Plasma Copper Concentration Is Associated with Cardiovascular Mortality in Male Kidney Transplant Recipients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Laboratory Measurements, Calculations, and Definitions
2.4. Statistical Analyses
Secondary Analyses
3. Results
3.1. Baseline Characteristics
3.2. Longitudinal Analyses
3.3. Secondary Analyses
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tonelli, M.; Wiebe, N.; Knoll, G.; Bello, A.; Browne, S.; Jadhav, D.; Klarenbach, S.; Gill, J. Systematic Review: Kidney Transplantation Compared with Dialysis in Clinically Relevant Outcomes. Am. J. Transplant. 2011, 11, 2093–2109. [Google Scholar] [CrossRef] [PubMed]
- Gaston, R.S.; Fieberg, A.; Helgeson, E.S.; Eversull, J.; Hunsicker, L.; Kasiske, B.L.; Leduc, R.; Rush, D.; Matas, A.J. Late Graft Loss After Kidney Transplantation: Is “Death with Function” Really Death with a Functioning Allograft? Transplantation 2020, 104, 1483–1490. [Google Scholar] [CrossRef]
- Wyld, M.L.R.; de La Mata, N.L.; Masson, P.; O’Lone, E.; Kelly, P.J.; Webster, A.C. Cardiac Mortality in Kidney Transplant Patients: A Population-Based Cohort Study 1988–2013 in Australia and New Zealand. Transplantation 2021, 105, 413–422. [Google Scholar] [CrossRef]
- Rangaswami, J.; Mathew, R.O.; Parasuraman, R.; Tantisattamo, E.; Lubetzky, M.; Rao, S.; Yaqub, M.S.; Birdwell, K.A.; Bennett, W.; Dalal, P.; et al. Cardiovascular Disease in the Kidney Transplant Recipient: Epidemiology, Diagnosis and Management Strategies. Nephrol. Dial. Transplant. 2019, 34, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Wilk, A.; Szypulska-Koziarska, D.; Marchelek-Myśliwiec, M.; Głazek, W.; Wiszniewska, B. Serum Selenium, Iron, Zinc, and Copper Concentrations in Renal Transplant Recipients Treated with Mycophenolate Mofetil. Biol. Trace. Elem. Res. 2020, 198, 371–379. [Google Scholar] [CrossRef]
- Yepes-Calderón, M.; Sotomayor, C.G.; Gans, R.O.B.; Berger, S.P.; Leuvenink, H.G.D.; Tsikas, D.; Rodrigo, R.; Navis, G.J.; Bakker, S.J.L. Post-Transplantation Plasma Malondialdehyde Is Associated with Cardiovascular Mortality in Renal Transplant Recipients: A Prospective Cohort Study. Nephrol. Dial. Transplant. 2020, 35, 512–519. [Google Scholar] [CrossRef]
- Duni, A.; Liakopoulos, V.; Rapsomanikis, K.-P.; Dounousi, E. Chronic Kidney Disease and Disproportionally Increased Cardiovascular Damage: Does Oxidative Stress Explain the Burden? Oxid. Med. Cell Longev. 2017, 2017, 9036450. [Google Scholar] [CrossRef]
- Xiao, Y.; Yuan, Y.; Liu, Y.; Yu, Y.; Jia, N.; Zhou, L.; Wang, H.; Huang, S.; Zhang, Y.; Yang, H.; et al. Circulating Multiple Metals and Incident Stroke in Chinese Adults. Stroke 2019, 50, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S. Serum Copper Concentration and Coronary Heart Disease among US Adults. Am. J. Epidemiol. 2000, 151, 1182–1188. [Google Scholar] [CrossRef]
- Leone, N.; Courbon, D.; Ducimetiere, P.; Zureik, M. Zinc, Copper, and Magnesium and Risks for All-Cause, Cancer, and Cardiovascular Mortality. Epidemiology 2006, 17, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Ramond, A.; O’Keeffe, L.M.; Shahzad, S.; Kunutsor, S.K.; Muka, T.; Gregson, J.; Willeit, P.; Warnakula, S.; Khan, H.; et al. Environmental Toxic Metal Contaminants and Risk of Cardiovascular Disease: Systematic Review and Meta-Analysis. BMJ 2018, 362, k3310. [Google Scholar] [CrossRef]
- Sarawi, W.S.; Alhusaini, A.M.; Fadda, L.M.; Alomar, H.A.; Albaker, A.B.; Aljrboa, A.S.; Alotaibi, A.M.; Hasan, I.H.; Mahmoud, A.M. Nano-Curcumin Prevents Cardiac Injury, Oxidative Stress and Inflammation, and Modulates TLR4/NF-ΚB and MAPK Signaling in Copper Sulfate-Intoxicated Rats. Antioxidants 2021, 10, 1414. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G. Relevance, Essentiality and Toxicity of Trace Elements in Human Health. Mol. Aspects Med. 2005, 26, 235–244. [Google Scholar] [CrossRef]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.-F.; Margaritis, I. Dietary Copper and Human Health: Current Evidence and Unresolved Issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Gaetke, L.M.; Chow-Johnson, H.S.; Chow, C.K. Copper: Toxicological Relevance and Mechanisms. Arch. Toxicol. 2014, 88, 1929–1938. [Google Scholar] [CrossRef]
- Nikoobakht, M.R.; Pourmand, G.; Allameh, F.; Dialameh, H.; Sharifi, A.; Hashemiaghdam, A. Serum Trace Elements before and 3 Months after Renal Transplantation in Kidney Recipients: An Iranian Study. Indian J. Transplant. 2014, 8, 8–11. [Google Scholar] [CrossRef]
- Tonelli, M.; Wiebe, N.; Hemmelgarn, B.; Klarenbach, S.; Field, C.; Manns, B.; Thadhani, R.; Gill, J. Trace Elements in Hemodialysis Patients: A Systematic Review and Meta-Analysis. BMC Med. 2009, 7, 25. [Google Scholar] [CrossRef]
- Sobiak, J.; Kamińska, J.; Głyda, M.; Duda, G.; Chrzanowska, M. Effect of Mycophenolate Mofetil on Hematological Side Effects Incidence in Renal Transplant Recipients. Clin. Transpl. 2013, 27, E407–E414. [Google Scholar] [CrossRef]
- Steinberg, D. Low Density Lipoprotein Oxidation and Its Pathobiological Significance. J. Biol. Chem. 1997, 272, 20963–20966. [Google Scholar] [CrossRef]
- Yoshida, H.; Kisugi, R. Mechanisms of LDL Oxidation. Clin. Chim. Acta 2010, 411, 1875–1882. [Google Scholar] [CrossRef]
- van den Berg, V.J.; Vroegindewey, M.M.; Kardys, I.; Boersma, E.; Haskard, D.; Hartley, A.; Khamis, R. Anti-Oxidized LDL Antibodies and Coronary Artery Disease: A Systematic Review. Antioxidants 2019, 8, 484. [Google Scholar] [CrossRef]
- Marques, C.M.S.; Nunes, E.A.; Lago, L.; Pedron, C.N.; Manieri, T.M.; Sato, R.H.; Oliveira, V.X.; Cerchiaro, G. Generation of Advanced Glycation End-Products (AGEs) by Glycoxidation Mediated by Copper and ROS in a Human Serum Albumin (HSA) Model Peptide: Reaction Mechanism and Damage in Motor Neuron Cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2017, 824, 42–51. [Google Scholar] [CrossRef]
- Ma, J.; Xie, Y.; Zhou, Y.; Wang, D.; Cao, L.; Zhou, M.; Wang, X.; Wang, B.; Chen, W. Urinary Copper, Systemic Inflammation, and Blood Lipid Profiles: Wuhan-Zhuhai Cohort Study. Environ. Pollut. 2020, 267, 115647. [Google Scholar] [CrossRef]
- Hordyjewska, A.; Popiołek, Ł.; Kocot, J. The Many “Faces” of Copper in Medicine and Treatment. BioMetals 2014, 27, 611–621. [Google Scholar] [CrossRef]
- Singh, R.B.; Gupta, U.C.; Mittal, N.; Niaz, M.A.; Ghosh, S.; Rastogi, V. Epidemiologic Study of Trace Elements and Magnesium on Risk of Coronary Artery Disease in Rural and Urban Indian Populations. J. Am. Coll. Nutr. 1997, 16, 62–67. [Google Scholar] [CrossRef]
- Chrysochou, E.; Kanellopoulos, P.G.; Koukoulakis, K.G.; Sakellari, A.; Karavoltsos, S.; Minaidis, M.; Bakeas, E. Heart Failure and PAHs, OHPAHs, and Trace Elements Levels in Human Serum: Results from a Preliminary Pilot Study in Greek Population and the Possible Impact of Air Pollution. Molecules 2021, 26, 3207. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, B.; Akbari, N.; Tabiban, S.; Habibi, V.; Mokhberi, V. Serum Level of Copper in Patients with Coronary Artery Disease. Niger. Med. J. 2015, 56, 39. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Bonet, B.; Gillenwater, H.; Knopp, R.H. Opposing Effects of Estrogen and Progestins on LDL Oxidation and Vascular Wall Cytotoxicity: Implications for Atherogenesis. Proc. Soc. Exp. Biol. Med. 1999, 222, 214–221. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, E.; Engberink, M.; Brink, E.; van Baak, M.; Gans, R.; Navis, G.; Bakker, S. Dietary Protein, Blood Pressure and Renal Function in Renal Transplant Recipients. Br. J. Nutr. 2013, 109, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- De Vries, A.P.J.; Bakker, S.J.L.; Van Son, W.J.; Van Der Heide, J.J.H.; Ploeg, R.J.; The, H.T.; De Jong, P.E.; Gans, R.O.B. Metabolic Syndrome Is Associated with Impaired Long-Term Renal Allograft Function; Not All Component Criteria Contribute Equally. Am. J. Transplant. 2004, 4, 1675–1683. [Google Scholar] [CrossRef]
- Weber, K.S.; Ratjen, I.; Enderle, J.; Seidel, U.; Rimbach, G.; Lieb, W. Plasma Boron Concentrations in the General Population: A Cross-Sectional Analysis of Cardio-Metabolic and Dietary Correlates. Eur. J. Nutr. 2022, 61, 1363–1375. [Google Scholar] [CrossRef]
- Zelle, D.M.; Corpeleijn, E.; Stolk, R.P.; de Greef, M.H.G.; Gans, R.O.B.; van der Heide, J.J.H.; Navis, G.; Bakker, S.J.L. Low Physical Activity and Risk of Cardiovascular and All-Cause Mortality in Renal Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2011, 6, 898–905. [Google Scholar] [CrossRef]
- Noordzij, M.; Leffondre, K.; van Stralen, K.J.; Zoccali, C.; Dekker, F.W.; Jager, K.J. When Do We Need Competing Risks Methods for Survival Analysis in Nephrology? Nephrol. Dial. Transplant. 2013, 28, 2670–2677. [Google Scholar] [CrossRef]
- Milne, D.B. Copper Intake and Assessment of Copper Status. Am. J. Clin. Nutr. 1998, 67, 1041S–1045S. [Google Scholar] [CrossRef]
- Stern, B.R. Essentiality and Toxicity in Copper Health Risk Assessment: Overview, Update and Regulatory Considerations. J. Toxicol. Envrion. Health A 2010, 73, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Li, S.; Xu, S.; Zhou, D.; Zhong, X.; Tan, R.; Liu, Y. Associations Between Blood Trace Element Levels and Nutritional Status in Maintenance Hemodialysis. J. Ren. Nutr. 2021, 31, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Fujita, H.; Narita, T.; Yaginuma, T.; Kawarada, Y.; Kawagoe, M.; Sugiyama, T. Urinary Copper Excretion in Type 2 Diabetic Patients with Nephropathy. Nephron 2001, 88, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Stoumpos, S.; Jardine, A.G.; Mark, P.B. Cardiovascular Morbidity and Mortality after Kidney Transplantation. Transpl. Int. 2015, 28, 10–21. [Google Scholar] [CrossRef]
- Tonelli, M.; Wiebe, N.; Bello, A.; Field, C.J.; Gill, J.S.; Hemmelgarn, B.R.; Holmes, D.T.; Jindal, K.; Klarenbach, S.W.; Manns, B.J.; et al. Concentrations of Trace Elements and Clinical Outcomes in Hemodialysis Patients. Clin. J. Am. Soc. Nephrol. 2018, 13, 907–915. [Google Scholar] [CrossRef]
- Pérez Fernandez, R.; Martín Mateo, M.C.; de Vega, L.; Bustamante Bustamante, J.; Herrero, M.; Bustamante Munguira, E. Antioxidant Enzyme Determination and a Study of Lipid Peroxidation in Renal Transplantation. Ren. Fail 2002, 24, 353–359. [Google Scholar] [CrossRef]
- Fonseca, I.; Reguengo, H.; Almeida, M.; Dias, L.; Martins, L.S.; Pedroso, S.; Santos, J.; Lobato, L.; Henriques, A.C.; Mendonça, D. Oxidative Stress in Kidney Transplantation. Transplantation 2014, 97, 1058–1065. [Google Scholar] [CrossRef]
- Galletti, P.; di Gennaro, C.I.; Migliardi, V.; Indaco, S.; della Ragione, F.; Manna, C.; Chiodini, P.; Capasso, G.; Zappia, V. Diverse Effects of Natural Antioxidants on Cyclosporin Cytotoxicity in Rat Renal Tubular Cells. Nephrol. Dial. Transplant. 2018, 33, 542. [Google Scholar] [CrossRef]
- Lu, Y.-J.; Wu, Y.-J.; Chen, L.-J.; Ko, B.-S.; Chang, T.-C.; Wu, Y.-J.; Liang, S.-M.; Jan, Y.-J.; Liou, J.-Y. Reduced Expression of Metallothionein-I/II in Renal Proximal Tubules Is Associated with Advanced Chronic Kidney Disease. Toxins 2021, 13, 568. [Google Scholar] [CrossRef]
- Gaetke, L. Copper Toxicity, Oxidative Stress, and Antioxidant Nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Milne, D.B.; Johnson, P.E. Assessment of Copper Status: Effect of Age and Gender on Reference Ranges in Healthy Adults. Clin. Chem. 1993, 39, 883–887. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.E.; Milne, D.B.; Lykken, G.I. Effects of Age and Sex on Copper Absorption, Biological Half-Life, and Status in Humans. Am. J. Clin. Nutr. 1992, 56, 917–925. [Google Scholar] [CrossRef]
- Fischer, P.W.F.; L’Abbé, M.R.; Giroux, A. Effects of Age, Smoking, Drinking, Exercise and Estrogen Use on Indices of Copper Status in Healthy Adults1. Nutr. Res. 1990, 10, 1081–1090. [Google Scholar] [CrossRef]
- Straub, R.H. The Complex Role of Estrogens in Inflammation. Endocr. Rev. 2007, 28, 521–574. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex Differences in Immune Responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Kander, M.C.; Cui, Y.; Liu, Z. Gender Difference in Oxidative Stress: A New Look at the Mechanisms for Cardiovascular Diseases. J. Cell Mol. Med. 2017, 21, 1024–1032. [Google Scholar] [CrossRef]
- Shokrzadeh, M.; Ghaemian, A.; Salehifar, E.; Aliakbari, S.; Saravi, S.S.S.; Ebrahimi, P. Serum Zinc and Copper Levels in Ischemic Cardiomyopathy. Biol. Trace Elem. Res. 2009, 127, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Voutilainen, A.; Kurl, S.; Laukkanen, J.A. Serum Copper-to-Zinc Ratio Is Associated with Heart Failure and Improves Risk Prediction in Middle-Aged and Older Caucasian Men: A Prospective Study. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1924–1935. [Google Scholar] [CrossRef] [PubMed]
Overall KTR | Tertiles of Plasma Copper Concentration π | p¥ | |||
---|---|---|---|---|---|
Tertile 1 | Tertile 2 | Tertile 3 | |||
n | 660 | 220 | 220 | 220 | — |
Plasma copper concentration, µmol/L | 15.42 (13.53–17.63) | 12.59 (11.65–13.53) | 15.42 (14.79–16.05) | 18.88 (17.63–21.40) | — |
Demographics and body composition | |||||
Age, years | 53 ± 13 | 52 ± 13 | 53 ± 13 | 54 ± 13 | 0.13 |
Sex (male), n (%) | 370 (56) | 161 (73) | 130 (59) | 79 (36) | <0.001 |
Caucasian ethnicity, n (%) | 657 (99) | 218 (99) | 220 (100) | 219 (99) | 0.78 |
Body mass index, kg/m2 | 26.6 ± 4.8 | 26.0 ± 4.0 | 26.6 ± 4.7 | 27.4 ± 5.5 | 0.01 |
Waist circumference, cms a | 98 ± 15 | 97 ± 13 | 98 ± 14 | 100 ± 16 | 0.10 |
Renal allograft function | |||||
eGFR, mL/min/1.73 m2 b | 52 ± 20 | 53 ± 20 | 52 ± 19 | 51 ± 21 | 0.64 |
Proteinuria, n (%) b | 151 (23) | 51 (23) | 52 (24) | 48 (22) | 0.91 |
Renal transplant | |||||
Preemptive transplantation, n (%) | 103 (16) | 40 (18) | 36 (16) | 27 (12) | 0.22 |
Dialysis duration before transplantation, months c | 25 (9–50.0) | 21 (5–49) | 25 (10–50) | 28 (11–48) | 0.24 |
Living donor, n (%) | 229 (35) | 82 (37) | 75 (34) | 72 (33) | 0.59 |
Donor age, years d | 43 ± 15 | 44 ± 15 | 42 ± 16 | 43 ± 15 | 0.37 |
Donor sex (male), n (%) e | 334 (52) | 103 (47) | 109 (51) | 122 (57) | 0.14 |
Time since transplantation, years | 5.2 (1.8–12.1) | 5.8 (2.3–12.1) | 5.0 (1.8–12.3) | 5.2 (1.5–10.8) | 0.73 |
Immunosuppressive therapy | |||||
Prednisolone use, n (%) | 653 (99) | 218 (99) | 218 (99) | 217 (99) | 1.00 |
Calcineurin inhibitor use, n (%) | 382 (58) | 124 (56) | 128 (58) | 130 (59) | 0.84 |
Proliferation inhibitor use, n (%) | 549 (83) | 181 (82) | 183 (83) | 185 (84) | 0.88 |
Acute rejection treatment, n (%) | 173 (26) | 59 (27) | 50 (23) | 64 (29) | 0.31 |
Cardiovascular history | |||||
Cardiovascular disease, n (%) | 158 (24) | 43 (20) | 51 (23) | 64 (29) | 0.06 |
Previous myocardial infarction, n (%) | 32 (5) | 7 (3) | 11 (5) | 14 (6) | 0.30 |
Previous cerebrovascular event, n (%) | 24 (4) | 8 (4) | 7 (3) | 9 (4) | 0.88 |
Previous vascular intervention, n (%) | 65 (10) | 17 (8) | 28 (13) | 20 (9)) | 0.19 |
Systolic blood pressure, mmHg | 136 ± 17 | 136 ± 16 | 138 ± 18 | 133 ± 17 | 0.02 |
Diastolic blood pressure, mmHg | 82 ± 11 | 83 ± 11 | 83 ± 12 | 81 ± 10 | 0.10 |
Antihypertensive use, n (%) | 580 (88) | 190 (86) | 195 (89) | 195 (89) | 0.70 |
Total cholesterol, mmol/L | 5.14 ± 1.14 | 4.89 ± 1.01 | 5.20 ± 1.20 | 5.33 ± 1.16 | <0.001 |
Low–density lipoprotein–cholesterol, mmol/L b | 2.99 ± 0.94 | 2.79 ± 0.86 | 3.07 ± 0.96 | 3.11 ± 0.98 | 0.001 |
High–densitylipoprotein–cholesterol, mmol/L b | 1.39 ± 0.48 | 1.33 ± 0.47 | 1.38 ± 0.43 | 1.45 ± 0.53 | 0.05 |
Triglycerides, mmol/L | 1.92 ± 1.02 | 1.85 ± 0.96 | 1.94 ± 1.11 | 1.98 ± 0.98 | 0.40 |
Statin use, n (%) | 351 (53) | 121 (55) | 121 (55) | 109 (50) | 0.42 |
Diabetes, n (%) | 156 (24) | 40 (18) | 47 (21) | 69 (31) | 0.003 |
Hemoglobin, mmol/L b | 8.16 (1.05) | 8.33 (1.03) | 8.22 (1.05) | 7.93 (1.03) | <0.001 |
Inflammation and oxidative stress | |||||
Leukocyte count, 109/L b | 7.70 (6.30–9.50) | 7.80 (6.45–9.30) | 7.50 (6.10–9.50) | 7.70 (6.10–9.70) | 0.85 |
High–sensitivity C–reactive protein, nmol/L f | 15.24 (7.43–43.81) | 6.66 (2.86–13.33) | 15.71 (8.57–29.71) | 43.81 (16.19–97.14) | <0.001 |
Plasma malondialdehyde, µmol/L g | 2.53 (1.91–3.78) | 2.57 (2.04–3.67) | 2.47 (1.84–4.05) | 2.55 (1.97–3.79) | 0.75 |
Lifestyle | |||||
Smoking behavior, n (%) h | 0.53 | ||||
Current | 78 (13) | 25 (12) | 32 (15) | 21 (10) | |
Previous | 285 (46) | 94 (45) | 90 (43) | 101 (49) | |
Never | 263 (42) | 89 (43) | 90 (43) | 84 (41) | |
Alcohol intake >30 g/day, n (%) i | 28 (5) | 8 (4) | 10 (5) | 10 (5) | 0.85 |
SQUASH score, minutes/week × intensity | 5070 (2040–8048) | 5610 (1800–7660) | 5520 (3145–8820) | 4380 (1432–6878) | 0.001 |
Cardiovascular Mortality | Plasma Copper Concentration (Ln, per 1-SD Increment) | ||
---|---|---|---|
HR | 95% CI | p | |
Crude | 1.37 | 1.07–1.77 | 0.01 |
Model 1 | 1.48 | 1.11–1.98 | 0.01 |
Model 2 | 1.47 | 1.10–1.95 | 0.01 |
Model 3 | 1.49 | 1.11–1.99 | 0.01 |
Model 4 | 1.40 | 1.05–1.88 | 0.03 |
Model 5 | 1.40 | 1.06–1.84 | 0.02 |
Model 6 | 1.06 | 0.73–1.54 | 0.75 |
Cardiovascular Mortality | Plasma Copper Concentration (Ln, Per 1-SD Increment) | ||
---|---|---|---|
HR | 95% CI | p | |
Crude | 2.09 | 1.42–3.07 | <0.001 |
Model 1 | 1.84 | 1.24–2.73 | 0.003 |
Model 2 | 1.75 | 1.16–2.61 | 0.01 |
Model 3 | 1.88 | 1.27–2.80 | 0.002 |
Model 4 | 1.72 | 1.16–2.55 | 0.01 |
Model 5 | 1.80 | 1.21–2.69 | 0.004 |
Model 6 | 1.55 | 1.01–2.37 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yepes-Calderón, M.; Kremer, D.; Post, A.; Sotomayor, C.G.; Seidel, U.; Huebbe, P.; Knobbe, T.J.; Lüersen, K.; Eisenga, M.F.; Corpeleijn, E.; et al. Plasma Copper Concentration Is Associated with Cardiovascular Mortality in Male Kidney Transplant Recipients. Antioxidants 2023, 12, 454. https://doi.org/10.3390/antiox12020454
Yepes-Calderón M, Kremer D, Post A, Sotomayor CG, Seidel U, Huebbe P, Knobbe TJ, Lüersen K, Eisenga MF, Corpeleijn E, et al. Plasma Copper Concentration Is Associated with Cardiovascular Mortality in Male Kidney Transplant Recipients. Antioxidants. 2023; 12(2):454. https://doi.org/10.3390/antiox12020454
Chicago/Turabian StyleYepes-Calderón, Manuela, Daan Kremer, Adrian Post, Camilo G. Sotomayor, Ulrike Seidel, Patricia Huebbe, Tim J. Knobbe, Kai Lüersen, Michele F. Eisenga, Eva Corpeleijn, and et al. 2023. "Plasma Copper Concentration Is Associated with Cardiovascular Mortality in Male Kidney Transplant Recipients" Antioxidants 12, no. 2: 454. https://doi.org/10.3390/antiox12020454
APA StyleYepes-Calderón, M., Kremer, D., Post, A., Sotomayor, C. G., Seidel, U., Huebbe, P., Knobbe, T. J., Lüersen, K., Eisenga, M. F., Corpeleijn, E., De Borst, M. H., Navis, G. J., Rimbach, G., & Bakker, S. J. L. (2023). Plasma Copper Concentration Is Associated with Cardiovascular Mortality in Male Kidney Transplant Recipients. Antioxidants, 12(2), 454. https://doi.org/10.3390/antiox12020454