Application of High-Pressure Homogenization for Apple Juice: An Assessment of Quality Attributes and Polyphenol Bioaccessibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Apple Juice and High-Pressure Homogenization (HPH) Treatment
2.2. pH, Brix, Turbidity, Viscosity, Particle Size Distribution (PSD) and Zeta Potential
2.3. Color
2.4. Polyphenol Oxidase (PPO) and Peroxidase (POD) Enzyme Activities
2.5. Polyphenol Profile
2.6. Bioaccessibility
2.7. Statistical Analysis
3. Results
3.1. Physicochemical Properties
3.2. Enzyme Activity and Polyphenol Profile
3.3. Influence of HPH on Bioaccessibility of Polyphenols and Physical Parameters of Apple Juice during Simulated Digestion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shahbaz, H.M.; Kim, J.U.; Kim, S.H.; Park, J. Advances in Nonthermal Processing Technologies for Enhanced Microbiological Safety and Quality of Fresh Fruit and Juice Products. In Food Processing for Increased Quality and Consumption; Academic Press: Cambridge, MA, USA, 2018; pp. 179–217. [Google Scholar] [CrossRef]
- World Health Organization (GS). Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; p. 916. [Google Scholar]
- United States Department of Agriculture. Fresh Apples Fresh Domestic Consumption by Country in MT; United States Department of Agriculture: Washington, DC, USA, 2019.
- Benton, D.; Young, H.A. Role of Fruit Juice in Achieving the 5-a-Day Recommendation for Fruit and Vegetable Intake. Nutr. Rev. 2019, 77, 829–843. [Google Scholar] [CrossRef] [PubMed]
- Byrd-Bredbenner, C.; Ferruzzi, M.G.; Fulgoni, V.L.; Murray, R.; Pivonka, E.; Wallace, T.C. Satisfying America’s Fruit Gap: Summary of an Expert Roundtable on the Role of 100% Fruit Juice. J. Food Sci. 2017, 82, 1523–1534. [Google Scholar] [CrossRef] [PubMed]
- Patrignani, F.; Vannini, L.; Kamdem, S.L.S.; Lanciotti, R.; Guerzoni, M.E. Effect of High Pressure Homogenization on Saccharomyces Cerevisiae Inactivation and Physico-Chemical Features in Apricot and Carrot Juices. Int. J. Food Microbiol. 2009, 136, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Siroli, L.; Camprini, L.; Pisano, M.B.; Patrignani, F.; Lanciotti, R. Volatile Molecule Profiles and Anti-Listeria Monocytogenes Activity of Nisin Producers Lactococcus Lactis Strains in Vegetable Drinks. Front. Microbiol. 2019, 10, 536. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, R.; Zicari, S. (Eds.) Carrots. In Integrated Processing Technologies for Food and Agricultural By-Products; Academic Press: Cambridge, MA, USA, 2019; pp. 297–330. [Google Scholar]
- Bearth, A.; Cousin, M.E.; Siegrist, M. The Consumer’s Perception of Artificial Food Additives: Influences on Acceptance, Risk and Benefit Perceptions. Food Qual. Prefer. 2014, 38, 14–23. [Google Scholar] [CrossRef]
- Szczepańska, J. Zastosowanie Wysokich Ciśnień do Utrwalania Soków NFC. Przemysł Ferment. Owocowo-Warzywny 2017, 1, 50–54. [Google Scholar] [CrossRef]
- Kozłowicz, K. Wysokociśnieniowa Technologia Obróbki i Konserwacji Oraz Jej Wykorzystanie w Zamrażaniu i Rozmrażaniu Żywności. Chłodnictwo 2015, 1, 44–51. [Google Scholar] [CrossRef]
- Zamora, A.; Guamis, B. Opportunities for Ultra-High-Pressure Homogenisation (UHPH) for the Food Industry. Food Eng. Rev. 2015, 7, 130–142. [Google Scholar] [CrossRef]
- Betoret, E.; Mannozzi, C.; Dellarosa, N.; Laghi, L.; Rocculi, P.; Dalla Rosa, M. Metabolomic Studies after High-Pressure Homogenization Processed Low Pulp Mandarin Juice with Trehalose Addition. Functional and Technological Properties. J. Food Eng. 2017, 200, 22–28. [Google Scholar] [CrossRef]
- Moscovici Joubran, A.; Katz, I.H.; Okun, Z.; Davidovich-Pinhas, M.; Shpigelman, A. The Effect of Pressure Level and Cycling in High-Pressure Homogenization on Physicochemical, Structural and Functional Properties of Filtered and Non-Filtered Strawberry Nectar. Innov. Food Sci. Emerg. Technol. 2019, 57, 102203. [Google Scholar] [CrossRef]
- Saricaoglu, F.T.; Atalar, I.; Yilmaz, V.A.; Odabas, H.I.; Gul, O. Application of Multi Pass High Pressure Homogenization to Improve Stability, Physical and Bioactive Properties of Rosehip (Rosa canina L.) Nectar. Food Chem. 2019, 282, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, S.; Wang, W.; Ge, Z.; Zhang, L.; Li, C.; Zhang, B.; Zong, W. Comparison of the Effects of Dynamic High-pressure Microfluidization and Conventional Homogenization on the Quality of Peach Juice. J. Sci. Food Agric. 2019, 99, 5994–6000. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, E.; Tarazona-Díaz, M.P.; Martínez-Sánchez, A.; García-González, A. Influence of Moderate High-Pressure Homogenization on Quality of Bioactive Compounds of Functional Food Supplements. J. Food Qual. 2017, 2017, 2856125. [Google Scholar] [CrossRef]
- Yildiz, G. Application of Ultrasound and High-pressure Homogenization against High Temperature-short Time in Peach Juice. J. Food Process Eng. 2019, 42, e12997. [Google Scholar] [CrossRef]
- He, Z.; Tao, Y.; Zeng, M.; Zhang, S.; Tao, G.; Qin, F.; Chen, J. High-Pressure Homogenization Processing, Thermal Treatment and Milk Matrix Affect in Vitro Bioaccessibility of Phenolics in Apple, Grape and Orange Juice to Different Extents. Food Chem. 2016, 200, 107–116. [Google Scholar] [CrossRef]
- Palmero, P.; Panozzo, A.; Colle, I.; Chigwedere, C.; Hendrickx, M.; van Loey, A. Role of Structural Barriers for Carotenoid Bioaccessibility upon High Pressure Homogenization. Food Chem. 2016, 199, 423–432. [Google Scholar] [CrossRef]
- Carrillo, C.; Buvé, C.; Panozzo, A.; Grauwet, T.; Hendrickx, M. Role of Structural Barriers in the in Vitro Bioaccessibility of Anthocyanins in Comparison with Carotenoids. Food Chem. 2017, 227, 271–279. [Google Scholar] [CrossRef]
- Kubo, M.T.K.; Augusto, P.E.D.; Cristianini, M. Effect of High-Pressure Homogenization (HPH) on the Physical Stability of Tomato Juice. Food Res. Int. 2013, 51, 170–179. [Google Scholar] [CrossRef]
- Guan, Y.; Zhou, L.; Bi, J.; Yi, J.; Liu, X.; Chen, Q.; Wu, X.; Zhou, M. Change of Microbial and Quality Attributes of Mango Juice Treated by High-Pressure Homogenization Combined with Moderate Inlet Temperatures during Storage. Innov. Food Sci. Emerg. Technol. 2016, 36, 320–329. [Google Scholar] [CrossRef]
- Benjamin, O.; Gamrasni, D. Microbial, Nutritional, and Organoleptic Quality of Pomegranate Juice Following High-pressure Homogenization and Low-temperature Pasteurization. J. Food Sci. 2020, 85, 592–599. [Google Scholar] [CrossRef]
- Kruszewski, B.; Zawada, K.; Karpiński, P. Impact of High-Pressure Homogenization Parameters on Physicochemical Characteristics, Bioactive Compounds Content, and Antioxidant Capacity of Blackcurrant Juice. Molecules 2021, 26, 1802. [Google Scholar] [CrossRef] [PubMed]
- Szczepańska, J.; Skąpska, S.; Połaska, M.; Marszałek, K. High pressure homogenization with a cooling circulating system: The effect on physiochemical and rheological properties, enzymes, and carotenoid profile of carrot juice. Food Chem. 2022, 370, 131023. [Google Scholar] [CrossRef]
- Maresca, P.; Donsì, F.; Ferrari, G. Application of a multi-pass high-pressure homogenization treatment for the pasteurization of fruit juices. J. Food Eng. 2011, 104, 364–372. [Google Scholar] [CrossRef]
- Bot, F.; Calligaris, S.; Cortella, G.; Plazzotta, S.; Nocera, F.; Anese, M. Study on high pressure homogenization and high power ultrasound effectiveness in inhibiting polyphenoloxidase activity in apple juice. J. Food Eng. 2018, 221, 70–76. [Google Scholar] [CrossRef]
- Szczepańska, J.; Skąpska, S.; Marszałek, K. Continuous High-pressure Cooling-Assisted Homogenization Process for Stabilization of Apple Juice. Food Bioprocess Technol. 2021, 14, 1101–1117. [Google Scholar] [CrossRef]
- Wellala, C.K.D.; Bi, J.; Liu, X.; Liu, J.; Lyu, J.; Zhou, M.; Marszałek, K.; Trych, U. Effect of high pressure homogenization combined with juice ratio on water-soluble pectin characteristics, functional properties and bioactive compounds in mixed juices. Innov. Food Sci. Emerg. Technol. 2020, 60, 102279. [Google Scholar] [CrossRef]
- Terefe, N.S.; Yang, Y.H.; Knoerzer, K.; Buckow, R.; Versteeg, C. High pressure and thermal inactivation kinetics of polyphenol oxidase and peroxidase in strawberry puree. Innov. Food Sci. Emerg. Technol. 2010, 11, 52–60. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Young, J.C.; Zhu, H. Polyphenolic Profiles in Eight Apple Cultivars Using High-Performance Liquid Chromatography (HPLC). J. Agric. Food Chem. 2003, 51, 6347–6353. [Google Scholar] [CrossRef]
- Liu, X.; Bi, J.; Xiao, H.; Mcclements, D.J. Enhancement of Nutraceutical Bioavailability Using Excipient Nanoemulsions: Role of Lipid Digestion Products on Bioaccessibility of Carotenoids and Phenolics from Mangoes. J. Food Sci 2016, 81, 754–761. [Google Scholar] [CrossRef]
- Velázquez-Estrada, R.-M.; Hernández-Herrero, M.-M.; Guamis-López, B.; Roig-Saguès, A.-X. Influence of ultra-high pressure homogenisation on physicochemical and sensorial properties of orange juice in comparison with conventional thermal processing. Int. J. Food Sci. Technol. 2019, 54, 1858–1864. [Google Scholar] [CrossRef]
- Wellala, C.K.D.; Bi, J.; Liu, X.; Liu, J.; Lyu, J.; Zhou, M. Effect of high pressure homogenization on mixed juice stability, rheology, physicochemical properties and microorganism reduction. J. Food Sci. Technol. 2020, 57, 1944–1953. [Google Scholar] [CrossRef] [PubMed]
- Sauceda-Gálvez, J.N.; Codina-Torrella, I.; Martinez-Garcia, M.; Hernández-Herrero, M.M.; Gervilla, R.; Roig-Sagués, A.X. Combined effects of ultra-high pressure homogenization and short-wave ultraviolet radiation on the properties of cloudy apple juice. LWT 2021, 136, 110286. [Google Scholar] [CrossRef]
- Ni, Y.; Zhang, Z.; Fan, L.; Li, J. Evaluation of physical stability of high pressure homogenization treatment cloudy ginkgo beverages. LWT 2019, 111, 31–38. [Google Scholar] [CrossRef]
- Stinco, C.M.; Sentandreu, E.; Mapelli-Brahm, P.; Navarro, J.L.; Vicario, I.M.; Meléndez-Martínez, A.J. Influence of high pressure homogenization and pasteurization on the in vitro bioaccessibility of carotenoids and flavonoids in orange juice. Food Chem. 2020, 331, 127259. [Google Scholar] [CrossRef]
- Yi, J.; Kebede, B.; Kristiani, K.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Minimizing quality changes of cloudy apple juice: The use of kiwifruit puree and high pressure homogenization. Food Chem. 2018, 249, 202–212. [Google Scholar] [CrossRef]
- Augusto, P.E.D.; Tribst, A.A.L.; Cristianini, M. Chapter 20—High Hydrostatic Pressure and High-Pressure Homogenization Processing of Fruit Juices. In Fruit Juices; Rajauria, G., Tiwari, B., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 393–421. [Google Scholar]
- Panozzo, A.; Lemmens, L.; Van Loey, A.; Manzocco, L.; Nicoli, M.C.; Hendrickx, M. Microstructure and bioaccessibility of different carotenoid species as affected by high pressure homogenisation: A case study on differently coloured tomatoes. Food Chem. 2013, 141, 4094–4100. [Google Scholar] [CrossRef]
- Wellala, C.K.D.; Bi, J.; Liu, X.; Wu, X.; Lyu, J.; Liu, J.; Liu, D.; Guo, C. Effect of high pressure homogenization on water-soluble pectin characteristics and bioaccessibility of carotenoids in mixed juice. Food Chem. 2022, 371, 131073. [Google Scholar] [CrossRef]
- Trych, U.; Buniowska-Olejnik, M.; Marszałek, K. Bioaccessibility of Betalains in Beetroot (Beta vulgaris L.) Juice under Different High-Pressure Techniques. Molecules 2022, 27, 7093. [Google Scholar] [CrossRef]
- Trych, U.; Buniowska, M.; Skąpska, S.; Kapusta, I.; Marszałek, K. Bioaccessibility of Antioxidants in Blackcurrant Juice after Treatment Using Supercritical Carbon Dioxide. Molecules 2022, 27, 1036. [Google Scholar] [CrossRef]
CS | 200 MPa | 250 MPa | 300 MPa | |
---|---|---|---|---|
pH | 3.08 ± 0.01 a | 3.08 ± 0.01 a | 3.06 ± 0.00 a | 3.08 ± 0.01 a |
1 TSS | 13.25 ± 0.07 a | 13.35 ± 0.07 a | 13.30 ± 0.00 a | 13.25 ± 0.07 a |
Density | 10.33 ± 0.00 a | 10.31 ± 0.01 a | 10.39 ± 0.00 c | 10.37 ± 0.00 b |
Viscosity (m Pa.s) | 1.99 ± 0.21 a | 1.93 ± 0.02 a | 2.31 ± 0.06 a | 1.85 ± 0.62 a |
Turbidity (NTU) | 93.93 ± 1.17 a | 133.33 ± 1.87 b | 119.40 ± 2.40 c | 178.93 ± 0.11 d |
2 PSD (μm) | 38.73 ± 1.15 b | 24.24 ± 1.79 a | 28.25 ± 1.79 a | 22.98 ± 4.31 a |
Zeta potential (mv) | −18.90 ± 0.00 a | −16.15 ± 0.10 b | −15.50 ± 0.60 bc | −14.50 ± 0.60 c |
L | 45.42 ± 0.79 b | 42.27 ± 0.13 a | 45.21 ± 0.16 b | 40.30 ± 1.24 a |
a | 7.84 ± 0.10 a | 8.72 ± 0.07 b | 7.42 ± 0.15 a | 9.01 ± 0.40 b |
b | 25.67 ± 0.42 b | 24.97 ± 0.03 ab | 25.51 ± 0.21 b | 24.16 ± 0.79 a |
∆E | - | 3.35 | 3.26 | 5.33 |
CS | 200 MPa | 250 MPa | 300 MPa | |
---|---|---|---|---|
Residual activity (%) | ||||
PPO | 100.00 ± 4.11 c | 100.00 ± 0.51 c | 49.26 ± 1.85 b | 29.97 ± 1.36 a |
POD | 100.00 ± 0.98 c | 98.37 ± 2.90 c | 81.79 ± 1.10 b | 65.82 ± 2.44 a |
Polyphenol content (mg/L) | ||||
Phloridzin | 6.56 ± 0.62 b | 5.68 ± 0.18 b | 3.26 ± 0.05 a | 2.42 ± 0.08 a |
Epicatechin | 17.12 ± 1.34 c | 13.80 ± 0.37 b | 12.77 ± 0.04 b | 8.98 ± 0.69 a |
Chlorogenic acid | 269.57 ± 4.67 c | 256.67 ± 4.58 b | 244.34 ± 2.18 a | 238.23 ± 3.55 a |
Caffeic acid | 4.44 ± 0.03 d | 4.24 ± 0.00 c | 4.07 ± 0.02 b | 3.75 ± 0.00 a |
Gallic acid | 5.34 ± 0.12 d | 5.03 ± 0.02 c | 4.66 ± 0.02 b | 4.24 ± 0.01 a |
Total phenolic compounds | 303.03 ± 2.80 d | 285.42 ± 4.79 c | 269.11 ± 2.21 b | 257.61 ± 4.15 a |
CS | 200 MPa | 250 MPa | 300 MPa | ||
---|---|---|---|---|---|
1 PSD | Control | 22.37 ± 0.00 ab | 19.02 ± 4.17 ab | 19.09 ± 1.79 ab | 20.42 ± 3.23 ab |
Mouth | 34.55 ± 6.91 ab | 28.51 ± 0.85 ab | 32.58 ± 6.89 ab | 36.21 ± 10.61 ab | |
Stomach | 29.40 ± 0.00 b | 28.43 ± 6.55 ab | 44.73 ± 2.93 ab | 37.69 ± 2.80 ab | |
Intestine | 23.33 ± 5.66 ab | 8.53 ± 2.16 a | 17.17 ± 0.00 ab | 30.72 ± 29.18 ab | |
Zeta potential (mv) | Control | −20.45 ± 2.62 a | −19.60 ± 1.72 abc | −16.20 ± 3.96 cd | −16.80 ± 1.27 bcd |
Mouth | −20.05 ± 0.92 ab | −18.35 ± 0.78 abcd | −19.30 ± 0.14 abc | −18.00 ± 0.14 abcd | |
Stomach | −9.82 ± 0.13 e | −12.10 ± 1.70 e | −12.55 ± 0.21 e | −11.65 ± 0.64 e | |
Intestine | −17.30 ± 0.71 abcd | −15.70 ± 0.85 d | −19.30 ± 0.57 abc | −18.40 ± 0.14 abcd | |
2 TPC (mg/mL) | Control | 1.34 ± 0.00 hj | 1.49 ± 0.07 k | 0.78 ± 0.00 d | 1.37 ± 0.06 j |
Mouth | 1.29 ± 0.00 ih | 1.28 ± 0.02 i | 1.52 ± 0.00 k | 1.12 ± 0.03 h | |
Stomach | 0.68 ± 0.00 c | 0.97 ± 0.01 g | 0.84 ± 0.00 ef | 0.87 ± 0.00 f | |
Intestine | 0.86 ± 0.03 f | 0.82 ± 0.03 def | 0.80 ± 0.01 de | 0.82 ± 0.01 def | |
Micelle | 0.32 ± 0.01 a | 0.46 ± 0.02 b | 0.41 ± 0.01 b | 0.45 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marszałek, K.; Trych, U.; Bojarczuk, A.; Szczepańska, J.; Chen, Z.; Liu, X.; Bi, J. Application of High-Pressure Homogenization for Apple Juice: An Assessment of Quality Attributes and Polyphenol Bioaccessibility. Antioxidants 2023, 12, 451. https://doi.org/10.3390/antiox12020451
Marszałek K, Trych U, Bojarczuk A, Szczepańska J, Chen Z, Liu X, Bi J. Application of High-Pressure Homogenization for Apple Juice: An Assessment of Quality Attributes and Polyphenol Bioaccessibility. Antioxidants. 2023; 12(2):451. https://doi.org/10.3390/antiox12020451
Chicago/Turabian StyleMarszałek, Krystian, Urszula Trych, Adrianna Bojarczuk, Justyna Szczepańska, Zhe Chen, Xuan Liu, and Jinfeng Bi. 2023. "Application of High-Pressure Homogenization for Apple Juice: An Assessment of Quality Attributes and Polyphenol Bioaccessibility" Antioxidants 12, no. 2: 451. https://doi.org/10.3390/antiox12020451
APA StyleMarszałek, K., Trych, U., Bojarczuk, A., Szczepańska, J., Chen, Z., Liu, X., & Bi, J. (2023). Application of High-Pressure Homogenization for Apple Juice: An Assessment of Quality Attributes and Polyphenol Bioaccessibility. Antioxidants, 12(2), 451. https://doi.org/10.3390/antiox12020451