Current Techniques of Water Solubility Improvement for Antioxidant Compounds and Their Correlation with Its Activity: Molecular Pharmaceutics
Abstract
:1. Introduction
2. Methodology
3. Antioxidant
3.1. Synthetic Antioxidants
3.2. Natural Antioxidants
3.3. Antioxidant Function
4. Current Water Solubility Improvement Strategies for Poorly Soluble Drugs
4.1. Chemical Modification
4.1.1. Salt Modification
4.1.2. Structure Modification
4.2. Physical Modification
4.2.1. Particle Size Reduction
4.2.2. Nanoparticle Drug Delivery System
4.2.3. Co-Crystallization
4.2.4. Co-Amorphous
4.2.5. Amorphous Solid Dispersion (ASD)
4.2.6. Solid Dispersion
4.2.7. Toxicology Study of Water Solubility Improvement Strategy
- Liver side effects of nanoparticles
- 2.
- Lung side effects of nanoparticles
- 3.
- Skin side effects of nanoparticles
- 4.
- Body Distribution and Systemic Side effects of nanoparticles.
- 5.
- Nanoparticle and thrombosis
- 6.
- Central nervous system side effect of nanoparticles
- 7.
- Membrane cell side effect of nanoparticles
- 8.
- Nanoparticle effects on mitochondria and lysosomes
- 9.
- Nanoparticle effects on proteins and macromolecules
- 10.
- Nanoparticle effects on DNA
5. Water Solubility Improvement Strategies of Poorly Soluble Antioxidants
5.1. Solid Dispersion of Antioxidant Compound
5.2. Co-Amorphous or Amorphous System
5.3. Nanoparticle Drug Delivery System
5.4. Particle Size Reduction
6. Discussion and Author Perspective
6.1. An Overview
6.2. Molecular Mechanism
6.2.1. Amorphous Solid Dispersion
6.2.2. Co-Amorphous
6.2.3. Nanoparticle Drug Delivery System and Particle Size Reduction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; O, W.; Li, W.; Jiang, Z.-G.; Ghanbari, H.A. Oxidative Stress and Neurodegenerative Disorders. Int. J. Mol. Sci. 2013, 14, 24438–24475. [Google Scholar] [CrossRef] [PubMed]
- Sidorova, Y.; Domanskyi, A. Detecting Oxidative Stress Biomarkers in Neurodegenerative Disease Models and Patients. Methods Protoc. 2020, 3, 66. [Google Scholar] [CrossRef] [PubMed]
- Boisvert, C.; Beaulieu, L.; Bonnet, C.; Pelletier, É. Assessment of the Antioxidant and Antibacterial Activities of Three Species of Edible Seaweeds. J. Food Biochem. 2015, 39, 377–387. [Google Scholar] [CrossRef]
- Budiman, A.; Megantara, S.A.; Apriliani, A. Solid dosage form development of glibenclamide-aspartame cocrystal using the solvent evaporation method to increase the solubility of glibenclamide. Int. J. Appl. Pharm. 2019, 11, 150–154. [Google Scholar] [CrossRef]
- Budiman, A.; Aulifa, D.L. Characterization of Drugs with Good Glass Formers in Loaded-Mesoporous Silica and Its Theoretical Value Relevance with Mesopores Surface and Pore-Filling Capacity. Pharmaceuticals 2022, 15, 93. [Google Scholar] [CrossRef] [PubMed]
- Budiman, A.; Higashi, K.; Ueda, K.; Moribe, K. Effect of drug-coformer interactions on drug dissolution from a coamorphous in mesoporous silica. Int. J. Pharm. 2021, 600, 120492. [Google Scholar] [CrossRef]
- Budiman, A.; Citraloka, Z.G.; Muchtaridi, M.; Sriwidodo, S.; Aulifa, D.L.; Rusdin, A. Inhibition of Crystal Nucleation and Growth in Aqueous Drug Solutions: Impact of Different Polymers on the Supersaturation Profiles of Amorphous Drugs—The Case of Alpha-Mangostin. Pharmaceutics 2022, 14, 2386. [Google Scholar] [CrossRef]
- Budiman, A.; Nurfadilah, N.; Muchtaridi, M.; Sriwidodo, S.; Aulifa, D.L.; Rusdin, A. The Impact of Water-Soluble Chitosan on the Inhibition of Crystal Nucleation of Alpha-Mangostin from Supersaturated Solutions. Polymers. 2022, 14, 4370. [Google Scholar] [CrossRef]
- Barros, A.A.A.; Alves, A.; Nunes, C.; Coimbra, M.A.; Pires, R.A.; Reis, R.L. Carboxymethylation of Ulvan and Chitosan and Their Use as Polymeric Components of Bone Cements. Acta Biomater. 2013, 9, 9086–9097. [Google Scholar] [CrossRef]
- Alshehri, S.; Imam, S.S.; Altamimi, M.A.; Hussain, A.; Shakeel, F.; Elzayat, E.; Mohsin, K.; Ibrahim, M.; Alanazi, F. Enhanced Dissolution of Luteolin by Solid Dispersion Prepared by Different Methods: Physicochemical Characterization and Antioxidant Activity. ACS Omega 2020, 5, 6461–6471. [Google Scholar] [CrossRef] [Green Version]
- Blagden, N.; de Matas, M.; Gavan, P.T.; York, P. Crystal Engineering of Active Pharmaceutical Ingredients to Improve Solubility and Dissolution Rates. Adv. Drug Deliv. Rev. 2007, 59, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Wang, L. Plant Species Compositions Alleviate Toxicological Effects of Bisphenol A by Enhancing Growth, Antioxidant Defense System, and Detoxification. Environ. Sci. Pollut. Res. 2022, 29, 65755–65770. [Google Scholar] [CrossRef]
- Tjahjani, S.; Widowati, W.; Khiong, K.; Suhendra, A.; Tjokropranoto, R. Antioxidant Properties of Garcinia Mangostana L (Mangosteen) Rind. Procedia Chem. 2014, 13, 198–203. [Google Scholar] [CrossRef]
- Castro, I.A.; Rogero, M.M.; Junqueira, R.M.; Carrapeiro, M.M. Free Radical Scavenger and Antioxidant Capacity Correlation of α-Tocopherol and Trolox Measured by Three in Vitro Methodologies. Int. J. Food Sci. Nutr. 2006, 57, 75–82. [Google Scholar] [CrossRef]
- Khalaf, N.A.; Shakya, A.K.; Al-Othman, A.; El-Agbar, Z.; Farah, H. Antioxidant Activity of Some Common Plants. Turk. J. Biol. 2008, 32, 51–55. [Google Scholar]
- Ceylan, Y.; Usta, K.; Usta, A.; Maltas, E.; Yildiz, S. Evaluation of Antioxidant Activity, Phytochemicals and ESR Analysis of Lavandula Stoechas. Acta Phys. Pol. A 2015, 128, 483–487. [Google Scholar] [CrossRef]
- Taufiq, N.; Mus, R.; Palimbong, D. Beta-Carotent and Antioxidant Activity of Starfruit Extract Powder (Avverhoa blimbi L.). J. Akta Kim. Indones. (Indones. Chim. Acta) 2021, 14. [Google Scholar] [CrossRef]
- Prasad, E.; Hameeda, B.; Rao, A.B.; Reddy, G. Biotransformation of Curcumin for Improved Biological Activity and Antiproliferative Activity on Acute HT-29 Human Cell Lines. Indian J. Biotechnol. 2014, 13, 324–329. [Google Scholar]
- He, J.; Xu, L.; Yang, L.; Wang, X. Epigallocatechin Gallate Is the Most Effective Catechin against Antioxidant Stress via Hydrogen Peroxide and Radical Scavenging Activity. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 8198. [Google Scholar] [CrossRef]
- Srimathi Priyanga, K.; Vijayalakshmi, K. Investigation of Antioxidant Potential of Quercetin and Hesperidin: An in Vitro Approach. Asian J. Pharm. Clin. Res 2017, 10, 83–86. [Google Scholar] [CrossRef]
- Oktavia, A.I.; Sari, B.S.A.; Savitrie, V.V. Test Levels Of Lycopene And Antioxidant Activity In Naturally Fermented Tomato (Lycopersicon Esculentum). J. Pangan Dan Agroindustri 2022, 10, 102–108. [Google Scholar] [CrossRef]
- Sindhu, E.R.; Preethi, K.C.; Kuttan, R. Antioxidant Activity of Carotenoid Lutein in Vitro and in Vivo. Indian J. Exp. Biol. 2010, 48, 843–848. [Google Scholar] [PubMed]
- Badary, O.A.; Taha, R.A.; Gamal El-Din, A.M.; Abdel-Wahab, M.H. Thymoquinone Is a Potent Superoxide Anion Scavenger. Drug Chem. Toxicol. 2003, 26, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Thuong, P.T.; Su, N.D.; Min, B.S.; Son, K.H.; Chang, H.W.; Kim, H.P.; Kang, S.S.; Sok, D.E.; Bae, K. Antioxidant Activity of Cleomiscosins A and C Isolated FromAcer Okamotoanum. Arch. Pharmacal Res. 2007, 30, 275–281. [Google Scholar] [CrossRef]
- Thuong, P.T.; Hung, T.M.; Ngoc, T.M.; Ha, D.T.; Min, B.S.; Kwack, S.J.; Kang, T.S.; Choi, J.S.; Bae, K. Antioxidant Activities of Coumarins from Korean Medicinal Plants and Their Structure–Activity Relationships. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2010, 24, 101–106. [Google Scholar]
- Na, M.-K.; Min, B.-S.; Bae, K.-H. Antioxidant Compounds from Cercis Chinensis Bunge. Bull. Korean Chem. Soc. 2009, 30, 2765–2768. [Google Scholar]
- Gülçin, İ. Antioxidant properties of resveratrol: A structure–activity insight. Innov. Food Sci. Emerg. Technol. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Yang, Y.; Song, X.; Sui, X.; Qi, B.; Wang, Z.; Li, Y.; Jiang, L. Rosemary Extract Can Be Used as a Synthetic Antioxidant to Improve Vegetable Oil Oxidative Stability. Ind. Crops Prod. 2016, 80, 141–147. [Google Scholar] [CrossRef]
- El Diwani, G.; El Rafie, S.; Hawash, S. Protection of Biodiesel and Oil from Degradation by Natural Antioxidants of Egyptian Jatropha. Int. J. Environ. Sci. Technol. 2009, 6, 369–378. [Google Scholar] [CrossRef]
- Xiang, W.S.; Zhang, J.; Wang, J.D.; Jiang, L.; Jiang, B.; Xiang, Z.D.; Wang, X.J. Isolation and identification of chlorinated genistein from Actinoplanes sp. HBDN08 with antioxidant and antitumor activities. J. Agric. Food Chem. 2010, 58, 1933–1938. [Google Scholar] [CrossRef]
- Wu, J.G.; Ge, J.; Zhang, Y.P.; Yu, Y.; Zhang, X.Y. Solubility of Genistein in Water, Methanol, Ethanol, Pro-pan-2-ol, 1-Butanol, and Ethyl Acetate from (280 to 333) K. J. Chem. Eng. Data 2010, 55, 5286–5288. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and Antioxidant Methods: An Updated Overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, P.K.; Tyagi, S.; Gola, D.; Arya, A.; Ayatollahi, S.A.; Alshehri, M.M.; Sharifi-Rad, J. Ascorbic Acid and Polyphenols Mediated Green Synthesis of Silver Nanoparticles from Tagetes Erecta L. Aqueous Leaf Extract and Studied Their Antioxidant Properties. J. Nanomater. 2021, 2021, 6515419. [Google Scholar] [CrossRef]
- Saide, A.; Martínez, K.A.; Ianora, A.; Lauritano, C. Unlocking the Health Potential of Microalgae as Sustainable Sources of Bioactive Compounds. Int. J. Mol. Sci. 2021, 22, 4383. [Google Scholar] [CrossRef] [PubMed]
- Admassu, S.; Kebede, M. Application of Antioxidants in Food Processing Industry: Options to Improve the Extraction Yields and Market Value of Natural Products. Adv. Food Technol. Nutr. Sci. 2019, 5, 38–49. [Google Scholar]
- Ahmadi, A.; Shadboorestan, A. Oxidative Stress and Cancer; the Role of Hesperidin, a Citrus Natural Bioflavonoid, as a Cancer Chemoprotective Agent. Nutr. Cancer 2016, 68, 29–39. [Google Scholar] [CrossRef]
- Kosanić, M.; Ranković, B.; Stanojković, T. Biological Activities of Two Macroalgae from Adriatic Coast of Montenegro. Saudi J. Biol. Sci. 2015, 22, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-D.; Li, P.-W.; Yang, Z.-M.; Peng, Z.; Quan, W.-Y.; Yang, X.-H.; Yang, L.; Dong, J.-J. Synthesis and Characterization of Chitosan Quaternary Ammonium Salt and Its Application as Drug Carrier for Ribavirin. Drug Deliv. 2014, 21, 548–552. [Google Scholar] [CrossRef]
- Moser, D.; Duan, Y.; Wang, F.; Ma, Y.; O’Neill, M.J.; Cornella, J. Selective Functionalization of Aminoheterocycles by a Pyrylium Salt. Angew. Chem. Int. Ed. 2018, 57, 11035–11039. [Google Scholar] [CrossRef]
- Alatas, F.; Azizsidiq, F.A.; Sutarna, T.H.; Ratih, H.; Soewandhi, S.N. Perbaikan Kelarutan Albendazol Melalui Pembentukan Kristal Multikomponen Dengan Asam Malat. J. Farm. Galen. (Galen. J. Pharm.) (E J.) 2020, 6, 114–123. [Google Scholar] [CrossRef]
- Di, L.; Fish, P.V.; Mano, T. Bridging Solubility between Drug Discovery and Development. Drug Discov. Today 2012, 17, 486–495. [Google Scholar] [CrossRef]
- Cisneros, J.A.; Robertson, M.J.; Mercado, B.Q.; Jorgensen, W.L. Systematic Study of Effects of Structural Modifications on the Aqueous Solubility of Drug-like Molecules. ACS Med. Chem. Lett. 2017, 8, 124–127. [Google Scholar] [CrossRef]
- Queffelec, C.; Petit, M.; Janvier, P.; Knight, D.A.; Bujoli, B. Surface Modification Using Phosphonic Acids and Esters. Chem. Rev. 2012, 112, 3777–3807. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, J.; Miyamoto, K.; Ichikawa, Y.; Uchiyama, M.; Makishima, M.; Hashimoto, Y.; Ishikawa, M. Improvement in Aqueous Solubility of Achiral Symmetric Cyclofenil by Modification to a Chiral Asymmetric Analog. Sci. Rep. 2021, 11, 12697. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Wu, Z.; Ameer, K.; Li, S.; Ramachandraiah, K. Particle Size of Ginseng (Panax Ginseng Meyer) Insoluble Dietary Fiber and Its Effect on Physicochemical Properties and Antioxidant Activities. Appl. Biol. Chem. 2020, 63, 70. [Google Scholar] [CrossRef]
- Mahesh, K.V.; Singh, S.K.; Gulati, M. A Comparative Study of Top-down and Bottom-up Approaches for the Preparation of Nanosuspensions of Glipizide. Powder Technol. 2014, 256, 436–449. [Google Scholar] [CrossRef]
- Salazar, J.; Müller, R.H.; Möschwitzer, J.P. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals. J. Pharm. 2014, 2014, 265754. [Google Scholar] [CrossRef]
- Sinha, B.; Müller, R.H.; Möschwitzer, J.P. Bottom-up Approaches for Preparing Drug Nanocrystals: Formulations and Factors Affecting Particle Size. Int. J. Pharm. 2013, 453, 126–141. [Google Scholar] [CrossRef]
- Alshora, D.H.; Ibrahim, M.A.; Alanazi, F.K. Nanotechnology from Particle Size Reduction to Enhancing Aqueous Solubility. In Surface Chemistry of Nanobiomaterials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 163–191. [Google Scholar]
- Sankarganesh, M.; Adwin Jose, P.; Dhaveethu Raja, J.; Kesavan, M.P.; Vadivel, M.; Rajesh, J.; Jeyamurugan, R.; Senthil Kumar, R.; Karthikeyan, S. New Pyrimidine Based Ligand Capped Gold and Platinum Nano Particles: Synthesis, Characterization, Antimicrobial, Antioxidant, DNA Interaction and in Vitro Anticancer Activities. J. Photochem. Photobiol. B Biol. 2017, 176, 44–53. [Google Scholar] [CrossRef]
- Wathoni, N.; Rusdin, A.; Febriani, E.; Purnama, D.; Daulay, W.; Azhary, S.; Panatarani, C.; Joni, I.; Lesmana, R.; Motoyama, K.; et al. Formulation and Characterization of Mangostin in Chitosan Nanoparticles Coated by Sodium Alginate, Sodium Silicate, and Polyethylene Glycol. J. Pharm. Bioallied Sci. 2019, 11 (Suppl. 4), S619. [Google Scholar] [CrossRef]
- Muhamad12, I.I.; Selvakumaran, S.; Lazim, N.A.M. Designing Polymeric Nanoparticles for Targeted Drug Delivery System. Nanomed 2014, 287, 287. [Google Scholar]
- Drozd, K.V.; Manin, A.N.; Voronin, A.P.; Boycov, D.E.; Churakov, A.V.; Perlovich, G.L. A Combined Experimental and Theoretical Study of Miconazole Salts and Cocrystals: Crystal Structures, DFT Computations, Formation Thermodynamics and Solubility Improvement. Phys. Chem. Chem. Phys. 2021, 23, 12456–12470. [Google Scholar] [CrossRef]
- Nechipadappu, S.K.; Reddy, I.R.; Tarafder, K.; Trivedi, D.R. Salt/Cocrystal of Anti-Fibrinolytic Hemostatic Drug Tranexamic Acid: Structural, DFT, and Stability Study of Salt/Cocrystal with GRAS Molecules. Cryst. Growth Des. 2018, 19, 347–361. [Google Scholar] [CrossRef]
- Dengale, S.J.; Grohganz, H.; Rades, T.; Löbmann, K. Recent Advances in Co-Amorphous Drug Formulations. Adv. Drug Deliv. Rev. 2016, 100, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Buldurun, K.; Turan, N.; Bursal, E.; Mantarcı, A.; Turkan, F.; Taslimi, P.; Gülçin, İ. Synthesis, Spectroscopic Properties, Crystal Structures, Antioxidant Activities and Enzyme Inhibition Determination of Co(II) and Fe(II) Complexes of Schiff Base. Res. Chem. Intermed. 2020, 46, 283–297. [Google Scholar] [CrossRef]
- Venkateswarlu, K.; Kumar, M.P.; Rambabu, A.; Vamsikrishna, N.; Daravath, S.; Rangan, K. Shivaraj, Crystal Structure, DNA Binding, Cleavage, Antioxidant and Antibacterial Studies of Cu (II), Ni (II) and Co (III) Complexes with 2-((Furan-2-Yl)Methylimino)Methyl)-6-Ethoxyphenol Schiff Base. J. Mol. Struct. 2018, 1160, 198–207. [Google Scholar] [CrossRef]
- Srirambhatla, V.K.; Kraft, A.; Watt, S.; Powell, A.V. Crystal Design Approaches for the Synthesis of Paracetamol Co-Crystals. Cryst. Growth Des. 2012, 12, 4870–4879. [Google Scholar] [CrossRef]
- Shevchenko, A.; Miroshnyk, I.; Pietila, L.-O.; Haarala, J.; Salmia, J.; Sinervo, K.; Mirza, S.; van Veen, B.; Kolehmainen, E.; Yliruusi, J. Diversity in Itraconazole Cocrystals with Aliphatic Dicarboxylic Acids of Varying Chain Length. Cryst. Growth Des. 2013, 13, 4877–4884. [Google Scholar] [CrossRef]
- Mizoguchi, R.; Waraya, H.; Hirakura, Y. Application of Co-Amorphous Technology for Improving the Physicochemical Properties of Amorphous Formulations. Mol. Pharm. 2019, 16, 2142–2152. [Google Scholar] [CrossRef]
- Lim, L.M.; Park, J.-W.; Hadinoto, K. Benchmarking the Solubility Enhancement and Storage Stability of Amorphous Drug–Polyelectrolyte Nanoplex against Co-Amorphous Formulation of the Same Drug. Pharmaceutics 2022, 14, 979. [Google Scholar] [CrossRef]
- Wathoni, N.; Motoyama, K.; Higashi, T.; Okajima, M.; Kaneko, T.; Arima, H. Enhancement of Curcumin Wound Healing Ability by Complexation with 2-Hydroxypropyl-γ-Cyclodextrin in Sacran Hydrogel Film. Int. J. Biol. Macromol. 2017, 98, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Grohganz, H.; Löbmann, K.; Rades, T.; Hempel, N.-J. Co-Amorphous Drug Formulations in Numbers: Recent Advances in Co-Amorphous Drug Formulations with Focus on Co-Formability, Molar Ratio, Preparation Methods, Physical Stability, in Vitro and in Vivo Performance, and New Formulation Strategies. Pharmaceutics 2021, 13, 389. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, Y.; Ueda, H.; Takata, Y.; Minamihata, K.; Wakabayashi, R.; Kamiya, N.; Goto, M. Co-Amorphous Formation of Piroxicam-Citric Acid to Generate Supersaturation and Improve Skin Permeation. Eur. J. Pharm. Sci. 2021, 158, 105667. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Gao, H.; Babu, S.; Garad, S. Co-Amorphous Formation of High-Dose Zwitterionic Compounds with Amino Acids to Improve Solubility and Enable Parenteral Delivery. Mol. Pharm. 2018, 15, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Sotthivirat, S.; McKelvey, C.; Moser, J.; Rege, B.; Xu, W.; Zhang, D. Development of Amorphous Solid Dispersion Formulations of a Poorly Water-Soluble Drug, MK-0364. Int. J. Pharm. 2013, 452, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Ueda, K.; Yasuda, Y.; Higashi, K.; Inoue, M.; Ito, M.; Noguchi, S.; Kawakami, K.; Moribe, K. Correlation between Drug Dissolution and Resistance to Water-Induced Phase Separation in Solid Dispersion Formulations Revealed by Solid-State NMR Spectroscopy. Int. J. Pharm. 2020, 577, 119086. [Google Scholar] [CrossRef]
- Kawakami, K. Modification of Physicochemical Characteristics of Active Pharmaceutical Ingredients and Application of Supersaturatable Dosage Forms for Improving Bioavailability of Poorly Absorbed Drugs. Adv. Drug Deliv. Rev. 2012, 64, 480–495. [Google Scholar] [CrossRef]
- Ilyas, A.; Odatsu, T.; Shah, A.; Monte, F.; Kim, H.K.W.; Kramer, P.; Aswath, P.B.; Varanasi, V.G. Amorphous Silica: A New Antioxidant Role for Rapid Critical-Sized Bone Defect Healing. Adv. Healthc. Mater. 2016, 5, 2199–2213. [Google Scholar] [CrossRef]
- Ghobashy, M.M.; Alshangiti, D.M.; Alkhursani, S.A.; Al-Gahtany, S.A.; Shokr, F.S.; Madani, M. Improvement of in Vitro Dissolution of the Poor Water-Soluble Amlodipine Drug by Solid Dispersion with Irradiated Polyvinylpyrrolidone. ACS Omega 2020, 5, 21476–21487. [Google Scholar] [CrossRef]
- Azhary, D.P. Peningkatan Laju Disolusi Atorvastatin Dengan Dispersi Padat Menggunakan Pembawa Karagenan. J. Ilm. Farm. Farmasyifa 2020, 3, 44–50. [Google Scholar] [CrossRef]
- Gayo, Z.; Lucida, H.; Zaini, E. Solid Dispersion of Quercetin-PVP K-30 and Its Effects on the Antioxidant Activity. J. Ilm. Farm. 2020, 16, 144–154. [Google Scholar] [CrossRef]
- Wan, S.; Sun, Y.; Qi, X.; Tan, F. Improved Bioavailability of Poorly Water-Soluble Drug Curcumin in Cellulose Acetate Solid Dispersion. Aaps Pharmscitech 2012, 13, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dai, W.-G. Fundamental Aspects of Solid Dispersion Technology for Poorly Soluble Drugs. Acta Pharm. Sin. B 2014, 4, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-N.; Poon, W.; Tavares, A.J.; McGilvray, I.D.; Chan, W.C.W. Nanoparticle–Liver Interactions: Cellular Uptake and Hepatobiliary Elimination. J. Control. Release 2016, 240, 332–348. [Google Scholar] [CrossRef] [PubMed]
- Warheit, D.B.; Laurence, B.R.; Reed, K.L.; Roach, D.H.; Reynolds, G.A.M.; Webb, T.R. Comparative Pulmonary Toxicity Assessment of Single-Wall Carbon Nanotubes in Rats. Toxicol. Sci. 2004, 77, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.-W.; James, J.T.; McCluskey, R.; Hunter, R.L. Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days after Intratracheal Instillation. Toxicol. Sci. 2004, 77, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.P.; Kelly, D.P.; Schneider, P.W.; Trochimowicz, H.J. Inhalation Toxicity Study on Rats Exposed to Titanium Tetrachloride Atmospheric Hydrolysis Products for Two Years. Toxicol. Appl. Pharmacol. 1986, 83, 30–45. [Google Scholar] [CrossRef]
- Oberdörster, G.; Ferin, J.; Lehnert, B.E. Correlation between Particle Size, in Vivo Particle Persistence, and Lung Injury. Environ. Health Perspect. 1994, 102, 173–179. [Google Scholar]
- Lademann, J.; Weigmann, H.-J.; Rickmeyer, C.; Barthelmes, H.; Schaefer, H.; Müller, G.; Sterry, W. Penetration of Titanium Dioxide Microparticles in a Sunscreen Formulation into the Horny Layer and the Follicular Orifice. Ski. Pharmacol. Physiol. 1999, 12, 247–256. [Google Scholar] [CrossRef]
- Verma, D.D.; Verma, S.; Blume, G.; Fahr, A. Particle Size of Liposomes Influences Dermal Delivery of Substances into Skin. Int. J. Pharm. 2003, 258, 141–151. [Google Scholar] [CrossRef]
- Hoet, P.H.M.; Brüske-Hohlfeld, I.; Salata, O.V. Nanoparticles–Known and Unknown Health Risks. J. Nanobiotechnol. 2004, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Nemmar, A.; Vanbilloen, H.; Hoylaerts, M.F.; Hoet, P.H.M.; Verbruggen, A.; Nemery, B. Passage of Intratracheally Instilled Ultrafine Particles from the Lung into the Systemic Circulation in Hamster. Am. J. Respir. Crit. Care Med. 2001, 164, 1665–1668. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Rahman, M.F.; Duhart, H.M.; Newport, G.D.; Patterson, T.A.; Murdock, R.C.; Hussain, S.M.; Schlager, J.J.; Ali, S.F. Expression Changes of Dopaminergic System-Related Genes in PC12 Cells Induced by Manganese, Silver, or Copper Nanoparticles. Neurotoxicology 2009, 30, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Sarin, H.; Kanevsky, A.S.; Wu, H.; Brimacombe, K.R.; Fung, S.H.; Sousa, A.A.; Auh, S.; Wilson, C.M.; Sharma, K.; Aronova, M.A. Effective Transvascular Delivery of Nanoparticles across the Blood-Brain Tumor Barrier into Malignant Glioma Cells. J. Transl. Med. 2008, 6, 1–15. [Google Scholar] [CrossRef]
- Rungby, J.; Danscher, G. Localization of Exogenous Silver in Brain and Spinal Cord of Silver Exposed Rats. Acta Neuropathol. 1983, 60, 92–98. [Google Scholar] [CrossRef]
- Panyala, N.R.; Peña-Méndez, E.M.; Havel, J. Silver or Silver Nanoparticles: A Hazardous Threat to the Environment and Human Health? J. Appl. Biomed. 2008, 6, 117–129. [Google Scholar] [CrossRef]
- Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D. Principles for Characterizing the Potential Human Health Effects from Exposure to Nanomaterials: Elements of a Screening Strategy. Part. Fibre Toxicol. 2005, 2, 8. [Google Scholar] [CrossRef]
- Vasir, J.K.; Labhasetwar, V. Quantification of the Force of Nanoparticle-Cell Membrane Interactions and Its Influence on Intracellular Trafficking of Nanoparticles. Biomaterials 2008, 29, 4244–4252. [Google Scholar] [CrossRef]
- Peetla, C.; Labhasetwar, V. Biophysical Characterization of Nanoparticle− Endothelial Model Cell Membrane Interactions. Mol. Pharm. 2008, 5, 418–429. [Google Scholar] [CrossRef]
- Ginzburg, V.V.; Balijepalli, S. Modeling the Thermodynamics of the Interaction of Nanoparticles with Cell Membranes. Nano Lett. 2007, 7, 3716–3722. [Google Scholar] [CrossRef]
- Greulich, C.; Diendorf, J.; Simon, T.; Eggeler, G.; Epple, M.; Köller, M. Uptake and Intracellular Distribution of Silver Nanoparticles in Human Mesenchymal Stem Cells. Acta Biomater. 2011, 7, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Al-Rawi, M.; Diabaté, S.; Weiss, C. Uptake and Intracellular Localization of Submicron and Nano-Sized SiO2 Particles in HeLa Cells. Arch. Toxicol. 2011, 85, 813–826. [Google Scholar] [CrossRef] [PubMed]
- Marano, F.; Hussain, S.; Rodrigues-Lima, F.; Baeza-Squiban, A.; Boland, S. Nanoparticles: Molecular Targets and Cell Signalling. Arch. Toxicol. 2011, 85, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Dawson, K.A.; Salvati, A.; Lynch, I. Nanoparticles Reconstruct Lipids. Nat. Nanotechnol. 2009, 4, 84–85. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.A.; Elsaesser, A.; Arkusz, J.; Smok, A.; Palus, J.; Lesniak, A.; Salvati, A.; Hanrahan, J.P.; de Jong, W.H.; Dziubałtowska, E. Reproducible Comet Assay of Amorphous Silica Nanoparticles Detects No Genotoxicity. Nano Lett. 2008, 8, 3069–3074. [Google Scholar] [CrossRef]
- Karlsson, H.L. The Comet Assay in Nanotoxicology Research. Anal. Bioanal. Chem. 2010, 398, 651–666. [Google Scholar] [CrossRef]
- Ma, T.; Sun, J.; Li, X.; Ma, Y.; Liu, L.; Guo, L.; Liu, Q.; Sun, Y. Optimization of Extraction for Anemarrhena Asphodeloides Bge. Using Silica Gel-Based Vortex-Homogenized Matrix Solid-Phase Dispersion and Rapid Identification of Antioxidant Substances. J. Sep. Sci. 2020, 43, 2180–2192. [Google Scholar] [CrossRef]
- Ramadhan, H.; Forestryana, D.; Adisaputra, G.T.; Muharram, S.R. Effect of Vanillin Quality on the Synthesis and Solid Dispersion Systems on Pgv-0 Antioxidant Capacity. Int. J. Appl. Pharm. 2022, 14, 31–36. [Google Scholar] [CrossRef]
- Fitriani, L.; Rismawati, E.; Umar, S.; Zaini, E. Solid Dispersion of Usnic Acid-PVP K30 and Evaluation of Antioxidant Activity. Rasayan J. Chem. 2018, 11, 1643–1648. [Google Scholar] [CrossRef]
- Lee, I.W.; Li, J.; Chen, X.; Park, H.J. Fabrication of Electrospun Antioxidant Nanofibers by Rutin-Pluronic Solid Dispersions for Enhanced Solubility. J. Appl. Polym. Sci. 2017, 134, 1–10. [Google Scholar] [CrossRef]
- Nadal, J.M.; Gomes, M.L.S.; Borsato, D.M.; Almeida, M.A.; Barboza, F.M.; Zawadzki, S.F.; Farago, P.V.; Zanin, S.M.W. Spray-Dried Solid Dispersions Containing Ferulic Acid: Comparative Analysis of Three Carriers, in Vitro Dissolution, Antioxidant Potential and in Vivo Anti-Platelet Effect. Drug Dev. Ind. Pharm. 2016, 42, 1813–1824. [Google Scholar] [CrossRef] [PubMed]
- Madhu, G.; Biju, V. Nanostructured Amorphous Nickel Oxide with Enhanced Antioxidant Activity. J. Alloy. Compd. 2015, 637, 62–69. [Google Scholar] [CrossRef]
- Guo, X.; Li, W.; Wang, H.; Fan, Y.Y.; Wang, H.; Gao, X.; Niu, B.; Gong, X. Preparation, Characterization, Release and Antioxidant Activity of Curcumin-Loaded Amorphous Calcium Phosphate Nanoparticles. J. Non Cryst. Solids 2018, 500, 317–325. [Google Scholar] [CrossRef]
- Casado-Diaz, A.; Moreno-Rojas, J.M.; Verdú-Soriano, J.; Lázaro-Martínez, J.L.; Rodríguez-Mañas, L.; Tunez, I.; La Torre, M.; Berenguer Pérez, M.; Priego-Capote, F.; Pereira-Caro, G. Evaluation of Antioxidant and Wound-Healing Properties of EHO-85, a Novel Multifunctional Amorphous Hydrogel Containing Olea Europaea Leaf Extract. Pharmaceutics 2022, 14, 349. [Google Scholar] [CrossRef] [PubMed]
- Himed, L.; Merniz, S.; Monteagudo-Olivan, R.; Barkat, M.; Coronas, J. Antioxidant Activity of the Essential Oil of Citrus Limon before and after Its Encapsulation in Amorphous SiO2. Sci. Afr. 2019, 6, e00181. [Google Scholar] [CrossRef]
- Guleria, A.; Neogy, S.; Raorane, B.S.; Adhikari, S. Room Temperature Ionic Liquid Assisted Rapid Synthesis of Amorphous Se Nanoparticles: Their Prolonged Stabilization and Antioxidant Studies. Mater. Chem. Phys. 2020, 253, 123369. [Google Scholar] [CrossRef]
- Mohamed, S.A.; El-Shishtawy, R.M.; Al-Bar, O.A.M.; Al-Najada, A.R. Chemical Modification of Curcumin: Solubility and Antioxidant Capacity. Int. J. Food Prop. 2017, 20, 718–724. [Google Scholar] [CrossRef] [Green Version]
- EL Barky, A.R.; Mohamed, T.M.; Ali, E.M.M. Detoxifying and Antioxidant Effect of Ellagic Acid Nano Particles in Rats Intoxicated with Sodium Nitrites. Appl. Biol. Chem. 2020, 63, 47. [Google Scholar] [CrossRef]
- Karunakaran, G.; Suriyaprabha, R.; Manivasakan, P.; Yuvakkumar, R.; Rajendran, V.; Kannan, N. Screening of in Vitro Cytotoxicity, Antioxidant Potential and Bioactivity of Nano- and Micro-ZrO2 and -TiO2 Particles. Ecotoxicol. Environ. Saf. 2013, 93, 191–197. [Google Scholar] [CrossRef]
- Abdel-Wahhab, M.A.; Aljawish, A.; Kenawy, A.M.; El-Nekeety, A.A.; Hamed, H.S.; Abdel-Aziem, S.H. Grafting of Gallic Acid onto Chitosan Nano Particles Enhances Antioxidant Activities in Vitro and Protects against Ochratoxin A Toxicity in Catfish (Clarias Gariepinus). Environ. Toxicol. Pharmacol. 2016, 41, 279–288. [Google Scholar] [CrossRef]
- Seçkin, H. Antimicrobial, Antioxidant and Dna Damage Prevention Effect of Nano-Copper Particles Obtained from Diplotaenia Turcica Plant by Green Synthesis. Pol. J. Environ. Stud. 2021, 30, 4187–4194. [Google Scholar] [CrossRef] [PubMed]
- Merouane, A.; Saadi, A.; Noui, A. Impact of Removal of Micro and Nano Sized Particles on the Phenolic Content and Antioxidant Activity: Study on Aqueous and Methanolic Leaves Extracts of Phlomis Crinita. Ind. Crops Prod. 2018, 114, 132–136. [Google Scholar] [CrossRef]
- Zhang, Q.; Cui, W.; Guo, H.; Wang, B.; Wang, H.; Zhang, J.; Li, W. One-Pot Preparation of Nano-Scaled Magnetic-Pectin Particles (Fe3O4@pectin NPs): Cytotoxicity, Antioxidant, and Anti-Liver Cancer Properties. J. Exp. Nanosci. 2022, 17, 326–338. [Google Scholar] [CrossRef]
- Mohasseli, V.; Farbood, F.; Moradi, A. Antioxidant Defense and Metabolic Responses of Lemon Balm (Melissa Officinalis L.) to Fe-Nano-Particles under Reduced Irrigation Regimes. Ind. Crops Prod. 2020, 149, 112338. [Google Scholar] [CrossRef]
- Anraku, M.; Hiraga, A.; Iohara, D.; Uekama, K.; Tomida, H.; Otagiri, M.; Hirayama, F. Preparation and Antioxidant Activity of PEGylated Chitosans with Different Particle Sizes. Int. J. Biol. Macromol. 2014, 70, 64–69. [Google Scholar] [CrossRef]
- Lyu, Y.; Bi, J.; Chen, Q.; Wu, X.; Qiao, Y.; Hou, H.; Zhang, X. Bioaccessibility of Carotenoids and Antioxidant Capacity of Seed-Used Pumpkin Byproducts Powders as Affected by Particle Size and Corn Oil during in Vitro Digestion Process. Food Chem. 2021, 343, 128541. [Google Scholar] [CrossRef]
- Brewer, L.R.; Kubola, J.; Siriamornpun, S.; Herald, T.J.; Shi, Y.C. Wheat Bran Particle Size Influence on Phytochemical Extractability and Antioxidant Properties. Food Chem. 2014, 152, 483–490. [Google Scholar] [CrossRef]
- Ramachandraiah, K.; Chin, K.B. Effect of Particle Size of Persimmon By-Product Powders on Their Physicochemical Properties and Antioxidant Activities in Porcine Patties. J. Food Process Eng. 2018, 41, e12610. [Google Scholar] [CrossRef]
- Putra, N.R.; Rizkiyah, D.N.; Zaini, A.S.; Yunus, M.A.C.; Machmudah, S.; Idham, Z.B.; Hazwan Ruslan, M.S. Effect of Particle Size on Yield Extract and Antioxidant Activity of Peanut Skin Using Modified Supercritical Carbon Dioxide and Soxhlet Extraction. J. Food Process. Preserv. 2018, 42, e13689. [Google Scholar] [CrossRef]
- Pool, H.; Campos-Vega, R.; Herrera-Hernández, M.G.; García-Solis, P.; García-Gasca, T.; Sánchez, I.C.; Luna-Bárcenas, G.; Vergara-Castañeda, H. Development of genistein-PEGylated silica hybrid nanomaterials with enhanced antioxidant and antiproliferative properties on HT29 human colon cancer cells. Am. J. Transl. Res. 2018, 10, 2306–2323. [Google Scholar]
- Silva de Sá, I.; Peron, A.P.; Leimann, F.V.; Bressan, G.N.; Krum, B.N.; Fachinetto, R.; Pinela, J.; Calhelha, R.C.; Barreiro, M.F.; Ferreira, I.C.F.R.; et al. In Vitro and in Vivo Evaluation of Enzymatic and Antioxidant Activity, Cytotoxicity and Genotoxicity of Curcumin-Loaded Solid Dispersions. Food Chem. Toxicol. 2019, 125, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Cuzzucoli Crucitti, V.; Migneco, L.M.; Piozzi, A.; Taresco, V.; Garnett, M.; Argent, R.H.; Francolini, I. Intermolecular Interaction and Solid State Characterization of Abietic Acid/Chitosan Solid Dispersions Possessing Antimicrobial and Antioxidant Properties. Eur. J. Pharm. Biopharm. 2018, 125, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Salević, A.; Prieto, C.; Cabedo, L.; Nedović, V.; Lagaron, J.M. Physicochemical, Antioxidant and Antimicrobial Properties of Electrospun Poly (ε-Caprolactone) Films Containing a Solid Dispersion of Sage (Salvia officinalis L.) Extract. Nanomaterials 2019, 9, 270. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Piao, J.; Liu, N.; Hou, J.; Liu, J.; Hu, W. Effect of Ultrafine Powderization and Solid Dispersion Formation via Hot-Melt Extrusion on Antioxidant, Anti-Inflammatory, and the Human Kv1.3 Channel Inhibitory Activities of Angelica Gigas Nakai. Bioinorg. Chem. Appl. 2020, 2020, 7846176. [Google Scholar] [CrossRef] [PubMed]
- Pasha, A.Z.; Bukhari, S.A.; Mustafa, G.; Anjum, F.; Qari, S.H. Evaluation of Modified Date Palm (Phoenix dactylifera L.) Mucilage as a Potential Pharmaceutical Excipient. J. Food Qual. 2022, 2022, 3923812. [Google Scholar] [CrossRef]
- Xiao, Y.; Ho, C.-T.; Chen, Y.; Wang, Y.; Wei, Z.; Dong, M.; Huang, Q. Synthesis, Characterization, and Evaluation of Genistein-Loaded Zein/Carboxymethyl Chitosan Nanoparticles with Improved Water Dispersibility, Enhanced Antioxidant Activity, and Controlled Release Property. Foods 2020, 9, 1604. [Google Scholar] [CrossRef] [PubMed]
- Tirado, D.F.; Palazzo, I.; Scognamiglio, M.; Calvo, L.; Della Porta, G.; Reverchon, E. Astaxanthin Encapsulation in Ethyl Cellulose Carriers by Continuous Supercritical Emulsions Extraction: A Study on Particle Size, Encapsulation Efficiency, Release Profile and Antioxidant Activity. J. Supercrit. Fluids 2019, 150, 128–136. [Google Scholar] [CrossRef]
- Azeem, M.; Mu, T.H.; Zhang, M. Influence of Particle Size Distribution on Nutritional Composition, Microstructural and Antioxidant Properties of Orange and Purple-Fleshed Sweet Potato Flour. J. Food Process. Preserv. 2021, 45, e15283. [Google Scholar] [CrossRef]
- Odgerel, U.; Islam, M.Z.; Kitamura, Y.; Kokawa, M.; Odbayar, T.O. Effect of Micro Wet Milling Process on Particle Sizes, Antioxidants, Organic Acids, and Specific Phenolic Compounds of Whole Sea Buckthorn (Hippophae rhamnoides L.) Juices. J. Food Process. Preserv. 2021, 45, e15474. [Google Scholar] [CrossRef]
- Hussain, N.; bt Md Dali, A.Z.; Munawar, N. Effects of Fat Contents and Particle Size of Cocoa Nibs on Alkaloid Composition, Antioxidant Activities, and Volatile Compound of Concentrated Cocoa Drink. J. Food Process. Preserv. 2021, 45, e15748. [Google Scholar] [CrossRef]
- Dziki, D.; Tarasiuk, W.; Gawlik-Dziki, U. Micronized Oat Husk: Particle Size Distribution, Phenolic Acid Profile and Antioxidant Properties. Materials 2021, 14, 5443. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.X.; Chen, D.; Plumier, B.; Berhow, M.; Xu, J.; Byars, J.A. Impact of Particle Size Fractions on Composition, Antioxidant Activities, and Functional Properties of Soybean Hulls. J. Food Meas. Charact. 2021, 15, 1547–1562. [Google Scholar] [CrossRef]
- Ghaffarizadeh, A.; Sotoudeh, E.; Mozanzadeh, M.T.; Sanati, A.M.; Ghasemi, A. Supplementing Dietary Selenium Nano-Particles Increased Growth, Antioxidant Capacity and Immune-Related Genes Transcription in Pacific Whiteleg Shrimp (Penaeus Vannamei) Juveniles. Aquac. Rep. 2022, 25, 101215. [Google Scholar] [CrossRef]
- Park, G.; Cho, H.; Kim, K.; Kweon, M. Quality Characteristics and Antioxidant Activity of Fresh Noodles Formulated with Flour-Bran Blends Varied by Particle Size and Blend Ratio of Purple-Colored Wheat Bran. Processes 2022, 10, 584. [Google Scholar] [CrossRef]
- Yadav, A.; Kumari, R.; Yadav, A.; Mishra, J.; Srivatva, S.; Prabha, S. Antioxidants and Its Functions in Human Body—A Review. Res. Environ. Life Sci. 2016, 9, 1328–1331. [Google Scholar]
- Hassan, S.; El-Twab, S.A.; Hetta, M.; Mahmoud, B. Improvement of Lipid Profile and Antioxidant of Hypercholesterolemic Albino Rats by Polysaccharides Extracted from the Green Alga Ulva Lactuca Linnaeus. Saudi J. Biol. Sci. 2011, 18, 333–340. [Google Scholar] [CrossRef]
- Tran, P.; Pyo, Y.-C.; Kim, D.-H.; Lee, S.-E.; Kim, J.-K.; Park, J.-S. Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-Soluble Drugs and Application to Anticancer Drugs. Pharmaceutics 2019, 11, 132. [Google Scholar] [CrossRef]
- Pandi, P.; Bulusu, R.; Kommineni, N.; Khan, W.; Singh, M. Amorphous Solid Dispersions: An Update for Preparation, Characterization, Mechanism on Bioavailability, Stability, Regulatory Considerations and Marketed Products. Int. J. Pharm. 2020, 586, 119560. [Google Scholar] [CrossRef]
- Thomas, N.; Rusdin, A.; Tulsyahra, M.; Wathoni, N.; Kuswandi, A. Accelerated Wound Healing Ability of Jatropha Sap by Iota Carrageenan-Poly (Vinyl Alcohol) Hydrogel Film. J. Adv. Pharm. Technol. Res. 2020, 11, 226. [Google Scholar]
- Chavan, R.B.; Thipparaboina, R.; Kumar, D.; Shastri, N.R. Co Amorphous Systems: A Product Development Perspective. Int. J. Pharm. 2016, 515, 403–415. [Google Scholar] [CrossRef]
- Harish, V.; Tewari, D.; Gaur, M.; Yadav, A.B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials 2022, 12, 457. [Google Scholar] [CrossRef] [PubMed]
No | Antioxidants | Structures | Antioxidant Activity | Solubility in Water | References |
---|---|---|---|---|---|
1 | Alpha Mangostin | 66.63 ± 34.65 µg/mL | 2.03 × 10−4 mg in 1 L at 25 °C | [13] | |
2 | α-tocopherol | 0.059/0.01 mM | Insoluble in water | [14] | |
3 | Ascorbic acid | 8.9 ± 0.1 µg/mL | Soluble in water | [15] | |
4 | Buthyl Hydroxy Toluene (BHT) | 0.020 ± 0.001 µg/mL | Insoluble in water | [16] | |
5 | Buthyl Hydroxy Anisole | 0.035 ± 0.007 µg/mL | Insoluble in water | [16] | |
6 | β-carotene | 24.99 µg/mL | 0.0006 g in 1 L at 25 °C | [17] | |
7 | Curcumin | 32.86 µM | 3.12 mg in 1 L at 25 °C | [18] | |
8 | Catechin | 170.3 ± 2.0 µg/mL | 0.45 mg in 1 mL at 25 °C | [19] | |
9 | Quercetin | 19.3 µg/mL | 60 mg in 1 L | [20] | |
10 | Lycopene | 57.93 µg/mL | Insoluble in water | [21] | |
11 | Lutein | 35 µg/mL | Insoluble in water | [22] | |
12 | Tertbutyl hydroquinone (TBHQ) | 14.9 ± 0.81 mM | Practically insoluble in water | [23] | |
13 | Ferulic Acid | 56.4 ± 4.6 µg/mL | 0.78 g in 1 L | [24,25] | |
14 | Myricitrin | 32.7 ± 0.9 µg/mL | Practically insoluble in water | [26] | |
15 | Ethyl Gallate | 35.3 ± 4.0 µg/mL | Sparingly soluble in aqueous buffers | [26] | |
16 | Resveratrol | 0.49 ± 0.03 mM | 3 mg in 100 mL | [27,28] | |
17 | Rutin | 2.77 ± 0.09 mM | 12.5 mg in 100 mL | [28] | |
18 | Kaempferol | 0.82 ± 0.04 mM | 0.18 g in 1 L | [28] | |
19 | Myricetin | 3.66 ± 0.30 mM | Very insoluble (<5 μg in 1 mL) in pure water | [28] | |
20 | Isobavachalcone | 250.8 µg/mL | Insoluble in water | [29] | |
21 | Genistein | 13.6 μM | Insoluble in water | [30,31] |
No | Technique Modification | Main System: Polymer/ Co-Former/ Co-Amorphous | Active Pharmaceutical Ingredients (Antioxidants) | Methods | IC50 Value Before Modification | IC50 Value After Modification | References |
---|---|---|---|---|---|---|---|
1 | Solid Dispersion | silica gel | Anemarrhena asphodeloides Bge. | DPPH | - | Improved antioxidant | [98] |
2 | Solid Disperssion | Silver | Curcumin | DPPH | 60% | 20% | |
3 | Solid Dispersion | PE G 6000 and maltodextrin groups | - | CUPric Reducing Antioxidant Capacity (CUPRAC) | 13.63 ppm (EC50) | 9.00 ppm (EC50) | [99] |
4 | Solid Dispersion | poly-vinyl-pyrrolidone (PVP) K30 | Usnic acid | DPPH | 63.867 µg/mL | 12.42 µg/mL | [100] |
5 | Solid Dispersion | Pullulan (PUL) | Rutin | 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) | 13.5 mg/mL | 1.75 mg/mL | [101] |
6 | Solid Dispersion | polyvinylpyrro- lidone K30 (PVP-K30), polyethylene glycol 6000 (PEG 6000) and poloxamer-188 (PLX-188) | ferulic acid | ABTS | 58% in 200 µM | 50% in 200 µMm | [102] |
7 | Solid Dispersion | polyethylene glycol 4000 (PEG 4000) | Luteolin (LT) | DPPH | 92.28% | 66.03% | [10] |
8 | Co Amorf | nickel chloride–ethanol amine complex | nickel oxide | DPPH | 57.42% | 41.36% | [103] |
9 | Co Amorf | Calsium Phosphate | Curcumin | DPPH | 49.5% | 46.5% | [104] |
10 | Co Amorf | EHO-85 | Olea europaea Leaf Extract | ABTS | 2220 ± 102, 1558 ± 76, and 1969 ± 114 µmol TE/g | 1.62 ± 0.03, 1.35 ± 0.06, and 4.07 ± 0.15 µmol TE/g. | [105] |
11 | Co Amorf | PVP K-30 | Quercetin (3,3′,4′,5,7-pentahydroxil-flavon) | DPPH | 1.102 µg/mL | 0.714 μg/mL | [72] |
12 | Co Amorf | nickel chloride [NiCl24H2O] | nickel oxide | DPPH | 57.42% | 32.56% | [103] |
13 | Co Amorf | SiO2 | Citrus limon | DPPH and CUPRAC | 0.67 ± 0.04 mg/mL | 0.66 ± 0.03 mg/mL | [63] |
14 | Co Amorf | Selenium | imidazolium | ABTS colorimetric assay. | 0.55 mg/mL | 0.80 mg/mL | [106] |
15 | Co Amorf | Electrospun Poly(“-caprolactone) | (Salvia officinalis L.) Extract | DPPH | 55.32% | 50.56% | [107] |
16 | Co Amorf | hydrogen bromide or choline chloride | demythylation of curcumin | DPPH | 114 µg/mL | 30 µg/mL | [108] |
17 | Nano Particle | chitosan-coated nanoparticles | sodium nitrites | In-vivo: rat liver and kidneys by scavenging superoxide, hydroxyl anion, and peroxynitrites | - | Improved antioxidant | [109] |
18 | Nano Particle | ZrO2 and TiO2 nanoparticles were synthesised from natural resources | zirconia (ZrO2) and titania (TiO2) | DPPH | 76.9% | [110] | |
19 | Nano Particle | gallic acid or octyl gallate | Ochratoxin-A (OTA) is a mycotoxin produced by Penicillium and Asperigillus | ABTS | 44.2 ± 3.0 µg/mg | 25.5 ± 2.5 µg/mg | [111] |
20 | Nano Particle | Cu metal | Diplotaenia turcica Plant | DPPH | - | Increased significantly antioxidant activity | [112] |
21 | Nano Particle | - | leaves extracts of Phlomis crinita | DPPH | 74.49 ± 1.42 | 20.51 ± 1.42 | [113] |
22 | Nano Particle | Fe3O4 | orange pectin | DPPH | - | High antioxidant activity | [114] |
23 | Nano Particle | Fe | Lemon balm (Melissa officinalis L.) | DPPH | 40% | 70% | [115] |
24 | Particle Size Reduction | PEGylated chitosans | Chtosan | DPPH | - | 14.9 mg/mL | [116] |
25 | Particle Size Reduction | Corn Oil | Powders made from seed-used pumpkin flesh (SUPF) | DPPH | (28.78 µmol TE/L | (3.29 µmol TE/L) | [117] |
26 | Particle Size Reduction | - | wheat bran | DPPH, FRAP, and (ORAC) | 14.58 ± 2.1 µM | 3.03 ± 0.34 µM | [118] |
27 | Particle Size Reduction | - | persimmon seed, peel, and calyx powders | DPPH | 65% | 35% | [119] |
28 | Particle Size Reduction | - | peanut skin | DPPH | 500 μm = 78.23% | 425 μm = 90% | [120] |
29 | Naoparticle | PEGylated silica | Genistein | Oxygen radical absorbance capacity (ORAC) and the Trolox equivalent antioxidant capacity (TEAC) | Improved significantly antioxidant activity | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budiman, A.; Rusdin, A.; Aulifa, D.L. Current Techniques of Water Solubility Improvement for Antioxidant Compounds and Their Correlation with Its Activity: Molecular Pharmaceutics. Antioxidants 2023, 12, 378. https://doi.org/10.3390/antiox12020378
Budiman A, Rusdin A, Aulifa DL. Current Techniques of Water Solubility Improvement for Antioxidant Compounds and Their Correlation with Its Activity: Molecular Pharmaceutics. Antioxidants. 2023; 12(2):378. https://doi.org/10.3390/antiox12020378
Chicago/Turabian StyleBudiman, Arif, Agus Rusdin, and Diah Lia Aulifa. 2023. "Current Techniques of Water Solubility Improvement for Antioxidant Compounds and Their Correlation with Its Activity: Molecular Pharmaceutics" Antioxidants 12, no. 2: 378. https://doi.org/10.3390/antiox12020378
APA StyleBudiman, A., Rusdin, A., & Aulifa, D. L. (2023). Current Techniques of Water Solubility Improvement for Antioxidant Compounds and Their Correlation with Its Activity: Molecular Pharmaceutics. Antioxidants, 12(2), 378. https://doi.org/10.3390/antiox12020378