cis-α-Ocimene | 1047 | Nd | Nd | 0.08 ± 0.08 |
18 | γ-Terpinene | 1060 | 4.89 ± 0.10 | 2.87 ± 0.03 | 0.16 ± 0.01 |
19 | 4-Pentenyl butyrate | 1065 | 0.05 ± 0.00 | Nd | Nd |
20 | cis-α-Terpineol | 1072 | 0.28 ± 0.01 | 0.09 ± 0.00 | 0.18 ± 0.01 |
21 | α-Terpinolene | 1087 | 0.14 ± 0.01 | 0.09 ± 0.01 | 0.18 ± 0.03 |
22 | p-Cymenene | 1091 | 0.09 ± 0.00 | Nd | Nd |
23 | Linalool * | 1099 | 2.96 ± 0.05 | 0.15 ± 0.01 | 17.70 ± 1.00 |
24 | trans-5-Caranol | 1101 | Nd | 0.06 ± 0.00 | Nd |
25 | Fenchyl alcohol | 1121 | Nd | Nd | 0.04 ± 0.00 |
26 | cis-p-Menth-2-en-1-ol | 1127 | 0.10 ± 0.00 | 0.04 ± 0.00 | Nd |
27 | trans-p-Menth-2-en-1-ol | 1145 | 0.10 ± 0.00 | 0.04 ± 0.00 | Nd |
28 | Camphor | 1150 | 0.40 ± 0.01 | Nd | 0.52 ± 0.03 |
29 | cis-Terpin hydrate | 1173 | Nd | Nd | 0.19 ± 0.01 |
30 | Borneol | 1176 | 1.61 ± 0.02 | 0.83 ± 0.01 | 0.31 ± 0.01 |
31 | Terpinen-4-ol | 1183 | 1.25 ± 0.02 | 0.98 ± 0.02 | 0.68 ± 0.03 |
32 | p-Cymen-8-ol | 1188 | 0.12 ± 0.01 | 0.02 ± 0.00 | Nd |
33 | Estragole | 1191 | Nd | Nd | 19.62 ± 0.80 |
34 | trans-α-Terpineol | 1197 | 0.43 ± 0.02 | 0.23 ± 0.00 | Nd |
35 | Dihydrocarvone | 1199 | Nd | 0.27 ± 0.01 | Nd |
36 | Octyl acetate | 1201 | Nd | Nd | 0.06 ± 0.01 |
37 | cis-Geraniol | 1219 | Nd | Nd | 0.06 ± 0.02 |
38 | Thymol methyl ether | 1224 | 1.44 ± 0.02 | Nd | Nd |
39 | Isothymol methyl ether | 1235 | 1.06 ± 0.01 | 0.60 ± 0.01 | Nd |
40 | d-Darvone | 1245 | Nd | 0.03 ± 0.00 | 0.05 ± 0.00 |
41 | trans-Geraniol | 1247 | 0.16 ± 0.01 | Nd | 0.29 ± 0.01 |
42 | m-Cymene | 1273 | 0.08 ± 0.01 | Nd | Nd |
43 | Thymol isomer | 1281 | 0.59 ± 0.01 | 0.07 ± 0.01 | Nd |
44 | Bornyl acetate | 1286 | Nd | Nd | 0.68 ± 0.01 |
45 | Thymol | 1293 | 40.26 ± 0.36 | 9.40 ± 0.30 | 0.04 ± 0.00 |
46 | Carvacrol | 1292 | 4.48 ± 0.06 | 69.93 ± 0.75 | Nd |
47 | (Z)-Methyl cinnamate | 1297 | Nd | Nd | 2.02 ± 0.04 |
48 | Isoeugenol | 1322 | Nd | 0.04 ± 0.01 | Nd |
49 | 2-Hydroxycineole acetate | 1336 | Nd | Nd | 0.09 ± 0.00 |
50 | Eugenol | 1350 | 0.10 ± 0.01 | Nd | 3.55 ± 0.99 |
51 | Isobornyl propionate | 1378 | 0.10 ± 0.01 | Nd | Nd |
52 | Copaene | 1380 | 0.10 ± 0.0 | Nd | 0.20 ± 0.01 |
53 | α-Farnesene | 1390 | 0.07 ± 0.01 | Nd | Nd |
54 | (E)-Methyl cinnamate | 1387 | Nd | Nd | 12.06 ± 0.27 |
55 | β-Elemene | 1394 | Nd | Nd | 0.99 ± 0.06 |
56 | Methyl eugenol | 1398 | Nd | Nd | 2.78 ± 0.07 |
57 | (E)-α-Bergamotene | 1417 | Nd | Nd | 0.10 ± 0.01 |
58 | Caryophyllene * | 1428 | 2.26 ± 0.08 | 1.75 ± 0.07 | 1.16 ± 0.05 |
59 | (Z)-α-Bergamotene | 1437 | 0.03 ± 0.00 | Nd | 7.11 ± 0.13 |
60 | 4-t-Butyl-pyrocatechol | 1442 | 0.17 ± 0.03 | 0.04 ± 0.00 | Nd |
61 | γ-Elemene | 1447 | Nd | 0.04 ± 0.01 | 0.04 ± 0.00 |
62 | β-Farnesene | 1453 | Nd | Nd | 0.39 ± 0.02 |
63 | Cedrene | 1457 | Nd | Nd | 0.02 ± 0.00 |
64 | Humulene * | 1464 | 0.08 ± 0.01 | 0.23 ± 0.02 | 0.92 ± 0.04 |
65 | Nerol acetate | 1467 | 0.13 ± 0.01 | Nd | Nd |
66 | β-Cubenene | 1470 | Nd | Nd | 0.49 ± 0.03 |
67 | α-Himalachene | 1474 | Nd | Nd | 0.05 ± 0.00 |
68 | α-Huaiene | 1481 | 0.25 ± 0.01 | 0.05 ± 0.01 | 0.27 ± 0.02 |
69 | Germacrene D | 1489 | Nd | Nd | 2.18 ± 0.10 |
70 | β-Selinene | 1498 | 0.08 ± 0.01 | 0.02 ± 0.00 | 0.29 ± 0.02 |
71 | α-Selinene | 1504 | 0.12 ± 0.01 | Nd | 0.59 ± 0.03 |
72 | β-Bisabolene | 1508 | 0.12 ± 0.01 | 1.32 ± 0.09 | 0.95 ± 0.05 |
73 | γ-Cadinene | 1520 | 0.30 ± 0.02 | 0.05 ± 0.01 | 3.46 ± 0.19 |
74 | β-Cadinene | 1524 | 0.29 ± 0.02 | 0.11 ± 0.01 | Nd |
75 | δ-Cadinene | 1528 | 0.15 ± 0.02 | 0.05 ± 0.01 | 0.68 ± 0.04 |
76 | α-Bisabolene | 1543 | Nd | Nd | 0.84 ± 0.05 |
77 | (E)-Farnesene epoxide | 1548 | Nd | Nd | 0.09 ± 0.01 |
78 | Nerolidol | 1562 | Nd | Nd | 0.26 ± 0.02 |
79 | Globulol | 1580 | Nd | Nd | 0.17 ± 0.01 |
80 | Spathulenol | 1586 | 0.04 ± 0.01 | 0.07 ± 0.01 | 0.72 ± 0.07 |
81 | β-Caryophyllene oxide * | 1593 | 1.01 ± 0.08 | 0.94 ± 0.08 | 0.41 ± 0.05 |
82 | Aromadendrene oxide | 1603 | Nd | Nd | 0.10 ± 0.01 |
83 | cis-(Z)-α-Bisabolene epoxide | 1611 | Nd | Nd | 0.13 ± 0.01 |
84 | trans-(E)-α-Bisabolene epoxide | 1620 | Nd | 0.07 ± 0.01 | Nd |
85 | Cubenol | 1623 | 0.09 ± 0.01 | Nd | 0.74 ± 0.06 |
86 | γ-Eudesmol | 1633 | 0.11 ± 0.01 | Nd | Nd |
87 | trans-(Z)-α-Bisabolene epoxide | 1644 | Nd | Nd | 0.53 ± 0.07 |
88 | α-Cadinol | 1650 | 0.29 ± 0.02 | Nd | 5.64 ± 0.76 |
89 | β-Eudesmol | 1663 | 0.07 ± 0.01 | Nd | 0.64 ± 0.01 |
90 | allo-Aromadendrene epoxide | 1678 | 0.11 ± 0.01 | 0.04 ± 0.01 | 0.19 ± 0.03 |
91 | α-Bisabolol * | 1692 | Nd | Nd | 0.28 ± 0.05 |
92 | Ledene alcohol | 1700 | Nd | Nd | 0.11 ± 0.03 |
93 | Ledene oxide | 1717 | Nd | Nd | 0.12 ± 0.03 |
94 | Isoaromandendrene epoxide | 1735 | Nd | Nd | 0.20 ± 0.006 |
Hydrocarbon monoterpenes | 37.19 ± 0.61 | 12.14 ± 0.14 | 2.07 ± 0.15 | ||
Oxygenated monoterpenes | 56.55 ± 0.30 | 82.89 ± 0.44 | 52.25 ± 2.17 | ||
Hydrocarbon sesquiterpenes | 3.86 ± 0.19 | 3.62 ± 0.22 | 20.74 ± 0.70 | ||
Oxygenated sesquiterpenes | 1.73 ± 0.14 | 1.12 ± 0.11 | 10.32 ± 1.32 | ||
Other | 0.60 ± 0.01 | 0.16 ± 0.03 | 14.14 ± 0.24 | ||
Total identified | 99.93 ± 0.10 | 99.93 ± 0.01 | 99.52 ± 0.27 |
Sample | Extract | TPC (mg GAE/g) | TFC (mg RE/g) |
---|---|---|---|
Thyme | Residual water | 88.69 ± 0.45 a | 23.09 ± 0.08 c |
Spent | 66.67 ± 0.47 b | 28.16 ± 0.11 a | |
Total | 65.31 ± 0.94 b | 24.70 ± 0.02 b | |
Oregano | Residual water | 110.35 ± 1.95 b | 24.95 ± 0.18 b |
Spent | 113.34 ± 1.71 ab | 34.88 ± 0.30 a | |
Total | 115.71 ± 1.65 a | 25.26 ± 0.57 b | |
Basil | Residual water | 63.57 ± 0.17 b | 8.31 ± 0.66 c |
Spent | 93.66 ± 0.04 a | 27.59 ± 0.07 a | |
Total | 58.85 ± 0.39 c | 14.03 ± 0.10 b |
Samples | Extracts |
DPPH (mg TE/g) |
ABTS (mg TE/g) |
CUPRAC (mg TE/g) |
FRAP (mg TE/g) |
MCA (mg EDTAE/g) |
PBD (mmol TE/g) |
---|---|---|---|---|---|---|---|
Thyme | Residual water | 121.00 ± 4.57 a | 150.09 ± 3.40 a | 289.24 ± 1.16 b | 170.15 ± 3.25 b | 15.04 ± 0.03 a | 1.77 ± 0.01 b |
Spent | 48.36 ± 0.06 b | 68.99 ± 0.63 b | 180.38 ± 4.66 c | 98.44 ± 1.55 c | 2.51 ± 0.54 b | 1.45 ± 0.04 c | |
Total | 48.46 ± 0.09 b | 69.27 ± 0.09 b | 176.67 ± 3.03 c | 91.58 ± 1.75 d | 2.99 ± 0.14 b | 1.41 ± 0.02 c | |
Essential oil | 33.44 ± 0.26 c | 69.58 ± 0.09 b | 1578.09 ± 59.67 a | 189.13 ± 1.52 a | na | 10.14 ± 0.55 a | |
Oregano | Residual water | 187.72 ± 4.15 c | 207.35 ± 3.84 c | 423.03 ± 4.31 c | 231.74 ± 4.15 c | 17.50 ± 0.13 a | 2.29 ± 0.03 c |
Spent | 266.59 ± 1.59 a | 285.68 ± 6.04 b | 575.87 ± 26.52 b | 319.24 ± 7.55 a | 2.57 ± 0.32 c | 2.97 ± 0.04 b | |
Total | 246.28 ± 0.97 b | 347.67 ± 15.98 a | 538.97 ± 5.39 b | 291.39 ± 2.45 b | 6.63 ± 0.26 b | 2.70 ± 0.07 bc | |
Essential oil | 37.81 ± 0.18 d | 69.48 ± 0.07 d | 1792.32 ± 33.65 a | 198.55 ± 4.55 d | na | 5.74 ± 0.34 a | |
Basil | Residual water | 48.05 ± 0.16 b | 69.54 ± 0.07 b | 188.59 ± 1.70 c | 97.78 ± 2.03 c | 10.74 ± 0.36 a | 1.44 ± 0.01 d |
Spent | 135.88 ± 1.48 a | 144.57 ± 2.60 a | 345.61 ± 5.06 b | 187.90 ± 4.28 b | 1.90 ± 0.16 bc | 2.14 ± 0.03 b | |
Total | 48.49 ± 0.10 b | 69.36 ± 0.04 b | 168.24 ± 1.06 d | 81.63 ± 0.94 d | 2.12 ± 0.12 b | 1.53 ± 0.04 c | |
Essential oil | 44.60 ± 0.15 c | 69.50 ± 0.07 b | 422.18 ± 23.06 a | 423.00 ± 4.12 a | 1.34 ± 0.27 c | 31.24 ± 1.21 a |
Samples | Extracts |
AChE (mg GALAE/g) |
BChE (mg GALAE/g) |
Tyrosinase (mg KAE/g) |
Amylase (mmol ACAE/g) | Glucosidase (mmol ACAE/g) |
---|---|---|---|---|---|---|
Thyme | Residual water | 1.24 ± 0.04 c | na | 19.75 ± 0.37 b | 0.04 ± 0.01 d | 0.86 ± 0.01 c |
Spent | 1.71 ± 0.04 ab | na | 20.94 ± 0.28 b | 0.14 ± 0.01 b | 1.22 ± 0.01 a | |
Total | 1.55 ± 0.07 b | na | 19.01 ± 0.27 b | 0.07 ± 0.01 c | 0.95 ± 0.01 b | |
Essential oil | 1.80 ± 0.15 a | 0.52 ± 0.10 | 59.80 ± 3.20 a | 0.50 ± 0.01 a | na | |
Oregano | Residual water | 1.92 ± 0.03 d | na | 26.40 ± 1.27 c | 0.03 ± 0.01 d | 0.79 ± 0.01 c |
Spent | 2.55 ± 0.07 c | na | 34.89 ± 0.73 b | 0.19 ± 0.01 b | 1.27 ± 0.01 a | |
Total | 3.27 ± 0.05 a | na | 34.41 ± 0.55 b | 0.07 ± 0.01 c | 0.94 ± 0.01 b | |
Essential oil | 2.85 ± 0.17 b | 0.72 ± 0.05 | 67.01 ± 2.18 a | 0.60 ± 0.03 a | na | |
Basil | Residual water | 0.29 ± 0.06 d | na | 15.19 ± 0.99 c | 0.03 ± 0.01 d | 0.33 ± 0.01 c |
Spent | 1.46 ± 0.02 b | na | 22.06 ± 0.98 b | 0.24 ± 0.01 b | 0.97 ± 0.01 a | |
Total | 0.59 ± 0.09 c | na | 16.67 ± 0.55 c | 0.17 ± 0.01 c | 0.42 ± 0.01 b | |
Essential oil | 3.29 ± 0.13 a | 1.28 ± 0.03 | 70.00 ± 1.67 a | 0.66 ± 0.02 a | na |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luca, S.V.; Zengin, G.; Sinan, K.I.; Skalicka-Woźniak, K.; Trifan, A. Post-Distillation By-Products of Aromatic Plants from Lamiaceae Family as Rich Sources of Antioxidants and Enzyme Inhibitors. Antioxidants 2023, 12, 210. https://doi.org/10.3390/antiox12010210
Luca SV, Zengin G, Sinan KI, Skalicka-Woźniak K, Trifan A. Post-Distillation By-Products of Aromatic Plants from Lamiaceae Family as Rich Sources of Antioxidants and Enzyme Inhibitors. Antioxidants. 2023; 12(1):210. https://doi.org/10.3390/antiox12010210
Chicago/Turabian StyleLuca, Simon Vlad, Gokhan Zengin, Kouadio Ibrahime Sinan, Krystyna Skalicka-Woźniak, and Adriana Trifan. 2023. "Post-Distillation By-Products of Aromatic Plants from Lamiaceae Family as Rich Sources of Antioxidants and Enzyme Inhibitors" Antioxidants 12, no. 1: 210. https://doi.org/10.3390/antiox12010210
APA StyleLuca, S. V., Zengin, G., Sinan, K. I., Skalicka-Woźniak, K., & Trifan, A. (2023). Post-Distillation By-Products of Aromatic Plants from Lamiaceae Family as Rich Sources of Antioxidants and Enzyme Inhibitors. Antioxidants, 12(1), 210. https://doi.org/10.3390/antiox12010210