Phytochemical Profile and In Vitro Antioxidant and Photobiological Properties of Different Extracts from Prangos ferulacea Lindl.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of P. ferulacea Extracts
2.3. GC-MS Analyses
2.4. DPPH Assay
2.5. β-Carotene Bleaching Assay
2.6. Evaluation of In Vitro Photocytotoxic Effects
2.7. Immunoblotting Analysis
2.8. Statistical Analysis
3. Results
3.1. Phytochemical Constituents
3.2. Antioxidant Potential
3.3. Photocytotoxicity
3.4. Apoptotic Responses
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abad, M.J.; De las Heras, B.; Silvan, A.M.; Pascual, R.; Bermejo, P.; Rodriguez, B.; Villar, A.M. Effects of furocoumarins from Cachrys trifida on some macrophage functions. J. Pharm. Pharmacol. 2001, 53, 1163–1168. [Google Scholar] [CrossRef] [PubMed]
- Grande, M.; Aguado, M.T.; Mancheño, B.; Piera, F. Coumarins and ferulol esters from Cachrys sicula. Phytochemistry 1986, 25, 505–507. [Google Scholar] [CrossRef]
- Pistelli, L.; Catalano, S.; Manunta, A.; Marsili, A. Coumarins from Cachrys ferulacea collected in Sardinia. Planta Med. 1989, 55, 203. [Google Scholar] [CrossRef]
- Tahar, S.; Hamdi, B.; Flamini, G.; Mehmet, Ö.; Duru, M.E.; Bruno, M.; Maggi, F. Chemical composition, antioxidant and anticholinesterase activity of the essential oil of algerian Cachrys sicula L. Nat. Prod. Res. 2022, 36, 4094–4102. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.; Ilardi, V.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Fiorini, D.; Venditti, A.; Maggi, F. The nonvolatile and volatile metabolites of Prangos ferulacea and their biological properties. Planta Med. 2019, 85, 815–824. [Google Scholar] [CrossRef]
- Bruno, M.; Ilardi, V.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Fiorini, D.; Venditti, A.; Maggi, F. Composition and biological activities of the essential oil from a Sicilian accession of Prangos ferulacea (L.) Lindl. Nat. Prod. Res. 2021, 35, 733–743. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L. Progress in the Chemistry of Naturally Occurring Coumarins. In Progress in the Chemistry of Organic Natural Products; Kinghorn, A., Falk, H., Gibbons, S., Kobayashi, J., Eds.; Springer: Cham, Switzerland, 2017; Volume 106, pp. 241–304. [Google Scholar]
- Akkol, E.K.; Genç, Y.; Karpuz, B.; Sobarzo-Sánchez, E.; Capasso, R. Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers 2020, 12, 1959. [Google Scholar] [CrossRef]
- Velasco-Velázquez, M.A.; Agramonte-Hevia, J.; Barrera, D.; Jiménez-Orozco, A.; García-Mondragón, M.J.; Mendoza-Patiño, N.; Landa, A.; Mandoki, J. 4-Hydroxycoumarin disorganizes the actin cytoskeleton in B16–F10 melanoma cells but not in B82 fibroblasts, decreasing their adhesion to extracellular matrix proteins and motility. Cancer Lett. 2003, 198, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Ishizuki, S.; Nakamura, Y. Evidence from Clinical Studies Related to Dermatologic Surgeries for Skin Cancer. Cancers 2022, 14, 3835. [Google Scholar] [CrossRef]
- Via, L.; Magno, S. Photochemotherapy in the treatment of cancer. Curr. Med. Chem. 2001, 8, 1405–1418. [Google Scholar] [CrossRef]
- Roelandts, R. The history of phototherapy: Something new under the sun? J. Am. Acad. Dermatol. 2002, 46, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Patrizi, A.; Raone, B.; Ravaioli, G.M. Safety and Efficacy of Phototherapy in the Management of Eczema. In Ultraviolet Light in Human Health, Diseases and Environment. Advances in Experimental Medicine and Biology; Ahmad, S., Ed.; Springer: Cham, Switzerland, 2017; Volume 996, pp. 319–331. [Google Scholar]
- Tarabadkar, E.S.; Shinohara, M.M. Skin directed therapy in cutaneous T-cell lymphoma. Front. Oncol. 2019, 9, 260. [Google Scholar] [CrossRef]
- Menichini, G.; Alfano, C.; Provenzano, E.; Marrelli, M.; Statti, G.A.; Menichini, F.; Conforti, F. Cachrys pungens Jan inhibits human melanoma cell proliferation through photo-induced cytotoxic activity. Cell Prolif. 2012, 45, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Perri, M.R.; Amodeo, V.; Giordano, F.; Statti, G.A.; Panno, M.L.; Conforti, F. Assessment of Photo-Induced Cytotoxic Activity of Cachrys sicula and Cachrys libanotis Enriched-Coumarin Extracts against Human Melanoma Cells. Plants 2021, 10, 123. [Google Scholar] [CrossRef]
- WFO. 2022. Available online: Http://Www.Worldfloraonline.Org (accessed on 24 January 2023).
- Mousavi, S.; Mozaffarian, V.; Mummenhoff, K.; Downie, S.R.; Zarre, S. An Updated Lineage-Based Tribal Classification of Apiaceae Subfamily Apioideae with Special Focus on Iranian Genera. Syst. Biodivers. 2021, 19, 89–109. [Google Scholar] [CrossRef]
- Kafash-Farkhad, N.; Asadi-Samani, M.; Rafieian-Kopaei, M. A review on phytochemistry and pharmacological effects of Prangos ferulacea (L.) Lindl. Life Sci. J. 2013, 10, 360–367. [Google Scholar]
- Marrelli, M.; Perri, M.R.; Amodeo, V.; Conforti, F.; Giordano, F.; Panno, M.L.; Statti, G. Cachrys ferulacea (L.) Calest. Extracts as Natural Photosensitizers: An In Vitro Photobiological Study. Biol. Life Sci. Forum. 2021, 11, 17. [Google Scholar]
- Coşkun, B.; Gülşen, N.; Umucalılar, H.D. The nutritive value of Prangos ferulacea. Grass Forage Sci. 2004, 59, 15–19. [Google Scholar] [CrossRef]
- Shokoohinia, Y.; Sajjadi, S.E.; Gholamzadeh, S.; Fattahi, A.; Behbahani, M. Antiviral and cytotoxic evaluation of coumarins from Prangos ferulacea. Pharm. Biol. 2014, 52, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
- Baser, K.H.C.; Ermin, N.; Adigüzel, N.; Aytaç, Z. Composition of the essential oil of Prangos ferulacea (L.) Lindl. J. Essent. Oil Res. 1996, 8, 297–298. [Google Scholar] [CrossRef]
- Coruh, N.; Celep, A.S.; Özgökçe, F. Antioxidant properties of Prangos ferulacea (L.) Lindl., Chaerophyllum macropodum Boiss. and Heracleum persicum Desf. from Apiaceae family used as food in Eastern Anatolia and their inhibitory effects on glutathione-S-transferase. Food Chem. 2007, 100, 1237–1242. [Google Scholar] [CrossRef]
- Massumi, M.A.; Fazeli, M.R.; Alavi, S.H.R.; Ajani, Y. Chemical constituents and antibacterial activity of essential oil of Prangos ferulacea (L.) Lindl. fruits. Iran. J. Pharm. Sci. 2007, 3, 171–176. [Google Scholar]
- Mottaghipisheh, J.; Kiss, T.; Tóth, B.; Csupor, D. The Prangos genus: A comprehensive review on traditional use, phytochemistry, and pharmacological activities. Phytochem. Res. 2020, 19, 1449–1470. [Google Scholar] [CrossRef]
- Arumugham, T.; Rambabu, K.; Hasan, S.W.; Show, P.L.; Rinklebe, J.; Banat, F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications—A review. Chemosphere 2021, 271, 129525. [Google Scholar] [CrossRef]
- Naviglio, D. Naviglio’s principle and presentation of an innovative solid–liquid extraction technology: Extractor Naviglio®. Anal. Lett. 2003, 36, 1647–1659. [Google Scholar] [CrossRef]
- Naviglio, D.; Pizzolongo, F.; Romano, R.; Ferrara, L.; Naviglio, B.; Santini, A. An innovative solid-liquid extraction technology: Use of the Naviglio extractor® for the production of lemon liquor. Afr. J. Food Sci. 2007, 1, 42–50. [Google Scholar]
- Naviglio, D.; Scarano, P.; Ciaravolo, M.; Gallo, M. Rapid Solid-Liquid Dynamic Extraction (RSLDE): A powerful and greener alternative to the latest solid-liquid extraction techniques. Foods 2019, 8, 245. [Google Scholar] [CrossRef]
- Raventós, M.; Duarte, S.; Alarcón, R. Application and possibilities of supercritical CO2 extraction in food processing industry: An overview. Food Sci. Technol. Int. 2002, 8, 269–284. [Google Scholar] [CrossRef]
- Perri, M.R.; Marrelli, M.; Statti, G.; Conforti, F. Olea europaea bud extracts: Inhibitory effects on pancreatic lipase and α-amylase activities of different cultivars from Calabria region (Italy). Plant Biosyst. 2022, 156, 338–344. [Google Scholar] [CrossRef]
- Baldino, N.; Carnevale, I.; Mileti, O.; Aiello, D.; Lupi, F.R.; Napoli, A.; Gabriele, D. Hemp Seed Oil Extraction and Stable Emulsion Formulation with Hemp Protein Isolates. Appl. Sci. 2022, 12, 11921. [Google Scholar] [CrossRef]
- Marrelli, M.; Morrone, F.; Argentieri, M.P.; Gambacorta, L.; Conforti, F.; Avato, P. Phytochemical and biological profile of Moricandia arvensis (L.) DC.: An inhibitor of pancreatic lipase. Molecules 2018, 23, 2829. [Google Scholar] [CrossRef]
- Conforti, F.; Marrelli, M.; Statti, G.; Menichini, F.; Uzunov, D.; Solimene, U.; Menichini, F. Comparative chemical composition and antioxidant activity of Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Nyman and Calamintha grandiflora (L.) Moench (Labiatae). Nat. Prod. Res. 2012, 26, 91–97. [Google Scholar] [CrossRef]
- Menichini, G.; Alfano, C.; Provenzano, E.; Marrelli, M.; Statti, G.; Somma, F.; Menichini, F.; Conforti, F. Fig latex (Ficus carica L. cultivar Dottato) in combination with UV irradiation decreases the viability of A375 melanoma cells in vitro. Anticancer Agents Med. Chem. 2012, 12, 959–965. [Google Scholar] [CrossRef]
- Conforti, F.; Tundis, R.; Marrelli, M.; Menichini, F.; Statti, G.A.; De Cindio, B.; Menichini, F.; Houghton, P.J. Protective effect of Pimpinella anisoides ethanolic extract and its constituents on oxidative damage and its inhibition of nitric oxide in lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Med. Food 2010, 13, 137–141. [Google Scholar] [CrossRef]
- Giordano, F.; Naimo, G.D.; Nigro, A.; Romeo, F.; Paolì, A.; De Amicis, F.; Vivacqua, A.; Morelli, C.; Mauro, L.; Panno, M.L. Valproic Acid Addresses Neuroendocrine Differentiation of LNCaP Cells and Maintains Cell Survival. Drug Des. Devel. Ther. 2019, 18, 4265–4274. [Google Scholar] [CrossRef]
- Diawara, M.M.; Trumble, J.T. Linear furanocoumarins. In Handbook of Plant and Fungal Toxicants; D’Mello, J.F., Ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 175–189. [Google Scholar]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Prieto, M.A.; Rodríguez-Amado, I.; Vázquez, J.A.; Murado, M.A. β-Carotene assay revisited. Application to characterize and quantify antioxidant and prooxidant activities in a microplate. J. Agric. Food Chem. 2012, 60, 8983–8993. [Google Scholar] [CrossRef]
- Huang, H.L.; Wang, B.G. Antioxidant capacity and lipophilic content of seaweeds collected from the Qingdao coastline. J. Agric. Food Chem. 2004, 52, 4993–4997. [Google Scholar] [CrossRef]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochemical J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Detty, M.R.; Gibson, S.L.; Wagner, S.J. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J. Med. Chem. 2004, 47, 3897–3915. [Google Scholar] [CrossRef] [PubMed]
- Musolino, V.; Perri, M.R.; Conforti, F.; Gliozzi, M.; Marrelli, M.; Mollace, V. Cachrys L. Genus: A Comprehensive Review on Botany, Phytochemistry and Biological Properties. Plants 2023, 12, 565. [Google Scholar] [CrossRef]
- Lončar, M.; Jakovljević, M.; Šubarić, D.; Pavlić, M.; Buzjak Služek, V.; Cindrić, I.; Molnar, M. Coumarins in Food and Methods of Their Determination. Foods 2020, 9, 645. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Marrelli, M.; Menichini, F.; Bonesi, M.; Statti, G.; Provenzano, E.; Menichini, F. Natural and synthetic furanocoumarins as treatment for vitiligo and psoriasis. Curr. Drug Ther. 2009, 4, 38–58. [Google Scholar] [CrossRef]
- Marrelli, M.; Menichini, G.; Provenzano, E.; Conforti, F. Applications of natural compounds in the photodynamic therapy of skin cancer. Curr. Med. Chem. 2014, 21, 1371–1390. [Google Scholar] [CrossRef] [PubMed]
- Trautinger, F. Phototherapy of cutaneous T-cell lymphomas. Photochem. Photobiol. Sci. 2018, 17, 1904–1912. [Google Scholar] [CrossRef]
- Bertoli, A.; Pistelli, L.; Morelli, I.; Spinelli, G.; Manunta, A. Constituents of Cachrys ferulacea Oils. J. Essent. Oil Res. 1998, 10, 533–536. [Google Scholar] [CrossRef]
- Camarda, L.; Mazzola, P.; Sprio, V. Coumarins from the fruits of Cachrys ferulacea. J. Nat. Prod. 1987, 50, 310. [Google Scholar] [CrossRef]
- Badalamenti, N.; Maresca, V.; Di Napoli, M.; Bruno, M.; Basile, A.; Zanfardino, A. Chemical Composition and Biological Activities of Prangos ferulacea Essential Oils. Molecules 2022, 27, 7430. [Google Scholar] [CrossRef]
- Bagherifar, S.; Sourestani, M.M.; Zolfaghari, M.; Mottaghipisheh, J.; Zomborszki, Z.P.; Csupor, D. Chemodiversity of Volatile Oil Contents of Various Parts of 10 Iranian Prangos ferulacea Accessions, With Analysis of Antiradical Potential. Nat. Prod. Commun. 2019, 14, 1934578X19851985. [Google Scholar] [CrossRef]
- Abbas, T.; Dutta, A. p21 in cancer: Intricate networks and multiple activities. Nat. Rev. Cancer 2009, 9, 400–414. [Google Scholar] [CrossRef]
- Pucci, B.; Kasten, M.; Giordano, A. Cell cycle and apoptosis. Neoplasia 2000, 2, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Mauro, M.; Rego, M.A.; Boisvert, R.A.; Esashi, F.; Cavallo, F.; Jasin, M.; Howlett, N.G. p21 promotes error-free replication-coupled DNA double-strand break repair. Nucleic Acids Res. 2012, 40, 8348–8360. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Kraus, W.L. On PAR with PARP: Cellular stress signaling through poly (ADP-ribose) and PARP-1. Genes Dev. 2012, 26, 417–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Extraction Technique | Abbreviation | Yield (%) |
---|---|---|
Maceration | TM | 14.7 |
Naviglio® | PCSL | 3.6 |
Supercritical CO2 | S-CO2 | 2.4 |
Compound | RT 1 | RAP 2 | ||
---|---|---|---|---|
TM | PCSL | S-CO2 | ||
Furanocoumarins | ||||
Psoralen | 17.645 | - | - | 2.93 ± 0.25 |
Xanthotoxin | 19.251 | 1.91 ± 0.04 | 2.73 ± 0.17 | 3.14 ± 0.11 |
Bergapten | 19.411 | - | 2.83 ± 0.13 | 4.30 ± 0.09 |
Isopimpinellin | 20.645 | 1.13 ± 0.05 | 0.89 ± 0.07 | 2.17 ± 0.14 |
Marmesin | 21.223 | - | - | 3.96 ± 0.19 |
Coumarins | ||||
Citropten | 18.782 | - | - | 2.48 ± 0.26 |
Osthole | 19.891 | 2.42 ± 0.12 | 2.03 ± 0.19 | 3.82 ± 0.19 |
Isomeranzin | 20.582 | - | - | 1.90 ± 0.11 |
Terpenes | ||||
Estragole | 11.192 | - | - | 0.15 ± 0.02 |
trans-Caryophyllene | 13.827 | 0.81 ± 0.03 | - | - |
Cadinene | 14.816 | 0.54 ± 0.03 | - | - |
Neophytadiene | 17.450 | 0.78 ± 0.04 | - | 0.71 ± 0.06 |
Fatty acids | ||||
Lauric acid | 15.039 | - | - | 0.10 ± 0.01 |
Myristic acid | 16.496 | 3.24 ± 0.20 | 0.25 ± 0.03 | 2.04 ± 0.09 |
Pentadecanoic acid | 17.336 | 0.44 ± 0.03 | - | - |
7,10,13-Hexadecatrienoic acid | 17.959 | 0.97 ± 0.04 | - | - |
Isopalmitic acid | 18.009 | - | - | 0.55 ± 0.04 |
Palmitic acid | 18.113 | 8.49 ± 0.49 | 1.15 ± 0.10 | 0.14 ± 0.02 |
Margaric acid | 18.891 | 0.33 ± 0.03 | - | - |
Oleic acid | 19.091 | - | 0.36 ± 0.03 | - |
8,11-Octadecadienoic acid | 19.371 | - | 1.08 ± 0.04 | - |
Stearic Acid | 19.617 | 0.82 ± 0.03 | - | - |
Linoleic acid | 19.702 | 1.69 ± 0.13 | - | 0.20 ± 0.02 |
Arachidic acid | 20.988 | 1.13 ± 0.08 | 0.44 ± 0.04 | - |
Behenic acid | 22.263 | 2.72 ± 0.22 | 1.33 ± 0.14 | - |
Tricosylic acid | 22.954 | 1.13 ± 0.07 | - | - |
Lignoceric acid | 23.760 | 4.39 ± 0.33 | 0.86 ± 0.04 | 1.00 ± 0.10 |
Cerotic acid | 25.829 | 1.40 ± 0.10 | - | - |
Total compounds | 34.34 | 13.95 | 29.59 |
Sample | IC50 (μg/mL) | ||
---|---|---|---|
DPPH | β-Carotene | ||
30 min | 60 min | ||
TM | 77.37 ± 1.58 b | 19.57 ± 0.67 b | 27.94 ± 0.48 c |
PCSL | 90.27 ± 1.45 c | 30.75 ± 1.11 c | 34.27 ± 0.35 d |
S-CO2 | 413.10 ± 1.79 d | n.a. | n.a. |
Ascorbic acid * | 2.00 ± 0.01 a | - | - |
Propyl gallate * | - | 1.00 ± 0.02 a | 1.00 ± 0.02 a |
Sample | IC50 (μg/mL) | |
---|---|---|
Irradiated Cells | Unirradiated Cells | |
TM | 27.95 ± 0.67 c | >100 |
PCSL | 25.90 ± 1.23 c | >100 |
S-CO2 | 4.91 ± 0.15 b | >100 |
Bergapten * | 0.191 ± 0.012 a | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrelli, M.; Giordano, F.; Perri, M.R.; Amodeo, V.; Baldino, N.; Lupia, C.; Uzunov, D.; Musolino, V.; Conforti, F.; Panno, M.L. Phytochemical Profile and In Vitro Antioxidant and Photobiological Properties of Different Extracts from Prangos ferulacea Lindl. Antioxidants 2023, 12, 384. https://doi.org/10.3390/antiox12020384
Marrelli M, Giordano F, Perri MR, Amodeo V, Baldino N, Lupia C, Uzunov D, Musolino V, Conforti F, Panno ML. Phytochemical Profile and In Vitro Antioxidant and Photobiological Properties of Different Extracts from Prangos ferulacea Lindl. Antioxidants. 2023; 12(2):384. https://doi.org/10.3390/antiox12020384
Chicago/Turabian StyleMarrelli, Mariangela, Francesca Giordano, Maria Rosaria Perri, Valentina Amodeo, Noemi Baldino, Carmine Lupia, Dimitar Uzunov, Vincenzo Musolino, Filomena Conforti, and Maria Luisa Panno. 2023. "Phytochemical Profile and In Vitro Antioxidant and Photobiological Properties of Different Extracts from Prangos ferulacea Lindl." Antioxidants 12, no. 2: 384. https://doi.org/10.3390/antiox12020384
APA StyleMarrelli, M., Giordano, F., Perri, M. R., Amodeo, V., Baldino, N., Lupia, C., Uzunov, D., Musolino, V., Conforti, F., & Panno, M. L. (2023). Phytochemical Profile and In Vitro Antioxidant and Photobiological Properties of Different Extracts from Prangos ferulacea Lindl. Antioxidants, 12(2), 384. https://doi.org/10.3390/antiox12020384