Honey’s Antioxidant and Antimicrobial Properties: A Bibliometric Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Danieli, P.P.; Lazzari, F. Honey Traceability and Authenticity. Review of Current Methods Most Used to Face this Problem. J. Apic. Sci. 2022, 66, 101–119. [Google Scholar] [CrossRef]
- Valverde, S.; Ares, A.M.; Elmore, J.S.; Bernal, J. Recent trends in the analysis of honey constituents. Food Chem. 2022, 387, 132920. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, A.; Nausheen, R.; Mukhtar, I.; Iqbal, R.K.; Raza, A.; Yasin, A.; Anwar, H. The regenerative potential of honey: A comprehensive literature review. J. Apic. Res. 2022, 62, 97–112. [Google Scholar] [CrossRef]
- Asma, S.T.; Bobiş, O.; Bonta, V.; Acaroz, U.; Shah, S.R.A.; Istanbullugil, F.R.; Arslan-Acaroz, D. General Nutritional Profile of Bee Products and Their Potential Antiviral Properties against Mammalian Viruses. Nutrients 2022, 14, 3579. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, Y.; Hu, Y.; Zhou, J.; Chen, L.; Lu, X. Systematic Review of the Characteristic Markers in Honey of Various Botanical, Geographic, and Entomological Origins. ACS Food Sci. Technol. 2022, 2, 206–220. [Google Scholar] [CrossRef]
- Feknous, N.; Boumendjel, M. Natural bioactive compounds of honey and their antimicrobial activity. Czech J. Food Sci. 2022, 40, 163–178. [Google Scholar] [CrossRef]
- Tumbarski, Y.; Topuzova, M.; Todorova, M. Food Industry Applications of Propolis: A Review. J. Hyg. Eng. Des. 2022, 40, 257–265. [Google Scholar]
- Pascual-Maté, A.; Osés, S.M.; A Fernández-Muiño, M.; Sancho, M.T. Methods of analysis of honey. J. Apic. Res. 2018, 57, 38–74. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Koulis, G.A.; Danezis, G.P.; Martakos, I.; Dasenaki, M.; Georgiou, C.A.; Thomaidis, N.S. Honey authenticity: Analytical techniques, state of the art and challenges. RSC Adv. 2021, 11, 11273–11294. [Google Scholar] [CrossRef]
- Rojczyk, E.; Klama-Baryła, A.; Łabuś, W.; Wilemska-Kucharzewska, K.; Kucharzewski, M. Historical and modern research on propolis and its application in wound healing and other fields of medicine and contributions by Polish studies. J. Ethnopharmacol. 2020, 262, 113159. [Google Scholar] [CrossRef]
- Giampieri, F.; Quiles, J.L.; Cianciosi, D.; Forbes-Hernández, T.Y.; Orantes-Bermejo, F.J.; Alvarez-Suarez, J.M.; Battino, M. Bee Products: An Emblematic Example of Underutilized Sources of Bioactive Compounds. J. Agric. Food Chem. 2022, 70, 6833–6848. [Google Scholar] [CrossRef] [PubMed]
- Nikhat, S.; Fazil, M. History, phytochemistry, experimental pharmacology and clinical uses of honey: A comprehensive review with special reference to Unani medicine. J. Ethnopharmacol. 2021, 282, 114614. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, A.C.; Biluca, F.C.; Braghini, F.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Phenolic composition and biological activities of stingless bee honey: An overview based on its aglycone and glycoside compounds. Food Res. Int. 2021, 147, 110553. [Google Scholar] [CrossRef]
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic Properties of Bioactive Compounds from Different Honeybee Products. Front. Pharmacol. 2017, 8, 412. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef]
- Dumitru, C.D.; Neacsu, I.A.; Grumezescu, A.M.; Andronescu, E. Bee-Derived Products: Chemical Composition and Applications in Skin Tissue Engineering. Pharmaceutics 2022, 14, 750. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Functional properties of honey, propolis, and royal jelly. J. Food Sci. 2008, 73, R117–R124. [Google Scholar] [CrossRef]
- Didaras, N.A.; Karatasou, K.; Dimitriou, T.G.; Amoutzias, G.D.; Mossialos, D. Antimicrobial Activity of Bee-Collected Pollen and Beebread: State of the Art and Future Perspectives. Antibiotics 2020, 9, 811. [Google Scholar] [CrossRef]
- Cárdenas-Escudero, J.; Mármol-Rojas, C.; Escribano-Pintor, S.; Galán-Madruga, D.; Caceres, J.O. Honey polyphenols: Regulators of human microbiota and health. Food Funct. 2022, 14, 602–620. [Google Scholar] [CrossRef]
- Bakour, M.; Laaroussi, H.; Ousaaid, D.; El Ghouizi, A.; Es-Safi, I.; Mechchate, H.; Lyoussi, B. New Insights into Potential Beneficial Effects of Bioactive Compounds of Bee Products in Boosting Immunity to Fight COVID-19 Pandemic: Focus on Zinc and Polyphenols. Nutrients 2022, 14, 942. [Google Scholar] [CrossRef]
- Schell, K.R.; Fernandes, K.E.; Shanahan, E.; Wilson, I.; Blair, S.E.; Carter, D.A.; Cokcetin, N.N. The Potential of Honey as a Prebiotic Food to Re-engineer the Gut Microbiome Toward a Healthy State. Front. Nutr. 2022, 9, 957932. [Google Scholar] [CrossRef] [PubMed]
- Ugusman, A.; Shahrin, S.A.S.; Azizan, N.H.; Pillai, S.B.; Krishnan, K.; Salamt, N.; Aminuddin, A.; Hamid, A.A.; Kumar, J.; Mokhtar, M.H. Role of Honey in Obesity Management: A Systematic Review. Front. Nutr. 2022, 9, 924097. [Google Scholar] [PubMed]
- Nowak, A.; Nowak, I. Review of harmful chemical pollutants of environmental origin in honey and bee products. Crit. Rev. Food Sci. Nutr. 2021, 14, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Guo, M.; Zhang, N.; Wang, G. Effectiveness of honey dressing in the treatment of diabetic foot ulcers: A systematic review and meta-analysis. Complement. Ther. Clin. Pract. 2019, 34, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Topal, E.; Adamchuk, L.; Negri, I.; Kösoğlu, M.; Papa, G.; Dârjan, M.S.; Cornea-Cipcigan, M.; Mărgăoan, R. Traces of honeybees, api-tourism and beekeeping: From past to present. Sustainability 2021, 13, 11659. [Google Scholar]
- Durazzo, A.; Lucarini, M.; Plutino, M.; Lucini, L.; Aromolo, R.; Martinelli, E.; Souto, E.B.; Santini, A.; Pignatti, G. Bee Products: A Representation of Biodiversity, Sustainability, and Health. Life 2021, 11, 970. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Plutino, M.; Pignatti, G.; Karabagias, I.K.; Martinelli, E.; Souto, E.B.; Santini, A.; Lucini, L. Antioxidant Properties of Bee Products Derived from Medicinal Plants as Beekeeping Sources. Agriculture 2021, 11, 1136. [Google Scholar] [CrossRef]
- Weis, W.A.; Ripari, N.; Conte, F.L.; Honorio, M.D.S.; Sartori, A.A.; Matucci, R.H.; Sforcin, J.M. An overview about apitherapy and its clinical applications. Phytomedicine Plus 2022, 2, 100239. [Google Scholar] [CrossRef]
- Zakaria, R.; Ahmi, A.; Ahmad, A.H.; Othman, Z.; Azman, K.F.; Ab Aziz, C.B.; Ismail, C.A.N.; Shafin, N. Visualising and mapping a decade of literature on honey research: A bibliometric analysis from 2011 to 2020. J. Apic. Res. 2021, 60, 359–368. [Google Scholar] [CrossRef]
- Oliveira Neto, W.M.; Paiva, R.D.N.; Novais, J.S. Honey Consumption: A Bibliometric Analysis and Systematic Review|Consommation de miel: Analyse bibliométrique et revue systématique|Consumo de mel: Análise bibliométrica e revisão sistemática|Consumo de miel: Análisis bibliométrico y revisión siste. Agroalimentaria 2021, 27, 141–154. [Google Scholar]
- Amiri, E.; Waiker, P.; Rueppell, O.; Manda, P. Using Manual and Computer-Based Text-Mining to Uncover Research Trends for Apis mellifera. Vet. Sci. 2020, 7, 61. [Google Scholar] [CrossRef]
- Andreo-Martínez, P.; Oliva, J.; Giménez-Castillo, J.J.; Motas, M.; Quesada-Medina, J.; Cámara, M. Science production of pesticide residues in honey research: A descriptive bibliometric study. Environ. Toxicol. Pharmacol. 2020, 79, 103413. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, C.; Sinigaglia, T.; Martins, M.; Souza, A. Technological Advances to Reduce Apis mellifera Mortality: A Bibliometric Analysis. Sustainability 2021, 13, 8305. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2007, 22, 338–342. [Google Scholar] [CrossRef]
- Yataganbaba, A.; Kurtbaş, I. A scientific approach with bibliometric analysis related to brick and tile drying: A review. Renew. Sustain. Energy Rev. 2016, 59, 206–224. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Fuchs-Hanusch, D. Mapping of climate change research in the Arab world: A bibliometric analysis. Environ. Sci. Pollut. Res. 2019, 27, 3523–3540. [Google Scholar] [CrossRef]
- Stefanis, C.; Giorgi, E.; Kalentzis, K.; Tselemponis, A.; Tsigalou, C.; Nena, E.; Kontogiorgis, C.; Kourkoutas, Y.; Voidarou, C.; Chatzaki, E.; et al. Assessing Worldwide Research Activity on ICT in Climate Change Using Scopus Database: A Bibliometric Analysis. Front. Environ. Sci. 2022, 10, 868197. [Google Scholar] [CrossRef]
- Taormina, P.J.; Niemira, B.A.; Beuchat, L.R. Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power. Int. J. Food Microbiol. 2001, 69, 217–225. [Google Scholar] [CrossRef]
- Molan, P.C. Honey as a topical antibacterial agent for treatment of infected wounds. World Wide Wounds 2001, 10, 1–13. [Google Scholar]
- Alzahrani, H.A.; Alsabehi, R.; Boukraâ, L.; Abde-Llah, F.; Bellik, Y.; Bakhotmah, B.A. Antibacterial and Antioxidant Potency of Floral Honeys from Different Botanical and Geographical Origins. Molecules 2012, 17, 10540–10549. [Google Scholar] [CrossRef] [PubMed]
- Almuhayawi, M.S. Propolis as a novel antibacterial agent. Saudi J. Biol. Sci. 2020, 27, 3079–3086. [Google Scholar] [CrossRef] [PubMed]
- Al-Waili, N.S.; Salom, K.; Butler, G.; Al Ghamdi, A.A. Honey and Microbial Infections: A Review Supporting the Use of Honey for Microbial Control. J. Med. Food 2011, 14, 1079–1096. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Suarez, J.M.; Tulipani, S.; Díaz, D.; Estevez, Y.; Romandini, S.; Giampieri, F.; Damiani, E.; Astolfi, P.; Bompadre, S.; Battino, M. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem. Toxicol. 2010, 48, 2490–2499. [Google Scholar] [CrossRef]
- Langner, E.; Rzeski, W. Biological Properties of Melanoidins: A Review. Int. J. Food Prop. 2014, 17, 344–353. [Google Scholar] [CrossRef]
- Kuś, P.M.; Szweda, P.; Jerković, I.; Tuberoso, C.I.G. Activity of Polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters. Lett. Appl. Microbiol. 2016, 62, 269–276. [Google Scholar]
- Grecka, K.; Kuś, P.M.; Worobo, R.W.; Szweda, P. Study of the Anti-Staphylococcal Potential of Honeys Produced in Northern Poland. Molecules 2019, 23, 260. [Google Scholar] [CrossRef]
- Ali, A.M.; Kunugi, H. Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In Vitro, and Clinical Studies. Molecules 2021, 26, 1232. [Google Scholar] [CrossRef]
- Roby, M.H.H.; Abdelaliem, Y.F.; Esmail, A.-H.M.; Mohdaly, A.A.A.; Ramadan, M.F. Evaluation of Egyptian honeys and their floral origins: Phenolic compounds, antioxidant activities, and antimicrobial characteristics. Environ. Sci. Pollut. Res. 2020, 27, 20748–20756. [Google Scholar] [CrossRef]
- Saad, M.A.; Abdel Salam, R.M.; Kenawy, S.A.; Attia, A. Pinocembrin attenuates hippocampal inflammation, oxidative perturbations and apoptosis in a rat model of global cerebral ischemia reperfusion. Pharmacol. Rep. 2015, 67, 115–122. [Google Scholar] [CrossRef]
- Thomson Reuters. White Paper Using Bibliometrcs: A Guide to Evaluating Research Performance with Citation Data Scientific. 2008. Available online: http://openscience.ens.fr/MARIE_FARGE/CONFERENCES/2014_12_02_BIBLIOMETRIE_ET_EVALUATION_DE_LA_RECHERCHE_ABDU_PARIS/InCites_Thomson-Reuters.pdf (accessed on 10 January 2023).
- Szomszor, M.; Adams, J.; Fry, R.; Gebert, C.; Pendlebury, D.A.; Potter, R.W.K.; Rogers, G. Interpreting Bibliometric Data. Front. Res. Metr. Anal. 2021, 5, 628703. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for Nutrition and Health: A Review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Vatansever, F.; de Melo, W.C.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N.A.; Yin, R.; et al. Antimicrobial strategies centered around reactive oxygen species-bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 2013, 37, 955–989. [Google Scholar] [PubMed]
- Küçük, M.; Kolaylı, S.; Karaoğlu, Ş.; Ulusoy, E.; Baltacı, C.; Candan, F. Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chem. 2007, 100, 526–534. [Google Scholar] [CrossRef]
- Estevinho, L.; Pereira, A.P.; Moreira, L.; Dias, L.G.; Pereira, E. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem. Toxicol. 2008, 46, 3774–3779. [Google Scholar] [CrossRef]
- Pereira, R.F.B.; Bartolo, P.J.D.S. Traditional Therapies for Skin Wound Healing. Adv. Wound Care 2016, 5, 208–229. [Google Scholar] [CrossRef]
- Osés, S.M.; Melgosa, L.; Pascual-Maté, A.; A Fernández-Muiño, M.; Sancho, M.T. Design of a food product composed of honey and propolis. J. Apic. Res. 2015, 54, 461–467. [Google Scholar] [CrossRef]
- Wilczyńska, A.; Newerli-Guz, J.; Szweda, P. Influence of the Addition of Selected Spices on Sensory Quality and Biological Activity of Honey. J. Food Qual. 2017, 2017, 1–7. [Google Scholar] [CrossRef]
- Ahmed, N.; Sutcliffe, A.; Tipper, C. Feasibility Study: Honey for Treatment of Cough in Children. Pediatr. Rep. 2013, 5, 31–34. [Google Scholar] [CrossRef]
- Bakour, M.; Laaroussi, H.; El Menyiy, N.; Elaraj, T.; El Ghouizi, A.; Lyoussi, B. The Beekeeping State and Inventory of Mellifero-Medicinal Plants in the North-Central of Morocco. Sci. World J. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Mas-Tur, A.; Roig-Tierno, N.; Sarin, S.; Haon, C.; Sego, T.; Belkhouja, M.; Porter, A.; Merigó, J.M. Co-citation, bibliographic coupling and leading authors, institutions and countries in the 50 years of Technological Forecasting and Social Change. Technol. Forecast. Soc. Chang. 2021, 165, 120487. [Google Scholar] [CrossRef]
- Sahu, M.K. Bibliographic coupling and co-citation networking analysis determining research contributions of business school between 1965-June, 2020: With special reference to Indian Institute of Management, India. Libr. Philos. Pract. 2021, 5210, 1–14. [Google Scholar]
- Sevukan, R.; Sankar, S. Application of author bibliographic coupling analysis and author keywords ranking in identifying research fronts of Indian Neurosciences research. Libr. Philos. Pract. 2019, 2439, 1–12. [Google Scholar]
- Smith, M.J.; Weinberger, C.; Bruna, E.M.; Allesina, S. The Scientific Impact of Nations: Journal Placement and Citation Performance. PLoS ONE 2014, 9, e109195. [Google Scholar] [CrossRef]
- Osés, S.M.; Cantero, L.; Puertas, G.; Fernández-Muiño, M.; Sancho, M.T. Antioxidant, antimicrobial and anti-inflammatory activities of ling-heather honey powder obtained by different methods with several carriers. Lwt 2022, 159, 113235. [Google Scholar] [CrossRef]
- Braghini, F.; Biluca, F.C.; Schulz, M.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Stingless bee honey: A precious but unregulated product-reality and expectations. Food Rev. Int. 2021, 38, 683–712. [Google Scholar] [CrossRef]
- Bjørnson, S.; James, K.; Steele, T. Evaluation of manuka honey on the microsporidian pathogen Vairimorpha (Nosema) adaliae and its host, the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae). J. Invertebr. Pathol. 2023, 196, 107855. [Google Scholar] [CrossRef]
- Al-Kubaisi, M.W.; Al-Ghurabi, B.H. Evaluation of Manuka Honey Effects on Dental Plaque and Bacterial Load (Clinical Study). J. Med. Chem. Sci. 2023, 6, 365–375. [Google Scholar]
- Matharu, R.K.; Ahmed, J.; Seo, J.; Karu, K.; Golshan, M.A.; Edirisinghe, M.; Ciric, L. Antibacterial Properties of Honey Nanocomposite Fibrous Meshes. Polymers 2022, 14, 5155. [Google Scholar] [CrossRef]
- Nolan, V.C.; Harrison, J.; Cox, J.A. Manuka honey in combination with azithromycin shows potential for improved activity against Mycobacterium abscessus. Cell Surf. 2022, 8, 100090. [Google Scholar] [CrossRef]
- Roberts, A.E.L.; Xanthe, C.; Hopkins, A.L.; Bodger, O.; Lewis, P.; Mahenthiralingam, E.; Duckers, J.; Jenkins, R.E. A pilot study investigating the effects of a manuka honey sinus rinse compared to a standard sinus rinse on sino-nasal outcome test scores in cystic fibrosis patients. Pilot Feasibility Stud. 2022, 8, 1–8. [Google Scholar] [CrossRef]
- Masad, R.J.; Nasser, R.A.; Bashir, G.; Mohamed, Y.A.; Al-Sbiei, A.; Al-Saafeen, B.H.; Fernandez-Cabezudo, M.J.; Al-Ramadi, B.K. Characterization of immunomodulatory responses induced by manuka honey. Front. Immunol. 2022, 13, 1020574. [Google Scholar] [CrossRef] [PubMed]
- Wultańska, D.; Paterczyk, B.; Nowakowska, J.; Pituch, H. The Effect of Selected Bee Products on Adhesion and Biofilm of Clostridioides difficile Strains Belonging to Different Ribotypes. Molecules 2022, 27, 7385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Z.; Si, J.-J.; Li, S.-S.; Zhang, G.-Z.; Wang, S.; Zheng, H.-Q.; Hu, F.-L. Chemical Analyses and Antimicrobial Activity of Nine Kinds of Unifloral Chinese Honeys Compared to Manuka Honey (12+ and 20+). Molecules 2021, 26, 2778. [Google Scholar] [CrossRef]
- Chang, X.; Wang, J.; Yang, S.; Chen, S.; Song, Y. Antioxidative, antibrowning and antibacterial activities of sixteen floral honeys. Food Funct. 2011, 2, 541–546. [Google Scholar] [CrossRef]
- Gośliński, M.; Nowak, D.; Kłębukowska, L. Antioxidant properties and antimicrobial activity of manuka honey versus Polish honeys. J. Food Sci. Technol. 2020, 57, 1269–1277. [Google Scholar] [CrossRef]
- Israili, Z.H. Antimicrobial Properties of Honey. Am. J. Ther. 2014, 21, 304–323. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed. Pharmacother. 2018, 98, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Abdelsamad, N.O.; Esawy, M.A.; Mahmoud, Z.E.; El-Shazly, A.I.; Elsayed, T.R.; Gamal, A.A. Evaluation of different bacterial honey isolates as probiotics and their efficient roles in cholesterol reduction. World J. Microbiol. Biotechnol. 2022, 38, 1–12. [Google Scholar] [CrossRef]
- Baliga, M.S.; Rao, S.; Hegde, S.K.; Rao, P.; Simon, P.; George, T.; Venkatesh, P.; Baliga-Rao, M.P.; Thilakchand, K.R. Usefulness of Honey as an Adjunct in the Radiation Treatment for Head and Neck Cancer: Emphasis on Pharmacological and Mechanism/s of Actions. Anti-Cancer Agents Med. Chem. 2022, 22, 20–29. [Google Scholar] [CrossRef]
- Fernandes, L.; Ribeiro, H.; Oliveira, A.; Silva, A.S.; Freitas, A.; Henriques, M.; Rodrigues, M.E. Portuguese honeys as antimicrobial agents against Candida species. J. Tradit. Complement. Med. 2021, 11, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.S.; Cunha, A.; Oliveira, R.; Almeida-Aguiar, C. Propolis antibacterial and antioxidant synergisms with gentamicin and honey. J. Appl. Microbiol. 2022, 132, 2733–2745. [Google Scholar] [CrossRef] [PubMed]
- Šauperl, O.; Kunčič, M.K.; Tompa, J.; Zemljič, L.F.; Valh, J.V. Functionalization of Non-woven Viscose with Formulation of Chitosan and Honey for Medical Applications. Fibres Text. East. Eur. 2017, 25, 67–72. [Google Scholar] [CrossRef]
- Keskïn, M. Chemical characterization of Arabic gum- chitosan-propolis beads and determination of α-amylase inhibition effect. Prog. Nutr. 2020, 22, 562–567. [Google Scholar]
- Farkas, Á.; Balázs, V.L.; Kõszegi, T.; Csepregi, R.; Kerekes, E.; Horváth, G.; Szabó, P.; Gaál, K.; Kocsis, M. Antibacterial and Biofilm Degradation Effects of Hungarian Honeys Linked with Botanical Origin, Antioxidant Capacity and Mineral Content. Front. Nutr. 2022, 9, 953470. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Giampieri, F. The Composition and Biological Activity of Honey: A Focus on Manuka Honey. Foods 2014, 3, 420–432. [Google Scholar] [CrossRef]
- Sievers, J.T.O.; Moffat, E.; Yusuf, K.; Sarwar, N.; Bowolaksono, A.; Fyfe, L. Comparing Manuka and Other Medical Honeys as Adjunct to Antibiotic Therapy against Facultative Anaerobes. Sains Malays. 2022, 51, 1325–1337. [Google Scholar] [CrossRef]
- Gkoutzouvelidou, M.; Panos, G.; Xanthou, M.; Papachristoforou, A.; Giaouris, E. Comparing the Antimicrobial Actions of Greek Honeys from the Island of Lemnos and Manuka Honey from New Zealand against Clinically Important Bacteria. Foods 2021, 10, 1402. [Google Scholar] [CrossRef]
- Niaz, K.; Maqbool, F.; Bahadar, H.; Abdollahi, M. Health Benefits of Manuka Honey as an Essential Constituent for Tissue Regeneration. Curr. Drug Metab. 2017, 18, 881–892. [Google Scholar] [CrossRef]
- Gill, R.; Poojar, B.; Bairy, L.K.; E Praveen, K.S. Comparative evaluation of wound healing potential of manuka and acacia honey in diabetic and nondiabetic rats. J. Pharm. Bioallied Sci. 2019, 11, 116–126. [Google Scholar] [CrossRef]
- Joshi, K.; Mazumder, B.; Chattopadhyay, P.; Goyary, D.; Das, M.; Dwivedi, S.K. Exploring the frostbite healing potential of hyaluronic acid based hydrogel of Manuka honey through in-silico antithrombotic and anti-platelet studies of major phytoconstituents and in-vivo evaluation in Wistar rat model. Drug Dev. Ind. Pharm. 2021, 47, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Arango-Ospina, M.; Lasch, K.; Weidinger, J.; Boccaccini, A.R. Manuka Honey and Zein Coatings Impart Bioactive Glass Bone Tissue Scaffolds Antibacterial Properties and Superior Mechanical Properties. Front. Mater. 2021, 7, 610889. [Google Scholar] [CrossRef]
- Zahoor, M.; Naz, S.; Sangeen, M. Antibacterial, antifungal and antioxidant activities of honey collected from Timergara (Dir, Pakistan). Pak. J. Pharm. Sci. 2014, 27, 45–50. [Google Scholar] [PubMed]
- Al-Waili, N.S. Clinical and mycological benefits of topical application of honey, olive oil and beeswax in diaper dermatitis. Clin. Microbiol. Infect. 2005, 11, 160–163. [Google Scholar] [CrossRef]
- Barboza, A.D.S.; Aitken-Saavedra, J.P.; Ferreira, M.L.; Aranha, A.M.F.; Lund, R.G. Are propolis extracts potential pharmacological agents in human oral health?—A scoping review and technology prospecting. J. Ethnopharmacol. 2021, 271, 113846. [Google Scholar] [CrossRef]
- Pleeging, C.C.; Wagener, F.A.; de Rooster, H.; Cremers, N.A. Revolutionizing non-conventional wound healing using honey by simultaneously targeting multiple molecular mechanisms. Drug Resist. Updat. 2022, 62, 100834. [Google Scholar] [CrossRef]
- Hossain, L.; Lim, L.Y.; Hammer, K.; Hettiarachchi, D.; Locher, C. A Review of Commonly Used Methodologies for Assessing the Antibacterial Activity of Honey and Honey Products. Antibiotics 2022, 11, 975. [Google Scholar] [CrossRef]
- Shahbaz, M.; Zahoor, T.; Arshad, R.; Rafiq, S.; Qaisrani, T.B.; Liaqat, A.; Javed, M.S.; Akbar, Z.; Raza, N.; Murtaza, S.; et al. Chemical profiling, HPLC characterization and in-vitro antioxidant potential of Pakistani propolis collected from peripheral region of Faisalabad. Cell. Mol. Biol. 2021, 67, 40–44. [Google Scholar] [CrossRef]
- Broznić, D.; Ratkaj, I.; Staver, M.M.; Pavelić, S.K.; Žurga, P.; Bubalo, D.; Gobin, I. Evaluation of the Antioxidant Capacity, Antimicrobial and Antiproliferative Potential of Fir (Abies alba Mill.) Honeydew Honey Collected from Gorski kotar (Croatia). Food Technol. Biotechnol. 2018, 56, 533–545. [Google Scholar] [CrossRef]
- Osés, S.M.; Nieto, S.; Rodrigo, S.; Pérez, S.; Rojo, S.; Sancho, M.T.; Fernández-Muiño, M. Authentication of strawberry tree (Arbutus unedo L.) honeys from southern Europe based on compositional parameters and biological activities. Food Biosci. 2020, 38, 100768. [Google Scholar] [CrossRef]
- Marshall, S.M.; Schneider, K.R.; Cisneros, K.V.; Gu, L. Determination of antioxidant capacities, α-dicarbonyls, and phenolic phytochemicals in florida varietal honeys using HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2014, 62, 8623–8631. [Google Scholar] [PubMed]
- Koulis, G.; Tsagkaris, A.; Aalizadeh, R.; Dasenaki, M.; Panagopoulou, E.; Drivelos, S.; Halagarda, M.; Georgiou, C.; Proestos, C.; Thomaidis, N. Honey Phenolic Compound Profiling and Authenticity Assessment Using HRMS Targeted and Untargeted Metabolomics. Molecules 2021, 26, 2769. [Google Scholar] [CrossRef] [PubMed]
- Iosageanu, A.; Mihai, E.; Prelipcean, A.-M.; Anton, R.E.; Utoiu, E.; Oancea, A.; Craciunescu, O.; Cimpean, A. Comparative palynological, physicochemical, antioxidant and antibacterial properties of Romanian honey varieties for biomedical applications. Chem. Biodivers. 2022, 19, e202200406. [Google Scholar] [CrossRef]
- Campos, M.G.; Anjos, O.; Chica, M.; Campoy, P.; Nozkova, J.; Almaraz-Abarca, N.; Barreto, L.M.R.C.; Nordi, J.C.; Estevinho, L.M.; Pascoal, A.; et al. Standard methods for pollen research. J. Apic. Res. 2021, 60, 1–109. [Google Scholar] [CrossRef]
- An, N.; Cai, W.-J.; Zhu, Q.-F.; Wang, W.; Hussain, D.; Feng, Y.-Q. Metabolic profiling of organic acids in honey by stable isotope labeling assisted liquid chromatography-mass spectrometry. J. Food Compos. Anal. 2020, 87, 103423. [Google Scholar] [CrossRef]
- Ávila, S.; Hornung, P.S.; Teixeira, G.L.; Malunga, L.N.; Apea-Bah, F.B.; Beux, M.R.; Beta, T.; Ribani, R.H. Bioactive compounds and biological properties of Brazilian stingless bee honey have a strong relationship with the pollen floral origin. Food Res. Int. 2019, 123, 1–10. [Google Scholar]
- Sagdic, O.; Silici, S.; Ekici, L. Evaluation of the Phenolic Content, Antiradical, Antioxidant, and Antimicrobial Activity of Different Floral Sources of Honey. Int. J. Food Prop. 2013, 16, 658–666. [Google Scholar] [CrossRef]
- Sowa, P.; Grabek-Lejko, D.; Wesołowska, M.; Swacha, S.; Dżugan, M. Hydrogen peroxide-dependent antibacterial action of Melilotus albus honey. Lett. Appl. Microbiol. 2017, 65, 82–89. [Google Scholar] [CrossRef]
- Sawicki, T.; Starowicz, M.; Kłębukowska, L.; Hanus, P. The Profile of Polyphenolic Compounds, Contents of Total Phenolics and Flavonoids, and Antioxidant and Antimicrobial Properties of Bee Products. Molecules 2022, 27, 1301. [Google Scholar] [CrossRef]
- Grabek-Lejko, D.; Słowik, J.; Kasprzyk, I. Activity of selected honey types against Staphylococcus aureus methicillin susceptible (MSSA) and methicillin resistant (MRSA) bacteria and its correlation with hydrogen peroxide, phenolic content and antioxidant capacity. Farmacia 2018, 66, 37–43. [Google Scholar]
- Ekici, L.; Sagdic, O.; Silici, S.; Öztürk, I.; Sagdıc, O. Determination of phenolic content, antiradical, antioxidant and antimicrobial activities of Turkish pine honey. Qual. Assur. Saf. Crop. Foods 2014, 6, 439–444. [Google Scholar] [CrossRef]
- Shamsi, T.N.; Parveen, R.; Rehsawla, R.; Afreen, S.; Azam, M.; Fatma, T.; Haque, Q.M.R.; Fatima, S. In-Vitro antioxidant, antibacterial and anti-inflammatory characterization of Indian honey. Int. J. Pharm. Res. 2016, 8, 33–38. [Google Scholar]
- Carvalho, R.; Baltazar, F.; Almeida-Aguiar, C. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evid. -Based Complement. Altern. Med. 2015, 2015, 1–29. [Google Scholar] [CrossRef]
- Osés, S.M.; Pascual-Maté, A.; Fernández-Muiño, M.A.; López-Díaz, T.M.; Sancho, M. Bioactive properties of honey with propolis. Food Chem. 2016, 196, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Salleh, S.N.A.S.; Johari, W.L.W.; Hanapiah, N.A.M. A Comprehensive Review on Chemical Compounds, Biological Actions and Potential Health Benefits of Stingless Bee Propolis. Sains Malays. 2022, 51, 733–745. [Google Scholar] [CrossRef]
- ALaerjani, W.M.A.; Khan, K.A.; Al-Shehri, B.M.; Ghramh, H.A.; Hussain, A.; Mohammed, M.E.A.; Imran, M.; Ahmad, I.; Ahmad, S.; Al-Awadi, A.S. Chemical Profiling, Antioxidant, and Antimicrobial Activity of Saudi Propolis Collected by Arabian Honey Bee (Apis mellifera jemenitica) Colonies. Antioxidants 2022, 11, 1413. [Google Scholar]
- Postali, E.; Peroukidou, P.; Giaouris, E.; Papachristoforou, A. Investigating Possible Synergism in the Antioxidant and Antibacterial Actions of Honey and Propolis from the Greek Island of Samothrace through Their Combined Application. Foods 2022, 11, 2041. [Google Scholar] [CrossRef]
- Tumbarski, Y.D.; Todorova, M.M.; Topuzova, M.G.; Georgieva, P.I.; Petkova, N.T.; Ivanov, I.G. Postharvest Biopreservation of Fresh Blueberries by Propolis-Containing Edible Coatings Under Refrigerated Conditions. Curr. Res. Nutr. Food Sci. J. 2022, 10, 99–112. [Google Scholar] [CrossRef]
- Freitas, A.S.; Cunha, A.; Parpot, P.; Cardoso, S.M.; Oliveira, R.; Almeida-Aguiar, C. Propolis Efficacy: The Quest for Eco-Friendly Solvents. Molecules 2022, 27, 7531. [Google Scholar] [CrossRef]
- Jaldin-Crespo, L.; Silva, N.; Martínez, J. Nanomaterials Based on Honey and Propolis for Wound Healing—A Mini-Review. Nanomaterials 2022, 12, 4409. [Google Scholar] [CrossRef]
- Rozman, A.S.; Hashim, N.; Maringgal, B.; Abdan, K. A Comprehensive Review of Stingless Bee Products: Phytochemical Composition and Beneficial Properties of Honey, Propolis, and Pollen. Appl. Sci. 2022, 12, 6370. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Eid, N.; El-Wahed, A.A.A.; Rateb, M.E.; Afifi, H.S.; Algethami, A.F.; Zhao, C.; Al Naggar, Y.; Alsharif, S.M.; Tahir, H.E.; et al. Honey Bee Products: Preclinical and Clinical Studies of Their Anti-inflammatory and Immunomodulatory Properties. Front. Nutr. 2022, 8, 761267. [Google Scholar] [CrossRef] [PubMed]
- Bakour, M.; Laaroussi, H.; Ousaaid, D.; El Ghouizi, A.; Es-Safi, I.; Mechchate, H.; Lyoussi, B. Bee Bread as a Promising Source of Bioactive Molecules and Functional Properties: An Up-to-Date Review. Antibiotics 2022, 11, 203. [Google Scholar] [CrossRef] [PubMed]
- Straumite, E.; Bartule, M.; Valdovska, A.; Kruma, Z.; Galoburda, R. Physical and Microbiological Characteristics and Antioxidant Activity of Honey Bee Pollen. Appl. Sci. 2022, 12, 3039. [Google Scholar] [CrossRef]
- Mazol, I.; Sroka, Z.; Zbikowska, B.; Pawlik, K.; Marcol, J.; Franiczek, R.; Dryś, A. Pollen Diversity, Antiradical and Antibacterial Activity and Phenolic Contents of some Polish Honeys. Curr. Nutr. Food Sci. 2014, 10, 150–155. [Google Scholar] [CrossRef]
- Amessis-Ouchemoukh, N.; Otmani, A.; Mouhoubi-Tafinine, Z.; Tighlit, K.; Redouan, I.; Terrab, A.; Ouchemoukh, S. Contribution of organic bee pollen to the determination of the botanical origin of honey and its impact on its biological properties. Curr. Bioact. Compd. 2022, 18, e301221199687. [Google Scholar] [CrossRef]
- Alkan, S.; Akgün, M.; Ertürk, Ö.; Ayvaz, M.; Başkan, C. Properties of Honey and Pollen Samples Obtained from Different Rhododendron Species Collected from Black Sea Region of Turkey. J. Apic. Sci. 2020, 64, 321–334. [Google Scholar] [CrossRef]
- Amalia, E.; Diantini, A.; Subarnas, A. Water-soluble propolis and bee pollen of Trigona spp. from South Sulawesi Indonesia induce apoptosis in the human breast cancer MCF-7 cell line. Oncol. Lett. 2020, 20, 274. [Google Scholar] [CrossRef]
- Amaral, T.Y.; Padilha, I.G.; Presídio, G.A.; da Silveira, E.A.A.S.; Duarte, A.W.F.; Barbosa, A.P.F.; Bezerra, A.F.D.S.; López, A.M.Q. Antimicrobial and anti-inflammatory activities of Apis mellifera honey on the Helicobacter pylori infection of Wistar rats gastric mucosa. Food Sci. Technol. 2017, 37, 34–41. [Google Scholar] [CrossRef]
- del Río del Rosal, E.; Casas Arrojo, V.; Gómez Turpín, M.E.; Gil Gómez, J.; Abdala Díaz, R.; Figueroa Félix, L. Study on the antioxidant and antitumoral activity of propolis. Ars Pharm. 2017, 58, 75–81. [Google Scholar]
- Jalil, M.A.A.; Kasmuri, A.R.; Hadi, H. Stingless Bee Honey, the Natural Wound Healer: A Review. Ski. Pharmacol. Physiol. 2017, 30, 66–75. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Abudabos, A.M. Towards a better understanding of the therapeutic applications and corresponding mechanisms of action of honey. Environ. Sci. Pollut. Res. 2017, 24, 27755–27766. [Google Scholar] [CrossRef]
- Bharti, U.; Kumar, N.R.; Chaudhary, D. Modulatory Prospective of Bee Pollen against Oxidative Stress Induced by Drugs: A Review. Res. J. Pharm. Technol. 2018, 11, 5648–5652. [Google Scholar] [CrossRef]
- Lam, P.-L.; Wong, R.S.-M.; Lam, K.-H.; Hung, L.-K.; Wong, M.-M.; Yung, L.-H.; Ho, Y.-W.; Wong, W.-Y.; Hau, D.K.-P.; Gambari, R.; et al. The role of reactive oxygen species in the biological activity of antimicrobial agents: An updated mini review. Chem. Interact. 2020, 320, 109023. [Google Scholar] [CrossRef]
- Mirzaei, A.; Karamolah, K.S.; Mahnaie, M.P.; Mousavi, F.; Moghadam, P.M.; Mahmoudi, H. Antibacterial Activity of Honey against Methicillin-Resistant and Sensitive Staphylococcus Aureus Isolated from Patients with Diabetic Foot Ulcer. Open Microbiol. J. 2020, 14, 260–265. [Google Scholar] [CrossRef]
- Auguskani, J.P.L. A study to assess the chemical composition and antibacterial properties of honey. Biomed. Res. 2018, 29, 3584–3589. [Google Scholar] [CrossRef]
- Živković, J.; Sunarić, S.; Stanković, N.; Mihajilov-Krstev, T.; Spasić, A. Total phenolic and flavonoid contents, antioxidant and antibacterial activities of selected honeys against human pathogenic bacteria. Acta Pol. Pharm. -Drug Res. 2019, 76, 671–681. [Google Scholar] [CrossRef]
- Gregorio, A.; Galhardo, D.; Sereia, M.J.; Wielewski, P.; Gavazzoni, L.; Santos, I.F.D.; Sangaleti, G.S.S.G.M.G.; Cardoso, E.C.; Bortoti, T.L.; Zanatta, L.A.; et al. Antimicrobial activity, physical-chemical and activity antioxidant of honey samples of apis mellifera from different regions of Paraná, Southern Brazil. Food Sci. Technol. 2021, 41, 583–590. [Google Scholar]
- Cucu, A.-A.; Baci, G.-M.; Moise, A.; Dezsi, Ş; Marc, B.; Stângaciu, Ş; Dezmirean, D. Towards a Better Understanding of Nutritional and Therapeutic Effects of Honey and Their Applications in Apitherapy. Appl. Sci. 2021, 11, 4190. [Google Scholar] [CrossRef]
- Kaya, B.; Yıldırım, A. Determination of the antioxidant, antimicrobial and anticancer properties of the honey phenolic extract of five different regions of Bingöl province. J. Food Sci. Technol. 2021, 58, 2420–2430. [Google Scholar]
- Prasathkumar, M.; Sadhasivam, S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—Know-how. Int. J. Biol. Macromol. 2021, 186, 656–685. [Google Scholar] [CrossRef] [PubMed]
Document by Type N (%) | Top 10 Institutions (N of Documents) | Top 10 Productive Authors (N of Documents) | Authors h Index |
---|---|---|---|
Article 273 (71%) | Università Politecnicadelle Marche—Italy (11) | Giampieri, F. (11) | 46 |
Review 81 (21%) | King Abdulaziz University— Saudi Arabia (9) | Alvarez-Suarez, J.M. (9) | 36 |
Book Chapter 19 (5%) | University of Rzeszów—Poland (8) | Battino, M. (8) | 70 |
Conference Paper 8 (2%) | Karadeniz Technical University— Turkey (7) | Gasparrini, M. (6) | 34 |
Conference Review 2 (1%) | University of Belgrade—Serbia (7) | Kolayli, S. (6) | 30 |
King Saud University— Saudi Arabia (6) | Osés, S.M. (6) | 16 | |
Universidade Federal de Santa Catarina—Brazil (6) | Dezmirean, D.S. (5) | 19 | |
Universidad de Burgos—Spain (6) | Fett, R. (5) | 40 | |
InstitutoPolitecnico de Braganca— Portugal (6) | Forbes-Hernández, T.Y. (5) | 38 | |
Chiang Mai University—Thailand (5) | Sancho, M.T. (5) | 23 |
Author | Title | Year | Source | Cited by |
---|---|---|---|---|
[53] | Honey for nutrition and health: A review | 2008 | Journal of the American College of Nutrition 27(6), pp. 677–689 | 660 |
[54] | Antimicrobial strategies centered around reactive oxygen species—bactericidal antibiotics, photodynamic therapy, and beyond | 2013 | FEMS Microbiology Reviews 37(6), pp. 955–989 | 603 |
[17] | Functional properties of honey, propolis, and royal jelly | 2008 | Journal of Food Science 73(9), pp. R117–R124 | 552 |
[55] | Biological activities and chemical composition of three honeys of different types from Anatolia | 2007 | Food Chemistry 100(2), pp. 526–534 | 370 |
[56] | Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey | 2008 | Food and Chemical Toxicology 46(12), pp. 3774–3779 | 359 |
[44] | Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds | 2010 | Food and Chemical Toxicology 48(8–9), pp. 2490–2499 | 297 |
[15] | Phenolic compounds in honey and their associated health benefits: A review | 2018 | Molecules 23(9), 2322 | 257 |
[57] | Traditional Therapies for Skin Wound Healing | 2016 | Advances in Wound Care 5(5), pp. 208–229 | 250 |
[39] | Inhibitory activity of honey against foodborne pathogens as influenced by the presence of hydrogen peroxide and level of antioxidant power | 2001 | International Journal of Food Microbiology 69(3), pp. 217–225 | 234 |
[14] | Therapeutic properties of bioactive compounds from different honeybee products | 2017 | Frontiers in Pharmacology 8(JUN), 412 | 207 |
Cluster Identification | Keywords |
---|---|
red | antioxidant activity, antimicrobial activity, nonhuman, human, controlled study, Staphylococcus aureus, Escherichia coli, propolis, flavonoid, unclassified drug, antiinflammatory activity, wound healing, minimum inhibitory concentration, Pseudomonas aeruginosa, chemical composition, dpph radical scavenging assay, natural product, polyphenol, antineoplastic activity, plant extract, physical chemistry, oxidative stress, hydrogen peroxide, manuka honey, high performance liquid chromatography, biological activity, antifungal activity, apis mellifera, in vitro study, Candida albicans, quercetin, ascorbic acid, gallic acid, enzyme activity |
green | honey, antioxidant, antiinfective agent, chemistry, phenol derivative, food products, animals, antimicrobial, phenols, anti-bacterial agents, flavonoids, drug effect, bee, anti-infective agents, bacteria, microbial sensitivity tests, phenolic compounds, polyphenols, pollen, microbial sensitivity test, anti-inflammatory agent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanis, C.; Stavropoulou, E.; Giorgi, E.; Voidarou, C.; Constantinidis, T.C.; Vrioni, G.; Tsakris, A. Honey’s Antioxidant and Antimicrobial Properties: A Bibliometric Study. Antioxidants 2023, 12, 414. https://doi.org/10.3390/antiox12020414
Stefanis C, Stavropoulou E, Giorgi E, Voidarou C, Constantinidis TC, Vrioni G, Tsakris A. Honey’s Antioxidant and Antimicrobial Properties: A Bibliometric Study. Antioxidants. 2023; 12(2):414. https://doi.org/10.3390/antiox12020414
Chicago/Turabian StyleStefanis, Christos, Elisavet Stavropoulou, Elpida Giorgi, Chrysoula (Chrysa) Voidarou, Theodoros C. Constantinidis, Georgia Vrioni, and Athanasios Tsakris. 2023. "Honey’s Antioxidant and Antimicrobial Properties: A Bibliometric Study" Antioxidants 12, no. 2: 414. https://doi.org/10.3390/antiox12020414
APA StyleStefanis, C., Stavropoulou, E., Giorgi, E., Voidarou, C., Constantinidis, T. C., Vrioni, G., & Tsakris, A. (2023). Honey’s Antioxidant and Antimicrobial Properties: A Bibliometric Study. Antioxidants, 12(2), 414. https://doi.org/10.3390/antiox12020414