Antioxidant Capacity through Electrochemical Methods and Chemical Composition of Oenocarpus bataua and Gustavia macarenensis from the Ecuadorian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Collection of Fruits Samples
2.3. Extraction Process
2.4. Antioxidant Capacity
2.4.1. DPPH Free Radical Scavenging Assay
2.4.2. Superoxide Anion Assay by Acyclic Voltammetry
2.4.3. Antioxidant Power According to the Electrochemical Index
2.5. Phytochemical Analysis
2.5.1. Total Phenolic Content
2.5.2. Anthocyanin and Yellow Flavonoid Contents
2.5.3. Analysis of AA and RSV Using HPLC
2.5.4. Identification of RSV by UPLC-QTOF-MS
2.5.5. Identification of Bioactive Compounds Based on UPLC-QTOF-MS
2.6. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant Properties
3.2. Phytochemical Analysis
3.2.1. Trans-Resveratrol and Ascorbic Acid Content
3.2.2. Phenolic Profile and Secondary Metabolites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira-Netto, A.B. Tropical Fruits as Natural, Exceptionally Rich, Sources of Bioactive Compounds. Int. J. Fruit Sci. 2018, 18, 231–242. [Google Scholar] [CrossRef]
- Mattioli, R.; Mosca, L.; Sánchez-Lamar, A.; Tempera, I.; Hausmann, R. Natural Bioactive Compounds Acting against Oxidative Stress in Chronic, Degenerative, and Infectious Diseases. Oxidative Med. Cell. Longev. 2018, 2018, 3894381. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.I.; Saraiva, J.M.A.; Vicente, A.A.; Moldão-Martins, M. Methods for Determining Bioavailability and Bioaccessibility of Bioactive Compounds and Nutrients; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Noce, A.; Di Lauro, M.; Di Daniele, F.; Zaitseva, A.P.; Marrone, G.; Borboni, P.; Di Daniele, N. Natural Bioactive Compounds Useful in Clinical Management of Metabolic Syndrome. Nutrients 2021, 13, 630. [Google Scholar] [CrossRef]
- Gupta, R.C. Introduction. Nutraceuticals Effic. Saf. Toxic. 2016, xv–xvii. [Google Scholar] [CrossRef]
- Pokimica, B.; García-Conesa, M.-T. Critical Evaluation of Gene Expression Changes in Human Tissues in Response to Supplementation with Dietary Bioactive Compounds: Moving Towards Better-Quality Studies. Nutrients 2018, 10, 807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mierziak, J.; Kostyn, K.; Boba, A.; Czemplik, M.; Kulma, A.; Wojtasik, W. Influence of the Bioactive Diet Components on the Gene Expression Regulation. Nutrients 2021, 13, 3673. [Google Scholar] [CrossRef] [PubMed]
- El Omari, N.; Bakrim, S.; Bakha, M.; Lorenzo, J.M.; Rebezov, M.; Shariati, M.A.; Aboulaghras, S.; Balahbib, A.; Khayrullin, M.; Bouyahya, A. Natural Bioactive Compounds Targeting Epigenetic Pathways in Cancer: A Review on Alkaloids, Terpenoids, Quinones, and Isothiocyanates. Nutrients 2021, 13, 3714. [Google Scholar] [CrossRef]
- Li, Y.; Meeran, S.M.; Tollefsbol, T.O. Combinatorial bioactive botanicals re-sensitize tamoxifen treatment in ER-negative breast cancer via epigenetic reactivation of ERα expression. Sci. Rep. 2017, 7, 9345. [Google Scholar] [CrossRef] [Green Version]
- Wightman, J.D.; Heuberger, R.A. Effect of grape and other berries on cardiovascular health. J. Sci. Food Agric. 2015, 95, 1584–1597. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, P.; Baquero, L.P.; Larrota, H.R. Flavonoids: Potential Therapeutic Agents by Their Antioxidant Capacity; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Robles-Sánchez, M.; Astiazarán-García, H.; Martín-Belloso, O.; Gorinstein, S.; Alvarez-Parrilla, E.; de la Rosa, L.A.; Yepiz-Plascencia, G.; González-Aguilar, G.A. Influence of whole and fresh-cut mango intake on plasma lipids and antioxidant capacity of healthy adults. Food Res. Int. 2011, 44, 1386–1391. [Google Scholar] [CrossRef]
- Coelho, M.S.; Fernandes, S.S.; de las Mercedes Salas-Mellado, M. Association Between Diet, Health, and the Presence of Bioactive Compounds in Foods; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxidative Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrikanta, A.; Kumar, A.; Govindaswamy, V. Resveratrol content and antioxidant properties of underutilized fruits. J. Food Sci. Technol. 2015, 52, 383–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harikumar, K.B.; Aggarwal, B.B. Resveratrol: A multitargeted agent for age-associated chronic diseases. Cell Cycle 2008, 7, 1020–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pervaiz, S. Resveratrol: From grapevines to mammalian biology. FASEB J. 2003, 17, 1975–1985. [Google Scholar] [CrossRef] [Green Version]
- Szekeres, T.; Fritzer-Szekeres, M.; Saiko, P.; Jaeger, W. Resveratrol and Resveratrol Analogues—Structure—Activity Relationship. Pharm. Res. 2010, 27, 1042–1048. [Google Scholar] [CrossRef]
- Sebastià, N.; Montoro, A.; Mañes, J.; Soriano, J.M. A preliminary study of presence of resveratrol in skins and pulps of European and Japanese plum cultivars. J. Sci. Food Agric. 2012, 92, 3091–3094. [Google Scholar] [CrossRef]
- Moraes, D.S.; Moreira, D.C.; Andrade, J.M.O.; Santos, S.H.S. Sirtuins, brain and cognition: A review of resveratrol effects. IBRO Rep. 2020, 9, 46–51. [Google Scholar] [CrossRef]
- Mohar, D.S. The Sirtuin System: The Holy Grail of Resveratrol? J. Clin. Exp. Cardiol. 2012, 3, 216–219. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhao, H.; Jin, Q.; You, W.; Cheng, H.; Liu, Y.; Song, E.; Liu, G.; Tan, X.; Zhang, X.; et al. Resveratrol induces apoptosis and inhibits adipogenesis by stimulating the SIRT1-AMPKα-FOXO1 signalling pathway in bovine intramuscular adipocytes. Mol. Cell. Biochem. 2018, 439, 213–223. [Google Scholar] [CrossRef]
- Sawda, C.; Moussa, C.; Turner, R.S. Resveratrol for Alzheimer’s disease. Ann. N. Y. Acad. Sci. 2017, 1403, 142–149. [Google Scholar] [CrossRef]
- Carvalho, N.C.C.; Monteiro, O.S.; da Rocha, C.Q.; Longato, G.B.; Smith, R.E.; da Silva, J.K.R.; Maia, J.G.S. Phytochemical Analysis of the Fruit Pulp Extracts from Annona crassiflora Mart. and Evaluation of Their Antioxidant and Antiproliferative Activities. Foods 2022, 11, 2079. [Google Scholar] [CrossRef] [PubMed]
- Araujo, N.M.P.; Arruda, H.S.; dos Santos, F.N.; de Morais, D.R.; Pereira, G.A.; Pastore, G.M. LC-MS/MS screening and identification of bioactive compounds in leaves, pulp and seed from Eugenia calycina Cambess. Food Res. Int. 2020, 137, 109556. [Google Scholar] [CrossRef] [PubMed]
- Belmonte-Herrera, B.H.; Domínguez-Avila, J.A.; Wall-Medrano, A.; Ayala-Zavala, J.F.; Preciado-Saldaña, A.M.; Salazar-López, N.J.; López-Martínez, L.X.; Yahia, E.M.; Robles-Sánchez, R.M.; González-Aguilar, G.A. Lesser-Consumed Tropical Fruits and Their by-Products: Phytochemical Content and Their Antioxidant and Anti-Inflammatory Potential. Nutrients 2022, 14, 3663. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.; An, I.N.; Anaged, I.N.M. Fruit Production of the Ungurahua Palm (Oenocarpus bataua subsp. bataua, Arecaceae) in an Indigenous Managed Reserve. Econ. Bot. 2022, 56, 165–176. [Google Scholar] [CrossRef]
- Leba, L.-J.; Brunschwig, C.; Saout, M.; Martial, K.; Bereau, D.; Robinson, J.-C. Oenocarpus bacaba and Oenocarpus bataua Leaflets and Roots: A New Source of Antioxidant Compounds. Int. J. Mol. Sci. 2016, 17, 1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaire, A.; Robinson, J.-C.; Bereau, D.; Verbaere, A.; Sommerer, N.; Khan, M.; Durand, P.; Prost, E.; Fils-Lycaon, B. Amazonian palm Oenocarpus bataua (“patawa”): Chemical and biological antioxidant activity—Phytochemical composition. Food Chem. 2014, 149, 62–70. [Google Scholar] [CrossRef]
- Abreu-Naranjo, R.; Paredes-Moreta, J.G.; Granda-Albuja, G.; Iturralde, G.; González-Paramás, A.M.; Alvarez-Suarez, J.M. Bioactive compounds, phenolic profile, antioxidant capacity and effectiveness against lipid peroxidation of cell membranes of Mauritia flexuosa L. fruit extracts from three biomes in the Ecuadorian Amazon. Heliyon 2020, 6, e05211. [Google Scholar] [CrossRef]
- Mera, J.J.R.; Abreu-Naranjo, R.; Alvarez-Suarez, J.M.; Viafara, D. Chemical characterization, fatty acid profile and antioxidant activity of Gustavia macarenensis fruit mesocarp and its oil from the Amazonian region of Ecuador as an unconventional source of vegetable oil. Grasas Aceites 2019, 70, 298. [Google Scholar] [CrossRef] [Green Version]
- Stafussa, A.P.; Maciel, G.M.; Rampazzo, V.; Bona, E.; Makara, C.N.; Junior, B.D.; Haminiuk, C.W.I. Bioactive compounds of 44 traditional and exotic Brazilian fruit pulps: Phenolic compounds and antioxidant activity. Int. J. Food Prop. 2018, 21, 106–118. [Google Scholar] [CrossRef]
- Pérez-Cruz, K.; Moncada-Basualto, M.; Morales-Valenzuela, J.; Barriga-González, G.; Navarrete-Encina, P.; Núñez-Vergara, L.; Squella, J.; Olea-Azar, C. Synthesis and antioxidant study of new polyphenolic hybrid-coumarins. Arab. J. Chem. 2018, 11, 525–537. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Hauchard, D.; Darchen, A.; Burgot, J.-L.; Abasq, M.-L. Validation of a new method using the reactivity of electrogenerated superoxide radical in the antioxidant capacity determination of flavonoids. Talanta 2008, 75, 1098–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira-Neto, J.R.; Rezende, S.G.; de Fátima Reis, C.; Benjamin, S.R.; Rocha, M.L.; de Souza Gil, E. Electrochemical behavior and determination of major phenolic antioxidants in selected coffee samples. Food Chem. 2016, 190, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Electrochemical Methods to Evaluate the Antioxidant Activity and Capacity of Foods: A Review. Electroanalysis 2021, 33, 1419–1435. [Google Scholar] [CrossRef]
- Francis, F.J. Analysis of Anthocyanins; Academic Press, Inc.: Cambridge, MA, USA, 1982. [Google Scholar]
- Chebrolu, K.K.; Jayaprakasha, G.; Yoo, K.S.; Jifon, J.L.; Patil, B.S. An improved sample preparation method for quantification of ascorbic acid and dehydroascorbic acid by HPLC. LWT 2012, 47, 443–449. [Google Scholar] [CrossRef]
- Sun, H.; Lin, Q.; Wei, W.; Qin, G. Ultrasound-assisted extraction of resveratrol from grape leaves and its purification on mesoporous carbon. Food Sci. Biotechnol. 2018, 27, 1353–1359. [Google Scholar] [CrossRef]
- Lino, F.; de Sá, L.; Torres, I.; Rocha, M.; Dinis, T.; Ghedini, P.; Somerset, V.; Gil, E. Voltammetric and spectrometric determination of antioxidant capacity of selected wines. Electrochim. Acta 2014, 128, 25–31. [Google Scholar] [CrossRef]
- Macêdo, I.; Garcia, L.F.; Neto, J.O.; Leite, K.C.D.S.; Ferreira, V.S.; Ghedini, P.; Gil, E.D.S. Electroanalytical tools for antioxidant evaluation of red fruits dry extracts. Food Chem. 2017, 217, 326–331. [Google Scholar] [CrossRef]
- Ruiz-Caro, P.; Espada-Bellido, E.; García-Guzmán, J.J.; Bellido-Milla, D.; Vázquez-González, M.; Cubillana-Aguilera, L.; Palacios-Santander, J.M. An electrochemical alternative for evaluating the antioxidant capacity in walnut kernel extracts. Food Chem. 2022, 393, 133417. [Google Scholar] [CrossRef]
- Brahmi, F.; Guendouze, N.; Hauchard, D.; Okusa, P.; Kamagaju, L.; Madani, K.; Duez, P. Phenolic profile and biological activities ofMicromeria graeca(L.) Benth. ex Rchb. Int. J. Food Prop. 2017, 20, 2070–2083. [Google Scholar] [CrossRef]
- Escarpa, A. Food electroanalysis: Sense and simplicity. Chem. Rec. 2012, 12, 72–91. [Google Scholar] [CrossRef]
- Piluzza, G.; Bullitta, S. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm. Biol. 2011, 49, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Magrone, T.; Jirillo, E. Effects of Polyphenols on Inflammatory-Allergic Conditions: Experimental and Clinical Evidences, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Kumar, S.; Sandhir, R.; Ojha, S. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Res. Notes 2014, 7, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasco, C.; Ruales, J.; Kamal-Eldin, A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 2008, 111, 816–823. [Google Scholar] [CrossRef]
- Fratianni, F.; Tucci, M.; De Palma, M.; Pepe, R.; Nazzaro, F. Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chem. 2007, 104, 1282–1286. [Google Scholar] [CrossRef]
- Rufino, M.D.S.M.; Alves, R.E.; de Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef] [Green Version]
- Yanez, M.; Jhanji, M.; Murphy, K.; Gower, R.M.; Sajish, M.; Jabbarzadeh, E. Nicotinamide Augments the Anti-Inflammatory Properties of Resveratrol through PARP1 Activation. Sci. Rep. 2019, 9, 369. [Google Scholar] [CrossRef] [Green Version]
- Pezzuto, J.M. Resveratrol: Twenty Years of Growth, Development and Controversy. Biomol. Ther. 2019, 27, 1–14. [Google Scholar] [CrossRef]
- Risuleo, G. Resveratrol: Multiple Activities on the Biological Functionality of the Cell; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- da Silva, L.M.R.; de Figueiredo, E.A.T.; Ricardo, N.M.P.S.; Vieira, I.G.P.; de Figueiredo, R.W.; Brasil, I.M.; Gomes, C.L. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 2014, 143, 398–404. [Google Scholar] [CrossRef] [Green Version]
- Genovese, M.I.; Pinto, M.D.S.; Goncalves, A.E.D.S.S.; Lajolo, F.M. Bioactive Compounds and Antioxidant Capacity of Exotic Fruits and Commercial Frozen Pulps from Brazil. Food Sci. Technol. Int. 2008, 14, 207–214. [Google Scholar] [CrossRef]
- Ryu, E.Y.; Park, S.Y.; Kim, S.G.; Park, D.J.; Kang, J.S.; Kim, Y.H.; Seetharaman, R.; Choi, Y.-W.; Lee, S.-J. Anti-Inflammatory Effect of Heme Oxygenase-1 Toward Porphyromonas gingivalis Lipopolysaccharide in Macrophages Exposed to Gomisins A, G, and J. J. Med. Food 2011, 14, 1519–1526. [Google Scholar] [CrossRef]
- Chen, D.-F.; Zhang, S.-X.; Xie, L.; Xie, J.-X.; Chen, K.; Kashiwada, Y.; Zhou, B.-N.; Wang, P.; Cosentino, L.; Lee, K.-H. Anti-aids agents—XXVI. Structure-activity correlations of Gomisin-G-related anti-HIV lignans from Kadsura interior and of related synthetic analogues. Bioorg. Med. Chem. 1997, 5, 1715–1723. [Google Scholar] [CrossRef] [PubMed]
- Yeon, M.; Choi, H.; Chun, K.-H.; Lee, J.H.; Jun, H.-S. Gomisin G improves muscle strength by enhancing mitochondrial biogenesis and function in disuse muscle atrophic mice. Biomed. Pharmacother. 2022, 153, 113406. [Google Scholar] [CrossRef] [PubMed]
- Pihlava, J.-M. Identification of hordatines and other phenolamides in barley (Hordeum vulgare) and beer by UPLC-QTOF-MS. J. Cereal Sci. 2014, 60, 645–652. [Google Scholar] [CrossRef]
Parameter | Resveratrol | Ascorbic Acid |
---|---|---|
Limit of detection (μg mL−1) Limit of quantification (μg mL−1) Linear regression equation Determination coefficient (r2) Retention time (min) | 0.033 0.089 y = 1.37 × 105 x + 4488.55 0.996 6.1 | 0.50 1.68 y = 2.63 × 105 x + 4.92 × 105 0.998 2.46 |
Fruit | Fraction | DPPH AAE (μmol AA 100 g−1 d.w.) | AI50 (mg mL−1) | EI (μA V−1) |
---|---|---|---|---|
O. bataua | Pulp | 478.94 ± 4.85 | 1.56 ± 0.08 | 11.92 ± 0.05 |
Peel | 654.56 ± 0.94 | 1.47 ± 0.07 | 15.51 ± 0.16 | |
Seed | 589.44 ± 5.29 | 1.52 ± 0.10 | 12.29 ± 0.27 | |
G. macarenensis | Pulp | 688.40 ± 2.28 | 1.48 ± 0.02 | 27.05 ± 0.26 |
Peel | 1146.41 ± 1.12 | 0.72 ± 0.04 | 34.57 ± 0.34 | |
Seed | 523.82 ± 14.09 | 1.51 ± 0.08 | 9.06 ± 0.12 |
AI50 | EI | DPPH | |
---|---|---|---|
AI50 | −0.814 | −0.970 | |
EI | −0.814 | 0.902 | |
DPPH | −0.970 | 0.901 | |
TPC | −0.636 | 0.635 | 0.715 |
Fruit | Fraction | Total Phenolic Content (mg GAE 100 g−1 d-w) | Total Anthocyanin Content | Total Yellow Flavonoids Content (mg 100 g−1 d.w.) |
---|---|---|---|---|
(mg 100 g−1 d.w.) | ||||
O. bataua | Pulp | 622.97 ± 4.84 | 14.82 ± 0.20 | 55.34 ± 0.29 |
Peel | 1009.38 ± 1.80 | 46.48 ± 0.31 | 57.17 ± 0.42 | |
Seed | 758.25 ± 3.22 | 14.71 ± 0.02 | 47.15 ± 0.06 | |
G. macarenensis | Pulp | 634.30 ± 5.01 | 25.57 ± 0.60 | 25.57 ± 0.60 |
Peel | 1165.87 ± 17.66 | 9.13 ± 0.11 | 383.59 ± 8.13 | |
Seed | 153.16 ± 3.45 | 5.79 ± 0.12 | 111.39 ± 0.79 |
Fruit | Fraction | Trans-Resveratrol (µg g−1 d.w.) | %Recovery | Ascorbic Acid (mg 100 g−1 d.w.) | %Recovery |
---|---|---|---|---|---|
O. bataua | Pulp | 1.94 ± 0.10 | 98.10 | 0.12 ± 0.00 | 108.40 |
Peel | 7.98 ± 0.01 | 90.90 | 0.00 ± 0.00 | 96.40 | |
Seed | 12.33 ± 0.01 | 90.70 | 0.00 ± 0.00 | 118.9 | |
G.macarenensis | Pulp | 0.00 | 90.80 | 5.48 ± 0.24 | 107.50 |
Peel | 0.00 | 95.10 | 15.85 ± 0.06 | 96.40 | |
Seed | < LD | 98.10 | 2.20 ± 0.11 | 113.40 |
Fruit | Fraction | Compound Name | Chemical Formula | Experimental m/z Values | tR (min) | Adducts |
---|---|---|---|---|---|---|
O. bataua | Peel | Pterodontoside E a | C21H37O8 | 417.2495 | 30.47 | -H |
Pulp | 5-O-Methylshanciguol | C30H29O7 | 501.1905 | 0.78 | +HCOO | |
Gomisin G | C30H31O9 | 535.19 | 1.13 | -H | ||
7-O-methylmorroniside a | C19H29O13 | 465.1607 | 8.67 | +HCOO | ||
Blestritin C | C37H35O8 | 607.2336 | 8.97 | +HCOO | ||
Seed | Daturametelin H b | C23H43O9 | 463.2905 | 31.22 | +HCOO | |
Cireneol G c | C17H29O2 | 265.2181 | 33.28 | -H | ||
G. macarenensis | Peel | Oliveramine d | C20H19N2O4 | 351.1355 | 7.08 | -H |
Pseudostrychnine d | C21H22N2O3 | 395.1624 | 8.07 | +HCOO | ||
Bisandrographolide C a | C40H56O8 | 709.3923 | 25.41 | +HCOO | ||
Pulp | 1-Acetyl-3-(methoxycarbonyl)-Beta-carboline d | C15H11N2O3 | 267.0763 | 0.65 | -H | |
Picrasidine U d | C31H25N4O7 | 565.1717 | 0.7 | +HCOO | ||
Cis-Osthenone e | C14H11O4 | 243.0666 | 1.48 | -H | ||
3,4-Dihydro-6,8-dihydroxyl-3-(2’-acetyl-3’-hydroxyl-5’-methoxy phenyl) methyl-1H-[2] benzopyran-1-one e | C19H17O7 | 357.0982 | 1.57 | -H | ||
Cyclo-(Phe-Tyr) d | C18H17N2O3 | 309.1246 | 3.41 | -H | ||
Qingdainone c | C23H12N3O2 | 362.0939 | 4.27 | -H | ||
2,7,2’-Trihydroxy-4,4’,7’-trimethoxy-1,1’-biphenantrene | C31H24O6 | 491.1489 | 5.81 | -H | ||
Panaxynol f | C17H24O | 243.1751 | 6.49 | -H | ||
Oliveramine d | C20H19N2O4 | 351.1355 | 7.08 | -H | ||
Denudatine d | C22H32NO2 | 342.2453 | 8.54 | -H | ||
Bakuchiol d | C19H25O3 | 301.1811 | 8.96 | +HCOO | ||
Hordatine A | C29H39N8O6 | 595.2991 | 33.22 | +HCOO | ||
Rhodojaponin VI a | C21H35O9 | 431.2273 | 34.21 | +HCOO | ||
Seed | Bletilol B | C28H27O9 | 507.1642 | 0.64 | +HCOO | |
Interiotherin A | C30H29O10 | 549.1768 | 0.88 | +HCOO | ||
Cyclo-(Phe-Tyr) d | C18H17N2O3 | 309.1246 | 3.41 | -H | ||
Oliveramine d | C20H19N2O4 | 351.1355 | 7.08 | -H | ||
Psamosilenin A g | C51H64N8O8 | 961.4797 | 10.52 | +HCOO | ||
Anemarsaponin G h | C50H80O23 | 1047.4983 | 18.03 | -H | ||
Kalopanaxsaponin I h | C47H75O18 | 927.494 | 18.67 | +HCOO | ||
Tenacissoside E h | C53H78O19 | 1017.5051 | 20.59 | -H | ||
Isoescin IIb h | C54H84O23 | 1145.4379 | 23.68 | +HCOO | ||
Lablaboside A h | C55H87O25 | 1147.5519 | 24.14 | +HCOO | ||
Marstenacisside C h | C54H91O26 | 1155.5748 | 24.15 | -H | ||
Pariphyllin B h | C50H79O21 | 1015.5078 | 24.33 | -H | ||
Raddeanoside R7 h | C53H86O21 | 1057.5544 | 26.12 | -H | ||
Raddeanoside R4 h | C53H85O20 | 1041.5665 | 28.26 | -H | ||
Aesculioside C h | C58H90O24 | 1169.5806 | 29.42 | -H | ||
Quinquenoside R1 h | C51H93O24 | 1149.6114 | 30.59 | -H | ||
Ophiopogonin E h | C38H59O13 | 723.3932 | 32.59 | -H | ||
Borneol-2-O-Beta-D-glucoside c | C17H29O8 | 361.1868 | 32.59 | +HCOO | ||
Hordatine A | C29H39N8O6 | 595.2991 | 33.22 | +HCOO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez-Durazno, C.; Cisneros-Perez, P.A.; Loja-Ojeda, B.A.; Monge-Sevilla, R.; Romero-Estévez, D.; Fernández, L.; Espinoza-Montero, P.J. Antioxidant Capacity through Electrochemical Methods and Chemical Composition of Oenocarpus bataua and Gustavia macarenensis from the Ecuadorian Amazon. Antioxidants 2023, 12, 318. https://doi.org/10.3390/antiox12020318
Méndez-Durazno C, Cisneros-Perez PA, Loja-Ojeda BA, Monge-Sevilla R, Romero-Estévez D, Fernández L, Espinoza-Montero PJ. Antioxidant Capacity through Electrochemical Methods and Chemical Composition of Oenocarpus bataua and Gustavia macarenensis from the Ecuadorian Amazon. Antioxidants. 2023; 12(2):318. https://doi.org/10.3390/antiox12020318
Chicago/Turabian StyleMéndez-Durazno, Carlos, Pablo A. Cisneros-Perez, Bryan A. Loja-Ojeda, Raúl Monge-Sevilla, David Romero-Estévez, Lenys Fernández, and Patricio J. Espinoza-Montero. 2023. "Antioxidant Capacity through Electrochemical Methods and Chemical Composition of Oenocarpus bataua and Gustavia macarenensis from the Ecuadorian Amazon" Antioxidants 12, no. 2: 318. https://doi.org/10.3390/antiox12020318
APA StyleMéndez-Durazno, C., Cisneros-Perez, P. A., Loja-Ojeda, B. A., Monge-Sevilla, R., Romero-Estévez, D., Fernández, L., & Espinoza-Montero, P. J. (2023). Antioxidant Capacity through Electrochemical Methods and Chemical Composition of Oenocarpus bataua and Gustavia macarenensis from the Ecuadorian Amazon. Antioxidants, 12(2), 318. https://doi.org/10.3390/antiox12020318