Age-Related Diseases and Foods Generating Chlorinative Stress
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Neurodegenerative Diseases
3.2. Chronic Obstructive Pulmonary Disease (COPD)
3.3. Kidney Failure (KD)
3.4. Coronary Disease (CD)
3.5. Colorectal Cancer (CRC)
3.6. Rheumatoid Arthritis (RA) and Vasculitis
3.7. Brain Levels
4. Discussion
Chlorinative Stress: Food, Help, or Threat?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; de Bittencourt, P.I.H., Jr. Molecular Mechanisms of ROS Production and Oxidative Stress in Diabetes. Biochem. J. 2016, 473, 4527–4550. [Google Scholar] [CrossRef] [PubMed]
- Langen, R.C.J.; Korn, S.H.; Wouters, E.F.M. ROS in the Local and Systemic Pathogenesis of COPD. Free Radic. Biol. Med. 2003, 35, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Di Dalmazi, G.; Hirshberg, J.; Lyle, D.; Freij, J.B.; Caturegli, P. Reactive Oxygen Species in Organ-Specific Autoimmunity. Autoimmun. Highlights 2016, 7, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furtmüller, P.G.; Burner, U.; Obinger, C. Reaction of Myeloperoxidase Compound I with Chloride, Bromide, Iodide, and Thiocyanate. Biochemistry 1998, 37, 17923–17930. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J. Myeloperoxidase-Derived Oxidation: Mechanisms of Biological Damage and Its Prevention. J. Clin. Biochem. Nutr. 2011, 48, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Hypochlorous Acid Chemistry in Mammalian Cells-Influence on Infection and Role in Various Pathologies. Int. J. Mol. Sci. 2022, 23, 10735. [Google Scholar] [CrossRef]
- Trivedi, M.V.; Laurence, J.S.; Siahaan, T.J. The Role of Thiols and Disulfides in Protein Chemical and Physical Stability. Curr. Protein Pept. Sci. 2009, 10, 614–625. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Levine, R.L. Methionine in Proteins Defends against Oxidative Stress. FASEB J. 2009, 23, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Pattison, D.I.; Davies, M.J. Absolute Rate Constants for the Reaction of Hypochlorous Acid with Protein Side Chains and Peptide Bonds. Chem. Res. Toxicol. 2001, 14, 1453–1464. [Google Scholar] [CrossRef]
- Pattison, D.I.; Davies, M.J. Reactions of Myeloperoxidase-Derived Oxidants with Biological Substrates: Gaining Chemical Insight into Human Inflammatory Diseases. Curr. Med. Chem. 2006, 13, 3271–3290. [Google Scholar] [CrossRef]
- Pattison, D.I.; Hawkins, C.L.; Davies, M.J. Hypochlorous Acid-Mediated Oxidation of Lipid Components and Antioxidants Present in Low-Density Lipoproteins: Absolute Rate Constants, Product Analysis, and Computational Modeling. Chem. Res. Toxicol. 2003, 16, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Ramachandra, C.J.A.; Ja, K.P.M.M.; Chua, J.; Cong, S.; Shim, W.; Hausenloy, D.J. Myeloperoxidase As a Multifaceted Target for Cardiovascular Protection. Antioxid. Redox Signal. 2020, 32, 1135–1149. [Google Scholar] [CrossRef] [PubMed]
- Syslová, K.; Böhmová, A.; Mikoška, M.; Kuzma, M.; Pelclová, D.; Kačer, P. Multimarker Screening of Oxidative Stress in Aging. Oxid. Med. Cell Longev. 2014, 2014, 562860. [Google Scholar] [CrossRef] [Green Version]
- Peña-Bautista, C.; Tirle, T.; López-Nogueroles, M.; Vento, M.; Baquero, M.; Cháfer-Pericás, C. Oxidative Damage of DNA as Early Marker of Alzheimer’s Disease. Int. J. Mol. Sci. 2019, 20, 6136. [Google Scholar] [CrossRef] [Green Version]
- García-Moreno, J.-M.; Martín de Pablos, A.; García-Sánchez, M.-I.; Méndez-Lucena, C.; Damas-Hermoso, F.; Rus, M.; Chacón, J.; Fernández, E. May Serum Levels of Advanced Oxidized Protein Products Serve as a Prognostic Marker of Disease Duration in Patients with Idiopathic Parkinson’s Disease? Antioxid Redox Signal 2013, 18, 1296–1302. [Google Scholar] [CrossRef]
- O’Donnell, C.; Newbold, P.; White, P.; Thong, B.; Stone, H.; Stockley, R.A. 3-Chlorotyrosine in Sputum of COPD Patients: Relationship with Airway Inflammation. COPD: J. Chronic Obstr. Pulm. Dis. 2010, 7, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Afshinnia, F.; Zeng, L.; Byun, J.; Gadegbeku, C.A.; Magnone, M.C.; Whatling, C.; Valastro, B.; Kretzler, M.; Pennathur, S. Myeloperoxidase Levels and Its Product 3-Chlorotyrosine Predict Chronic Kidney Disease Severity and Associated Coronary Artery Disease. Am. J. Nephrol. 2017, 46, 73–81. [Google Scholar] [CrossRef]
- Delporte, C.; Franck, T.; Noyon, C.; Dufour, D.; Rousseau, A.; Madhoun, P.; Desmet, J.-M.; Serteyn, D.; Raes, M.; Nortier, J.; et al. Simultaneous Measurement of Protein-Bound 3-Chlorotyrosine and Homocitrulline by LC–MS/MS after Hydrolysis Assisted by Microwave: Application to the Study of Myeloperoxidase Activity during Hemodialysis. Talanta 2012, 99, 603–609. [Google Scholar] [CrossRef]
- Cheng, M.-L.; Chen, C.-M.; Gu, P.-W.; Ho, H.-Y.; Chiu, D.T.-Y. Elevated Levels of Myeloperoxidase, White Blood Cell Count and 3-Chlorotyrosine in Taiwanese Patients with Acute Myocardial Infarction. Clin. Biochem. 2008, 41, 554–560. [Google Scholar] [CrossRef]
- Wang, G.; Mathew, A.V.; Yu, H.; Li, L.; He, L.; Gao, W.; Liu, X.; Guo, Y.; Byun, J.; Zhang, J.; et al. Myeloperoxidase Mediated HDL Oxidation and HDL Proteome Changes Do Not Contribute to Dysfunctional HDL in Chinese Subjects with Coronary Artery Disease. PLoS ONE 2018, 13, e0193782. [Google Scholar] [CrossRef]
- Mocatta, T.J.; Pilbrow, A.P.; Cameron, V.A.; Senthilmohan, R.; Frampton, C.M.; Richards, A.M.; Winterbourn, C.C. Plasma Concentrations of Myeloperoxidase Predict Mortality after Myocardial Infarction. J. Am. Coll. Cardiol. 2007, 49, 1993–2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, B.; Tang, C.; Sinha, A.; Mayer, P.S.; Davenport, G.D.; Brot, N.; Oda, M.N.; Zhao, X.-Q.; Heinecke, J.W. Humans with Atherosclerosis Have Impaired ABCA1 Cholesterol Efflux and Enhanced HDL Oxidation by Myeloperoxidase. Circ. Res. 2014, 114, 1733–1742. [Google Scholar] [CrossRef]
- Fleszar, M.G.; Fortuna, P.; Zawadzki, M.; Kosyk, B.; Krzystek-Korpacka, M. Simultaneous LC-MS/MS-Based Quantification of Free 3-Nitro-l-Tyrosine, 3-Chloro-l-Tyrosine, and 3-Bromo-l-Tyrosine in Plasma of Colorectal Cancer Patients during Early Postoperative Period. Molecules 2020, 25, 5158. [Google Scholar] [CrossRef]
- Stamp, L.K.; Khalilova, I.; Tarr, J.M.; Senthilmohan, R.; Turner, R.; Haigh, R.C.; Winyard, P.G.; Kettle, A.J. Myeloperoxidase and Oxidative Stress in Rheumatoid Arthritis. Rheumatology 2012, 51, 1796–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivekanandan-Giri, A.; Slocum, J.L.; Byun, J.; Tang, C.; Sands, R.L.; Gillespie, B.W.; Heinecke, J.W.; Saran, R.; Kaplan, M.J.; Pennathur, S. High Density Lipoprotein Is Targeted for Oxidation by Myeloperoxidase in Rheumatoid Arthritis. Ann. Rheum. Dis. 2013, 72, 1725. [Google Scholar] [CrossRef] [PubMed]
- Higashi, N.; Mita, H.; Taniguchi, M.; Turikisawa, N.; Higashi, A.; Ozawa, Y.; Tohma, S.; Arimura, K.; Akiyama, K. Urinary Eicosanoid and Tyrosine Derivative Concentrations in Patients with Vasculitides. J. Allergy Clin. Immunol. 2004, 114, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Maruyama, W.; Naoi, M.; Hashizume, Y.; Osawa, T. Immunohistochemical Detection of Dityrosine in Lipofuscin Pigments in the Aged Human Brain. FEBS Lett. 1998, 439, 231–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.N.; Goel, S. Chlorinated Drinking Water, Cancers and Adverse Health Outcomes in Gangtok, Sikkim, India. J. Env. Sci. Eng. 2007, 49, 247–254. [Google Scholar]
- Cook, N.L.; Viola, H.M.; Sharov, V.S.; Hool, L.C.; Schöneich, C.; Davies, M.J. Myeloperoxidase-Derived Oxidants Inhibit Sarco/Endoplasmic Reticulum Ca2+-ATPase Activity, and Perturb Ca2+ Homeostasis in Human Coronary Artery Endothelial Cells. Free Radic. Biol. Med. 2012, 52, 951–961. [Google Scholar] [CrossRef] [Green Version]
- Ray, R.S.; Katyal, A. Myeloperoxidase: Bridging the Gap in Neurodegeneration. Neurosci. Biobehav. Rev. 2016, 68, 611–620. [Google Scholar] [CrossRef]
- Cabassi, A.; Binno, S.M.; Tedeschi, S.; Graiani, G.; Galizia, C.; Bianconcini, M.; Coghi, P.; Fellini, F.; Ruffini, L.; Govoni, P.; et al. Myeloperoxidase-Related Chlorination Activity Is Positively Associated with Circulating Ceruloplasmin in Chronic Heart Failure Patients: Relationship with Neurohormonal, Inflammatory, and Nutritional Parameters. Biomed. Res. Int. 2015, 2015, 691693. [Google Scholar] [CrossRef] [PubMed]
- Davalli, P.; Mitic, T.; Caporali, A.; Lauriola, A.; D’Arca, D. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Oxidative Med. Cell. Longev. 2016, 2016, 3565127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorgi, C.; Marchi, S.; Simoes, I.C.; Ren, Z.; Morciano, G.; Perrone, M.; Patalas-Krawczyk, P.; Borchard, S.; Jędrak, P.; Pierzynowska, K. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. Int. Rev. Cell Mol. Biol. 2018, 340, 209–344. [Google Scholar]
- Gangemi, S.; Basile, G.; Merendino, R.A.; Minciullo, P.L.; Novick, D.; Rubinstein, M.; Dinarello, C.A.; Balbo, C.L.; Franceschi, C.; Basili, S.; et al. Increased Circulating Interleukin-18 Levels in Centenarians with No Signs of Vascular Disease: Another Paradox of Longevity? Exp. Gerontol. 2003, 38, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EC) No 850/2004 of the European Parliament and of the Council of 29 April 2004 on Persistent Organic Pollutants and Amending Directive 79/117/EEC. 2004, Volume 158. Available online: https://eur-lex.europa.eu (accessed on 16 November 2022).
- Fontcuberta, M.; Arqués, J.F.; Villalbí, J.R.; Martínez, M.; Centrich, F.; Serrahima, E.; Pineda, L.; Duran, J.; Casas, C. Chlorinated Organic Pesticides in Marketed Food: Barcelona, 2001–2006. Sci. Total Environ. 2008, 389, 52–57. [Google Scholar] [CrossRef]
- Dueri, S.; Castro-Jiménez, J.; Comenges, J.-M.Z. On the Use of the Partitioning Approach to Derive Environmental Quality Standards (EQS) for Persistent Organic Pollutants (POPs) in Sediments: A Review of Existing Data. Sci. Total Environ. 2008, 403, 23–33. [Google Scholar] [CrossRef]
- Cerrillo, I.; Olea-Serrano, M.F.; Ibarluzea, J.; Exposito, J.; Torne, P.; Laguna, J.; Pedraza, V.; Olea, N. Environmental and Lifestyle Factors for Organochlorine Exposure among Women Living in Southern Spain. Chemosphere 2006, 62, 1917–1924. [Google Scholar] [CrossRef]
- Lopez-Espinosa, M.-J.; Granada, A.; Carreno, J.; Salvatierra, M.; Olea-Serrano, F.; Olea, N. Organochlorine Pesticides in Placentas from Southern Spain and Some Related Factors. Placenta 2007, 28, 631–638. [Google Scholar] [CrossRef]
- Berghuis, S.A.; Bos, A.F.; Sauer, P.J.J.; Roze, E. Developmental Neurotoxicity of Persistent Organic Pollutants: An Update on Childhood Outcome. Arch. Toxicol. 2015, 89, 687–709. [Google Scholar] [CrossRef]
- Fumia, A.; Cicero, N.; Gitto, M.; Nicosia, N.; Alesci, A. Role of Nutraceuticals on Neurodegenerative Diseases: Neuroprotective and Immunomodulant Activity. Nat. Prod. Res. 2021, 36, 1–18. [Google Scholar] [CrossRef]
- Björvang, R.D.; Hallberg, I.; Pikki, A.; Berglund, L.; Pedrelli, M.; Kiviranta, H.; Rantakokko, P.; Ruokojärvi, P.; Lindh, C.H.; Olovsson, M.; et al. Follicular Fluid and Blood Levels of Persistent Organic Pollutants and Reproductive Outcomes among Women Undergoing Assisted Reproductive Technologies. Environ. Res. 2022, 208, 112626. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Ko, E.; Lee, H.; Kim, K.-T.; Choi, M.; Shin, S. Mixed Exposure of Persistent Organic Pollutants Alters Oxidative Stress Markers and Mitochondrial Function in the Tail of Zebrafish Depending on Sex. Int. J. Environ. Res. Public Health 2021, 18, 9539. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, A.V.; Selleri, V.; Zanini, G.; Nasi, M.; Pinti, M.; Stefanelli, C.; Fedele, F.; Gallina, S. Physical Activity and Diet in Older Women: A Narrative Review. J. Clin. Med. 2023, 12, 81. [Google Scholar] [CrossRef] [PubMed]
- Alesci, A.; Nicosia, N.; Fumia, A.; Giorgianni, F.; Santini, A.; Cicero, N. Resveratrol and Immune Cells: A Link to Improve Human Health. Molecules 2022, 27, 424. [Google Scholar] [CrossRef] [PubMed]
- Gervasi, T.; Oliveri, F.; Gottuso, V.; Squadrito, M.; Bartolomeo, G.; Cicero, N.; Dugo, G. Nero d’Avola and Perricone Cultivars: Determination of Polyphenols, Flavonoids and Anthocyanins in Grapes and Wines. Nat. Prod. Res. 2016, 30, 2329–2337. [Google Scholar] [CrossRef]
- Fejér, J.; Kron, I.; Pellizzeri, V.; Pľuchtová, M.; Eliašová, A.; Campone, L.; Gervasi, T.; Bartolomeo, G.; Cicero, N.; Babejová, A.; et al. First Report on Evaluation of Basic Nutritional and Antioxidant Properties of Moringa Oleifera Lam. from Caribbean Island of Saint Lucia. Plants 2019, 8, 537. [Google Scholar] [CrossRef] [Green Version]
- Albergamo, A.; Vadalà, R.; Metro, D.; Nava, V.; Bartolomeo, G.; Rando, R.; Macrì, A.; Messina, L.; Gualtieri, R.; Colombo, N.; et al. Physicochemical, Nutritional, Microbiological, and Sensory Qualities of Chicken Burgers Reformulated with Mediterranean Plant Ingredients and Health-Promoting Compounds. Foods 2021, 10, 2129. [Google Scholar] [CrossRef]
- Fang, J. Classification of Fruits Based on Anthocyanin Types and Relevance to Their Health Effects. Nutrition 2015, 31, 1301–1306. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; Varela-López, A.; Forbes-Hernández, T.Y.; Gasparrini, M.; Afrin, S.; Cianciosi, D.; Zhang, J.; Manna, P.P.; Bompadre, S.; Quiles, J.L.; et al. Phenolic Compounds Isolated from Olive Oil as Nutraceutical Tools for the Prevention and Management of Cancer and Cardiovascular Diseases. Int. J. Mol. Sci. 2018, 19, 2305. [Google Scholar] [CrossRef] [Green Version]
- Casciaro, M.; Di Salvo, E.; Pace, E.; Ventura-Spagnolo, E.; Navarra, M.; Gangemi, S. Chlorinative Stress in Age-Related Diseases: A Literature Review. Immun. Ageing 2017, 14, 1–7. [Google Scholar] [CrossRef]
Reference | N° of Patients | Mean Age | Tissue | Disease | 3-ClTyr |
---|---|---|---|---|---|
[14] | 53 | 70 | Urine | Alzheimer’s disease | Normal |
[15] | 60 | 63 | Serum; Cerebrospinal fluid | Parkinson’s disease | n.d. |
[16] | 14 | 65 | Sputum | COPD | + |
[17] | 23 | 67 | Serum | Kidney failure | + |
[18] | 15 | 77 | Serum | Kidney failure | + |
[19] | 77 | 65 | Serum | Acute myocardial infarction | + |
[20] | 20 | 63 | Serum | Coronary disease | Normal |
[21] | 512 | 62 | Serum | Myocardial infarction | Normal |
[22] | 20 | 64 | Serum | Stable coronary disease | + |
[22] | 20 | 63 | Serum | Acute coronary syndrome | + |
[23] | 75 | 66 | Serum | Colorectal cancer | + |
[24] | 77 | 82 | Serum | Rheumatoid arthritis | + |
[25] | 38 | 63 | Serum | Rheumatoid arthritis | + |
[26] | 8 | 66 | Urine | Vasculitis | + |
[27] | 3 | 69 | Brain | Aneurism; myocardial infarction; lung cancer | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Salvo, E.; Casciaro, M.; Giorgianni, C.M.; Cicero, N.; Gangemi, S. Age-Related Diseases and Foods Generating Chlorinative Stress. Antioxidants 2023, 12, 249. https://doi.org/10.3390/antiox12020249
Di Salvo E, Casciaro M, Giorgianni CM, Cicero N, Gangemi S. Age-Related Diseases and Foods Generating Chlorinative Stress. Antioxidants. 2023; 12(2):249. https://doi.org/10.3390/antiox12020249
Chicago/Turabian StyleDi Salvo, Eleonora, Marco Casciaro, Concetto Mario Giorgianni, Nicola Cicero, and Sebastiano Gangemi. 2023. "Age-Related Diseases and Foods Generating Chlorinative Stress" Antioxidants 12, no. 2: 249. https://doi.org/10.3390/antiox12020249
APA StyleDi Salvo, E., Casciaro, M., Giorgianni, C. M., Cicero, N., & Gangemi, S. (2023). Age-Related Diseases and Foods Generating Chlorinative Stress. Antioxidants, 12(2), 249. https://doi.org/10.3390/antiox12020249