Impact of Agronomic Treatments on the Enzymatic Browning of Eggplants (Solanum melongena L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Cultivation of Eggplants
2.3. Sample Preparation
2.4. Extraction of PPO
2.5. Determination of PPO Activity
2.6. Color Measurements
2.7. Statistical Analysis
3. Results and Discussion
3.1. PPO Activity
3.2. Colorimetric Parameters
3.3. Principal Component Analysis (PCA) and Pearson’s Correlation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, S.; Chaurasia, S.N.S.; Singh, J.; Tiwari, S.; Kole, B.; Behera, T.K. Bioactive properties and enzymatic activities in long and round type eggplant (Solanum melongena L.): Inferences for processable traits. Sci. Hortic. 2022, 302, 111170. [Google Scholar] [CrossRef]
- Chioti, V.; Zeliou, K.; Bakogianni, A.; Papaioannou, C.; Biskinis, A.; Petropoulos, C.; Lamari, F.N.; Papasotiropoulos, V. Nutritional value of eggplant cultivars and association with sequence variation in genes coding for major phenolics. Plants 2022, 11, 2267. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Han, S.; He, D.; Cao, G.; Fang, K.; Xiao, X.; Yi, J.; Wan, X. The accumulation of phenolic compounds and increased activities of related enzymes contribute to early defense against walnut blight. Physiol. Mol. Plant Pathol. 2019, 108, 101433. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Lante, A. Polyphenols: A comprehensive review of their nutritional properties. Open Biotechnol. J. 2021, 15, 164–172. [Google Scholar] [CrossRef]
- Ban, Q.; Liu, T.; Ning, K.; Fan, J.; Cui, Q.; Guo, Y.; Zai, X. Effect of calcium treatment on the browning of harvested eggplant fruits and its relation to the metabolisms of reactive oxygen species (ROS) and phenolics. Food Sci. Nutr. 2021, 9, 5567–5574. [Google Scholar] [CrossRef]
- Hamdan, N.; Lee, C.H.; Wong, S.L.; Fauzi, C.E.N.C.A.; Zamri, N.M.A.; Lee, T.H. Prevention of enzymatic browning by natural extracts and genome-editing: A review on recent progress. Molecules 2022, 27, 1101. [Google Scholar] [CrossRef]
- Han, Y.; Cheng, J.H.; Sun, D.W. Activities and conformation changes of food enzymes induced by cold plasma: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 794–811. [Google Scholar] [CrossRef]
- Moon, K.M.; Kwon, E.-B.; Lee, B.; Kim, C.Y. Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules 2020, 25, 2754. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A.; Shang, J.; Zhu, Z.; Li, Y.; Wu, X.; Zha, D. Study on browning mechanism of fresh-cut eggplant (Solanum melongena L.) based on metabolomics, enzymatic assays and gene expression. Sci. Rep. 2021, 11, 6937. [Google Scholar] [CrossRef]
- Ebrahimi, P.; Lante, A. Environmentally friendly techniques for the recovery of polyphenols from food by-products and their impact on polyphenol oxidase: A critical review. Appl. Sci. 2022, 12, 1923. [Google Scholar] [CrossRef]
- Song, L.; Tan, Z.; Zhang, W.; Li, Q.; Jiang, Z.; Shen, S.; Luo, S.; Chen, X. Exogenous melatonin improves the chilling tolerance and preharvest fruit shelf life in eggplant by affecting ROS- and senescence-related processes. Hortic. Plant J. 2022, 1–18. [Google Scholar] [CrossRef]
- Tinello, F.; Lante, A. Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products. Innov. Food Sci. Emerg. Technol. 2018, 50, 73–83. [Google Scholar] [CrossRef]
- Torres, A.; Aguilar-Osorio, G.; Camacho, M.; Basurto, F.; Navarro-Ocana, A. Characterization of polyphenol oxidase from purple sweet potato (Ipomoea batatas L. Lam) and its affinity towards acylated anthocyanins and caffeoylquinic acid derivatives. Food Chem. 2021, 356, 129709. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, C.; Aksoy, M.; Küfrevioğlu, Ö.İ. Purification of tea leaf (Camellia sinensis) polyphenol oxidase by using affinity chromatography and investigation of its kinetic properties. J. Food Meas. Charact. 2020, 14, 31–38. [Google Scholar] [CrossRef]
- Falguera, V.; Lordan, J.; Gatius, F.; Pascual, M.; Villar, J.M.; Ibarz, A.; Rufat, J. Influence of nitrogen fertilization on polyphenol oxidase activity in peach fruits. Sci. Hortic. 2012, 142, 155–157. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Miao, L.; Li, S.; Bai, L.; Anwar, A.; Li, Y.; He, C.; Yu, X. Effect of grafting methods on physiological change of graft union formation in cucumber grafted onto bottle gourd rootstock. Sci. Hortic. 2019, 244, 249–256. [Google Scholar] [CrossRef]
- Kappel, N.; Mozafarian, M. Effects of different rootstocks and storage temperatures on postharvest quality of eggplant (Solanum melongena L. cv. Madonna). Horticulturae 2022, 8, 862. [Google Scholar] [CrossRef]
- Tinello, F.; Mihaylova, D.; Lante, A. Effect of dipping pre-treatment with unripe grape juice on dried “golden delicious” apple slices. Food Bioprocess Technol. 2018, 11, 2275–2285. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Dal-Bó, V.; Freire, J.T. Effects of lyophilization on colorimetric indices, phenolics content, and antioxidant activity of avocado (Persea americana) pulp. Food Control 2022, 132, 108526. [Google Scholar] [CrossRef]
- Sommano, S.R.; Chanasut, U.; Kumpoun, W. Enzymatic browning and its amelioration in fresh-cut tropical fruits. In Fresh-Cut Fruits and Vegetables; Elsevier: Aamsterdam, The Netherlands, 2020; pp. 51–76. ISBN 9780128161845. [Google Scholar]
- Liang, Y.; Were, L. Cysteine’s effects on chlorogenic acid quinone induced greening and browning: Mechanism and effect on antioxidant reducing capacity. Food Chem. 2020, 309, 125697. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, P.; Mihaylova, D.; Marangon, C.M.; Grigoletto, L.; Lante, A. Impact of sample pretreatment and extraction methods on the bioactive compounds of sugar beet (Beta vulgaris L.) leaves. Molecules 2022, 27, 8110. [Google Scholar] [CrossRef]
- Todaro, A.; Cavallaro, R.; Argento, S.; Branca, F.; Spagna, G. Study and characterization of polyphenol oxidase from eggplant (Solanum melongena L.). J. Agric. Food Chem. 2011, 59, 11244–11248. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Q.; Lu, Y.; Li, Y.; Li, T.; Zhou, B.; Qiao, L. Effect of purslane (Portulaca oleracea L.) extract on anti-browning of fresh-cut potato slices during storage. Food Chem. 2019, 283, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, C.; Prohens, J.; Raigón, M.D.; Stommel, J.R.; Nuez, F. Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Sci. Hortic. 2011, 128, 14–22. [Google Scholar] [CrossRef]
- Moncada, A.; Miceli, A.; Vetrano, F.; Mineo, V.; Planeta, D.; D’Anna, F. Effect of grafting on yield and quality of eggplant (Solanum melongena L.). Sci. Hortic. 2013, 149, 108–114. [Google Scholar] [CrossRef]
- Sabatino, L.; Iapichino, G.; Maggio, A.; D’Anna, E.; Bruno, M.; D’Anna, F. Grafting affects yield and phenolic profile of Solanum melongena L. landraces. J. Integr. Agric. 2016, 15, 1017–1024. [Google Scholar] [CrossRef]
- de Oliveira Carvalho, J.; Orlanda, J.F.F. Heat stability and effect of pH on enzyme activity of polyphenol oxidase in buriti (Mauritia flexuosa Linnaeus f.) fruit extract. Food Chem. 2017, 233, 159–163. [Google Scholar] [CrossRef]
- Loh, Z.H.; Oh, H.K.F.; Lim, Y.Y. Relationship between polyphenol oxidase activity and phenolics degradation on ambient air-drying of herbal plants. J. Food Process. Preserv. 2018, 42, e13672. [Google Scholar] [CrossRef]
- Cruz, L.; Basílio, N.; Mateus, N.; de Freitas, V.; Pina, F. Natural and synthetic flavylium-based dyes: The chemistry behind the color. Chem. Rev. 2022, 122, 1416–1481. [Google Scholar] [CrossRef]
- Zhao, Y.-W.; Wang, C.-K.; Huang, X.-Y.; Hu, D.-G. Anthocyanin stability and degradation in plants. Plant Signal. Behav. 2021, 16, e1987767. [Google Scholar] [CrossRef]
- Sharma, S.; Prasad, R.N.; Tiwari, S.; Chaurasia, S.N.S.; Shekhar, S.; Singh, J. Effect of chitosan coating on postharvest quality and enzymatic activity of eggplant (Solanum melongena L.) cultivars. J. Food Process. Preserv. 2021, 45, e15098. [Google Scholar] [CrossRef]
- Lemos, M.L.; Gutiérrez, D.R.; Farías, M.J.; Rodríguez, S. del C. Effect of UV-C treatments on quality and browning-related enzyme activity of fresh-cut eggplant (Solanum melongena L.) during cold storage. J. Food Process. Preserv. 2022, 46, e16986. [Google Scholar] [CrossRef]
- Barani, Y.H.; Zhang, M.; Wang, B. Effect of thermal and ultrasonic pretreatment on enzyme inactivation, color, phenolics and flavonoids contents of infrared freeze-dried rose flower. J. Food Meas. Charact. 2021, 15, 995–1004. [Google Scholar] [CrossRef]
- Mozafarian, M.; Kappel, N. Effect of grafting on the quality and apperance of eggplant fruit. Prog. Agric. Eng. Sci. 2021, 16, 153–161. [Google Scholar] [CrossRef]
- Brochier, B.; Mercali, G.D.; Marczak, L.D.F. Effect of ohmic heating parameters on peroxidase inactivation, phenolic compounds degradation and color changes of sugarcane juice. Food Bioprod. Process. 2018, 111, 62–71. [Google Scholar] [CrossRef]
- Ali, S.; Sattar Khan, A.; Ullah Malik, A.; Anjum, M.A.; Nawaz, A.; Shoaib Shah, H.M. Modified atmosphere packaging delays enzymatic browning and maintains quality of harvested litchi fruit during low temperature storage. Sci. Hortic. 2019, 254, 14–20. [Google Scholar] [CrossRef]
- Sarengaowa; Wang, L.; Liu, Y.; Yang, C.; Feng, K.; Hu, W. Effect of ascorbic acid combined with modified atmosphere packaging for browning of fresh-cut eggplant. Coatings 2022, 12, 1580. [Google Scholar] [CrossRef]
- Cabas, B.M.; Icier, F. Ohmic heating–assisted extraction of natural color matters from red beetroot. Food Bioprocess Technol. 2021, 14, 2062–2077. [Google Scholar] [CrossRef]
- Kacjan Maršić, N.; Mikulič-Petkovšek, M.; Štampar, F. Grafting influences phenolic profile and carpometric traits of fruits of greenhouse-grown eggplant (Solanum melongena L.). J. Agric. Food Chem. 2014, 62, 10504–10514. [Google Scholar] [CrossRef]
- Mozafarian, M.; Ismail, N.S.B.; Kappel, N. Rootstock effects on yield and some consumer important fruit quality parameters of eggplant cv. ‘Madonna’ under protected cultivation. Agronomy 2020, 10, 1442. [Google Scholar] [CrossRef]
- Mihaylova, D.; Popova, A.; Desseva, I.; Petkova, N.; Stoyanova, M.; Vrancheva, R.; Slavov, A.; Slavchev, A.; Lante, A. Comparative study of early-and mid-ripening peach (Prunus persica L.) varieties: Biological activity, macro-, and micro-nutrient profile. Foods 2021, 10, 164. [Google Scholar] [CrossRef]
Parameter | Fertilization Type | Grafting | |
---|---|---|---|
No | Yes | ||
L* | Control | 81.67 ± 0.31 Aa | 81.59 ± 1.08 Aa |
Mineral | 80.49 ± 0.92 Aa | 80.07 ± 0.88 Aa | |
Digestate | 81.25 ± 0.56 Aa | 80.94 ± 0.61 Aa | |
Chicken manure | 80.55 ± 0.50 Aa | 81.09 ± 0.62 Aa | |
SMS | 81.21 ± 0.55 Aa | 81.05 ± 0.61 Aa | |
Vegand | 80.49 ± 1.30 Aa | 81.09 ± 0.43 Aa | |
a* | Control | −4.40 ± 0.14 Aa | −4.31 ± 0.58 ABa |
Mineral | −4.0 ± 0.15 Aa | −3.47 ± 0.29 Bb | |
Digestate | −4.43 ± 0.70 Aa | −3.57 ± 0.50 Ba | |
Chicken manure | −3.81 ± 0.54 Aa | −3.94 ± 0.26 ABa | |
SMS | −4.36 ± 0.14 Aa | −3.75 ± 0.38 ABa | |
Vegand | −4.30 ± 0.25 Aa | −4.65 ± 0.66 Aa | |
b* | Control | 18.18 ± 1.86 Aa | 19.44 ± 1.73 Aa |
Mineral | 19.38 ± 1.66 Aa | 21.16 ± 2.56 Aa | |
Digestate | 17.14 ± 0.31 Aa | 19.07 ± 2.34 Aa | |
Chicken manure | 19.53 ± 1.40 Aa | 18.35 ± 1.00 Aa | |
SMS | 18.41 ± 1.35 Aa | 17.98 ± 0.52 Aa | |
Vegand | 19.51 ± 0.43 Aa | 19.80 ± 0.70 Aa | |
c* | Control | 18.71 ± 1.83 Aa | 19.92 ± 1.70 Aa |
Mineral | 19.79 ± 1.61 Aa | 21.45 ± 2.52 Aa | |
Digestate | 17.71 ± 0.26 Aa | 19.41 ± 2.21 Aa | |
Chicken manure | 19.90 ± 1.35 Aa | 18.77 ± 0.97 Aa | |
SMS | 18.93 ± 1.30 Aa | 18.37 ± 0.47 Aa | |
Vegand | 19.98 ± 0.42 Aa | 20.34 ± 0.74 Aa | |
h* | Control | 179.24 ± 0.55 Aa | 179.88 ± 1.03 Aa |
Mineral | 180.23 ± 0.78 Aa | 179.61 ± 1.45 Aa | |
Digestate | 184.60 ± 10.32 Aa | 179.99 ± 0.84 Aa | |
Chicken manure | 177.74 ± 4.78 Aa | 179.97 ± 0.47 Aa | |
SMS | 179.38 ± 0.59 Aa | 180.14 ± 0.66 Aa | |
Vegand | 179.82 ± 0.32 Aa | 179.33 ± 1.049 Aa |
Parameters | Time (min) | |||
---|---|---|---|---|
0 | 10 | 30 | 60 | |
L* | 81.92 ± 0.27 a | 80.86 ± 0.94 a | 81.36 ± 1.37 a | 78.53 ± 2.45 a |
a* | −4.04 ± 0.15 c | −2.42 ± 0.18 b | −2.21 ± 0.73 ba | −1.28 ± 0.39 a |
b* | 16.16 ± 0.78 c | 16.57 ± 0.40 c | 16.11 ± 1.25 c | 21.65 ± 1.66 a |
c* | 16.66 ± 0.75 b | 16.75 ± 0.40 b | 16.27 ± 1.29 b | 21.69 ± 1.64 a |
h* | 179.07 ± 0.49 a | 175.55 ± 6.13 a | 180.06 ± 1.05 a | 180.58 ± 3.27 a |
Fertilizer | Grafting | Code |
---|---|---|
- | No | CN |
Mineral | No | MN |
Digestate | No | DN |
Chicken manure | No | CMN |
SMS | No | SN |
Vegand | No | VN |
- | Yes | CG |
Mineral | Yes | MG |
Digestate | Yes | DG |
Chicken manure | Yes | CMG |
SMS | Yes | SG |
Vegand | Yes | VG |
PPO Activity | L | a* | b* | c* | h* | ΔE | |
---|---|---|---|---|---|---|---|
L | −0.796 | ||||||
a* | 0.986 * | −0.767 | |||||
b* | 0.718 | −0.979 * | 0.717 | ||||
c* | 0.677 | −0.973 * | 0.674 | 0.998 ** | |||
h* | 0.386 | −0.593 | 0.239 | 0.453 | 0.464 | ||
ΔE | 0.904 | −0.970 * | 0.897 | 0.946 | 0.927 | 0.458 | |
BI | 0.807 | −0.986 * | 0.805 | 0.990 ** | 0.981 * | 0.450 | 0.982 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebrahimi, P.; Nicoletto, C.; Sambo, P.; Tinello, F.; Mihaylova, D.; Lante, A. Impact of Agronomic Treatments on the Enzymatic Browning of Eggplants (Solanum melongena L.). Antioxidants 2023, 12, 410. https://doi.org/10.3390/antiox12020410
Ebrahimi P, Nicoletto C, Sambo P, Tinello F, Mihaylova D, Lante A. Impact of Agronomic Treatments on the Enzymatic Browning of Eggplants (Solanum melongena L.). Antioxidants. 2023; 12(2):410. https://doi.org/10.3390/antiox12020410
Chicago/Turabian StyleEbrahimi, Peyman, Carlo Nicoletto, Paolo Sambo, Federica Tinello, Dasha Mihaylova, and Anna Lante. 2023. "Impact of Agronomic Treatments on the Enzymatic Browning of Eggplants (Solanum melongena L.)" Antioxidants 12, no. 2: 410. https://doi.org/10.3390/antiox12020410
APA StyleEbrahimi, P., Nicoletto, C., Sambo, P., Tinello, F., Mihaylova, D., & Lante, A. (2023). Impact of Agronomic Treatments on the Enzymatic Browning of Eggplants (Solanum melongena L.). Antioxidants, 12(2), 410. https://doi.org/10.3390/antiox12020410