The Effect of Different Storage Conditions on Phytochemical Composition, Shelf-Life, and Bioactive Compounds of Voghiera Garlic PDO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
- Fresh (only naturally dried).
- Stored at a refrigerated temperature (+4 °C) for 3 months (3 M +4 °C).
- Stored in a well-ventilated cold room (−3/−4 °C) for 3 months (3 M −4 °C).
- Stored in a well-ventilated cold room (−3/−4 °C) for 6 months (6 M −4 °C).
- Stored in a well-ventilated cold room (−3/−4 °C) for 3 months and another 3 months at a refrigerated temperature (+4 °C) (3 M −4 °C + 3 M +4 °C).
- Stored in a well-ventilated cold room (−3/−4 °C) for 9 months (9 M −4 °C).
2.2. Hydro-Alcoholic Extraction
2.3. Diethyl Ether Extraction
2.4. Organosulfur Compounds Identification and Quantification
2.5. Flavonoid Content
2.6. Total Condensed Tannins
2.7. Total Phenolic Content
2.8. DPPH Scavenging Assay
2.9. Cells and Treatments
2.10. Cell Cycle Analysis
2.11. Immunochemical Analysis
2.12. MTS Assay
2.13. H2DCFDA Assay
2.14. Nitric Oxide Assay
2.15. Statistical Analysis
3. Results and Discussion
3.1. Organosulfur Compounds
3.2. Antioxidant Compounds
3.3. Bioactive Effects—The Anti-Tumoral Effect of VGE on Breast Cancer Cells
3.4. Antioxidant Properties of VGE on RAW 264.7 Macrophage Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brandolini, V.; Tedeschi, P.; Cereti, E.; Maietti, A.; Barile, D.; Coïsson, J.D.; Mazzotta, D.; Arlorio, M.; Martelli, A. Chemical and Genomic Combined Approach Applied to the Characterization and Identification of Italian Allium sativum L. J. Agric. Food Chem. 2005, 53, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, D.A.; Nazareno, M.A.; Fusari, C.M.; Camargo, A.B. Cooked Garlic and Antioxidant Activity: Correlation with Organosulfur Compound Composition. Food Chem. 2017, 220, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Putnik, P.; Gabrić, D.; Roohinejad, S.; Barba, F.J.; Granato, D.; Mallikarjunan, K.; Lorenzo, J.M.; Bursać Kovačević, D. An Overview of Organosulfur Compounds from Allium Spp.: From Processing and Preservation to Evaluation of Their Bioavailability, Antimicrobial, and Anti-Inflammatory Properties. Food Chem. 2019, 276, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, P.; Nigro, M.; Travagli, A.; Catani, M.; Cavazzini, A.; Merighi, S.; Gessi, S. Therapeutic Potential of Allicin and Aged Garlic Extract in Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 6950. [Google Scholar] [CrossRef] [PubMed]
- Juan-García, A.; Agahi, F.; Drakonaki, M.; Tedeschi, P.; Font, G.; Juan, C. Cytoprotection Assessment against Mycotoxins on HepG2 Cells by Extracts from Allium sativum L. Food Chem. Toxicol. 2021, 151, 112129. [Google Scholar] [CrossRef]
- Tedeschi, P.; Leis, M.; Pezzi, M.; Civolani, S.; Maietti, A.; Brandolini, V. Insecticidal Activity and Fungitoxicity of Plant Extracts and Components of Horseradish (Armoracia rusticana) and Garlic (Allium sativum). J. Environ. Sci. Health Part B 2011, 46, 486–490. [Google Scholar] [CrossRef]
- Brugnoli, F.; Tedeschi, P.; Grassilli, S.; Maietti, A.; Brandolini, V.; Bertagnolo, V. Ethanol-Based Garlic Extract Prevents Malignant Evolution of Non-Invasive Breast Tumor Cells Induced by Moderate Hypoxia. Biomed. Pharmacother. 2021, 142, 112052. [Google Scholar] [CrossRef]
- Ansary, J.; Forbes-Hernández, T.Y.; Gil, E.; Cianciosi, D.; Zhang, J.; Elexpuru-Zabaleta, M.; Simal-Gandara, J.; Giampieri, F.; Battino, M. Potential Health Benefit of Garlic Based on Human Intervention Studies: A Brief Overview. Antioxidants 2020, 9, 619. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Ruan, J.; Zhuang, X.; Zhang, X.; Li, Z. Phytochemicals of Garlic: Promising Candidates for Cancer Therapy. Biomed. Pharmacother. 2020, 123, 109730. [Google Scholar] [CrossRef]
- Patiño-Morales, C.C.; Jaime-Cruz, R.; Sánchez-Gómez, C.; Corona, J.C.; Hernández-Cruz, E.Y.; Kalinova-Jelezova, I.; Pedraza-Chaverri, J.; Maldonado, P.D.; Silva-Islas, C.A.; Salazar-García, M. Antitumor Effects of Natural Compounds Derived from Allium sativum on Neuroblastoma: An Overview. Antioxidants 2021, 11, 48. [Google Scholar] [CrossRef]
- Nadeem, M.S.; Kazmi, I.; Ullah, I.; Muhammad, K.; Anwar, F. Allicin, an Antioxidant and Neuroprotective Agent, Ameliorates Cognitive Impairment. Antioxidants 2021, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Amagase, H.; Petesch, B.L.; Matsuura, H.; Kasuga, S.; Itakura, Y. Intake of Garlic and Its Bioactive Components. J. Nutr. 2001, 131, 955S–962S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, L.; Hunsaker, S. Allicin Bioavailability and Bioequivalence from Garlic Supplements and Garlic Foods. Nutrients 2018, 10, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locatelli, D.A.; Altamirano, J.C.; González, R.E.; Camargo, A.B. Home-Cooked Garlic Remains a Healthy Food. J. Funct. Foods 2015, 16, 1–8. [Google Scholar] [CrossRef]
- Lasalvia, A.; Cairone, F.; Cesa, S.; Maccelli, A.; Crestoni, M.E.; Menghini, L.; Carradori, S.; Marinacci, B.; Gallorini, M.; Elsallabi, O.; et al. Characterization and Valorization of ‘Sulmona Red Garlic’ Peels and Small Bulbs. Antioxidants 2022, 11, 2088. [Google Scholar] [CrossRef]
- Phan, A.; Netzel, G.; Chhim, P.; Netzel, M.; Sultanbawa, Y. Phytochemical Characteristics and Antimicrobial Activity of Australian Grown Garlic (Allium sativum L.) Cultivars. Foods 2019, 8, 358. [Google Scholar] [CrossRef] [Green Version]
- Fratianni, F.; Ombra, M.N.; Cozzolino, A.; Riccardi, R.; Spigno, P.; Tremonte, P.; Coppola, R.; Nazzaro, F. Phenolic Constituents, Antioxidant, Antimicrobial and Anti-Proliferative Activities of Different Endemic Italian Varieties of Garlic (Allium sativum L.). J. Funct. Foods 2016, 21, 240–248. [Google Scholar] [CrossRef]
- Santhosha, S.G.; Jamuna, P.; Prabhavathi, S.N. Bioactive Components of Garlic and Their Physiological Role in Health Maintenance: A Review. Food Biosci. 2013, 3, 59–74. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Bastaki, S.M.A.; Ojha, S.; Kalasz, H.; Adeghate, E. Chemical Constituents and Medicinal Properties of Allium Species. Mol. Cell. Biochem. 2021, 476, 4301–4321. [Google Scholar] [CrossRef]
- Bonasia, A.; Conversa, G.; Lazzizera, C.; Loizzo, P.; Gambacorta, G.; Elia, A. Evaluation of Garlic Landraces from Foggia Province (Puglia Region; Italy). Foods 2020, 9, 850. [Google Scholar] [CrossRef] [PubMed]
- Azzini, E.; Durazzo, A.; Foddai, M.S.; Temperini, O.; Venneria, E.; Valentini, S.; Maiani, G. Phytochemicals Content in Italian Garlic Bulb (Allium sativum L.) Varieties. J. Food Res. 2014, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical Composition and Bioactive Compounds of Garlic (Allium sativum L.) as Affected by Pre- and Post-Harvest Conditions: A Review. Food Chem. 2016, 211, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrovic, V.; Nepal, A.; Olaisen, C.; Bachke, S.; Hira, J.; Søgaard, C.; Røst, L.; Misund, K.; Andreassen, T.; Melø, T.; et al. Anti-Cancer Potential of Homemade Fresh Garlic Extract Is Related to Increased Endoplasmic Reticulum Stress. Nutrients 2018, 10, 450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertelli, D.; Maietti, A.; Papotti, G.; Tedeschi, P.; Bonetti, G.; Graziosi, R.; Brandolini, V.; Plessi, M. Antioxidant Activity, Phenolic Compounds, and NMR Characterization of Balsamic and Traditional Balsamic Vinegar of Modena. Food Anal. Methods 2015, 8, 371–379. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Fukumoto, L.R.; Mazza, G. Assessing Antioxidant and Prooxidant Activities of Phenolic Compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef]
- Volinia, S.; Bertagnolo, V.; Grassilli, S.; Brugnoli, F.; Manfrini, M.; Galasso, M.; Scatena, C.; Mazzanti, C.M.; Lessi, F.; Naccarato, G.; et al. Levels of MiR-126 and MiR-218 Are Elevated in Ductal Carcinoma in Situ (DCIS) and Inhibit Malignant Potential of DCIS Derived Cells. Oncotarget 2018, 9, 23543–23553. [Google Scholar] [CrossRef] [Green Version]
- Merighi, S.; Travagli, A.; Tedeschi, P.; Marchetti, N.; Gessi, S. Antioxidant and Antiinflammatory Effects of Epilobium Parviflorum, Melilotus Officinalis and Cardiospermum Halicacabum Plant Extracts in Macrophage and Microglial Cells. Cells 2021, 10, 2691. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Ntatsi, G.; Ferreira, I.C.F.R. Long-Term Storage of Onion and the Factors That Affect Its Quality: A Critical Review. Food Rev. Int. 2017, 33, 62–83. [Google Scholar] [CrossRef]
- Mondal, A.; Banerjee, S.; Bose, S.; Mazumder, S.; Haber, R.A.; Farzaei, M.H.; Bishayee, A. Garlic Constituents for Cancer Prevention and Therapy: From Phytochemistry to Novel Formulations. Pharmacol. Res. 2022, 175, 105837. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, M.; Ide, N.; Ono, K. Changes in Organosulfur Compounds in Garlic Cloves during Storage. J. Agric. Food Chem. 2006, 54, 4849–4854. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Shen, X.; Cheng, S.; Li, P.; Du, J.; Chang, Y.; Meng, H. Evaluation of Garlic Cultivars for Polyphenolic Content and Antioxidant Properties. PLoS ONE 2013, 8, e79730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eghdami, A.; Sohi, S.M.H.; Asli, D.E.; Houshmandfar, A. Antioxidant Activity of Methanolic and Hydroalcohlic Extracts of Garlic Plant. Adv. Environ. Biol 2011, 5, 1575–1578. [Google Scholar]
- Esmaeili, H.; Cheraghi, N.; Khanjari, A.; Rezaeigolestani, M.; Basti, A.A.; Kamkar, A.; Aghaee, E.M. Incorporation of Nanoencapsulated Garlic Essential Oil into Edible Films: A Novel Approach for Extending Shelf Life of Vacuum-Packed Sausages. Meat Sci. 2020, 166, 108135. [Google Scholar] [CrossRef]
- Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.P.; Dubey, N.K. Nanoencapsulation: An Efficient Technology to Boost the Antimicrobial Potential of Plant Essential Oils in Food System. Food Control 2018, 89, 1–11. [Google Scholar] [CrossRef]
- Leong, J.; Morel, P.C.H.; Purchas, R.W.; Wilkinson, B.H.P. The Production of Pork with Garlic Flavour Notes Using Garlic Essential Oil. Meat Sci. 2010, 84, 699–705. [Google Scholar] [CrossRef]
- Raeisi, S.; Ojagh, S.M.; Pourashouri, P.; Salaün, F.; Quek, S.Y. Shelf-Life and Quality of Chicken Nuggets Fortified with Encapsulated Fish Oil and Garlic Essential Oil during Refrigerated Storage. J. Food Sci. Technol. 2021, 58, 121–128. [Google Scholar] [CrossRef]
- Veríssimo, T.; Almeida, I.; Cidade, H.; Pinto, M.; Azevedo, S.; Oliveira, B.; Cunha, L.M. Evaluation of Antioxidant Activity of Minimally Processed Garlic Cloves. In Proceedings of the XXVIII International Horticultural Congress-IHC2010, Lisbon, Portugal, 22–27 August 2010; Proceeding Acta Horticulturae 916. pp. 77–178, ISBN 9789066053977. [Google Scholar]
- Fei, M.L.; Tong, L.; Wei, L.; De Yang, L. Changes in Antioxidant Capacity, Levels of Soluble Sugar, Total Polyphenol, Organosulfur Compound and Constituents in Garlic Clove during Storage. Ind. Crops Prod. 2015, 69, 137–142. [Google Scholar] [CrossRef]
- Madhu, B.; Mudgal, V.D.; Champawat, P.S. Storage of Garlic Bulbs (Allium sativum L.): A Review. J. Food Process Eng. 2019, 42, e13177. [Google Scholar] [CrossRef]
- Shang, A.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Tang, G.-Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive Compounds and Biological Functions of Garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Greef, D.; Barton, E.M.; Sandberg, E.N.; Croley, C.R.; Pumarol, J.; Wong, T.L.; Das, N.; Bishayee, A. Anticancer Potential of Garlic and Its Bioactive Constituents: A Systematic and Comprehensive Review. Semin. Cancer Biol. 2021, 73, 219–264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, N.; Lu, X.; Liu, P.; Qiao, X. Effects of Temperature on the Quality of Black Garlic: Quality of Black Garlic. J. Sci. Food Agric. 2016, 96, 2366–2372. [Google Scholar] [CrossRef] [PubMed]
Organosulfur Compounds | F (µg/g) | 3 M +4 °C (µg/g) | 3 M −4 °C (µg/g) | 6 M −4 °C (µg/g) | 3 M −4 °C + 3 M +4 °C (µg/g) | 9 M −4 °C (µg/g) | |
---|---|---|---|---|---|---|---|
1 | Disulfide, bis (2-methylpropyl) | 4.89 ± 0.10 | 2.63 ± 0.08 * | 2.60 ± 0.04 * | 1.65 ± 0.03 * | 2.46 ± 0.04 * | 2.94 ± 0.08 * |
2 | Diallyl sulfide | 9.73 ± 0.19 | 3.75 ± 0.11 * | 3.32 ± 0.05 * | 2.38 ± 0.05 * | 2.54 ± 0.04 * | 1.07 ± 0.03 * |
3 | 1,3-Dithiane | 18.09 ± 0.36 | 54.56 ± 1.64 * | 36.46 ± 0.55 * | 8.02 ± 0.16 * | 7.23 ± 0.12 * | 6.39 ± 0.17 * |
4 | Methyl-1-propenyl disulfide | 2.39 ± 0.05 | 19.33 ± 0.58 * | 10.85 ± 0.16 * | 1.41 ± 0.03 | 1.66 ± 0.03 | 1.17 ± 0.03 |
5 | Disulfide, di-tert-dodecyl | 111.27 ± 2.23 | 16.89 ± 0.51 * | 13.08 ± 0.20 * | 5.67 ± 0.11 * | 6.80 ± 0.12 * | 6.62 ± 0.17 * |
6 | Diallyl disulfide | 190.03 ± 3.09 | 216.85 ± 6.51 * | 196.68 ± 2.95 | 22.67 ± 0.45 * | 10.01 ± 0.17 * | 21.86 ± 0.57 * |
7 | Dipropenyl disulfide | 10.01 ± 0.20 | 116.33 ± 3.49 * | 89.10 ± 1.34 * | 9.86 ± 0.20 * | 0.28 ± 0.00 * | 11.80 ± 0.31 |
8 | Metoxymethyl isothiocyanate | 30.97 ± 0.62 | 23.41 ± 0.70 * | 16.86 ± 0.25 * | 7.51 ± 0.15 * | 7.66 ± 0.13 * | 5.63 ± 0.15 * |
9 | Allyl methyl trisulfide | 14.62 ± 0.29 | 33.80 ± 1.01 * | 24.28 ± 0.35 * | 3.76 ± 0.08 * | 4.80 ± 0.08 * | 4.18 ± 0.11 * |
10 | Isomer of Diallyl disulfide (1-propenyl allyl disulfide) | 11.268 ± 1.25 | 1.57 ± 0.05 * | 2.70 ± 0.04 * | 3.73 ± 0.07 * | 3.47 ± 0.06 * | 0.56 ± 0.01 * |
11 | Isomer of Diallyl disulfide (1-propenyl allyl disulfide) | 5.11 ± 0.10 | 4.22 ± 0.13 * | 2.22 ± 0.03 * | 2.39 ± 0.05 * | 3.22 ± 0.05 * | 0.94 ± 0.02 * |
12 | 3-vinyl-1,2-dithiacyclohex-4 ene | 455.78 ± 9.12 | 632.31 ± 18.97 * | 539.51 ± 8.09 * | 130.46 ± 2.61 * | 139.71 ± 2.38 * | 86.69 ± 2.25 * |
13 | di-2 propenyl trisulfide | 40.59 ± 0.81 | 74.57 ± 2.24 * | 52.89 ± 0.79 * | 11.65 ± 0.23 * | 15.62 ± 0.27 * | 7.93 ± 0.21 * |
14 | 3-vinyl-1,2-dithiacyclohex-5 ene | 1342.27 ± 26.85 | 1890.63 ± 56.72 * | 1566.05 ± 23.49 * | 296.06 ± 5.92 * | 317.52 ± 5.40 * | 167.63 ± 4.36 * |
Sulfur compounds | 2380 ± 47.60 | 3114.52 ± 93.44 * | 2556.60 ± 38.35 | 507.22 ± 10.14 * | 522.97 ± 8.89 * | 325.42 ± 8.46 * |
Organosulfur Compounds | F (µg/g) | 3 M +4 °C (µg/g) | 3 M −4 °C (µg/g) | 6 M −4 °C (µg/g) | 3 M −4 °C + 3 M +4 °C (µg/g) | 9 M −4 °C (µg/g) | |
---|---|---|---|---|---|---|---|
1 | Disulfide, bis (2-methylpropyl) | 7.44 ± 0.17 | 4.69 ± 0.09 * | 5.10 ± 0.11 * | 2.22 ± 0.05 * | 1.45 ± 0.03 * | 3.42 ± 0.07 * |
2 | Diallyl sulfide | 9.91 ± 0.23 | 6.23 ± 0.12 * | 6.08 ± 0.13 * | 2.32 ± 0.05 * | 1.14 ± 0.02 * | 2.69 ± 0.06 * |
3 | 1,3-Dithiane | 80.61 ± 1.85 | 16.56 ± 0.34 * | 12.27 ± 0.26 * | 40.38 ± 0.89 * | 7.88 ± 0.16 * | 38.45 ± 0.82 * |
4 | Methyl-1-propenyl disulfide | 24.55 ± 0.56 | 2.88 ± 0.08 * | 2.98 ± 0.06 * | 18.48 ± 0.41 * | 2.71 ± 0.05 * | 14.40 ± 0.31 * |
5 | Disulfide, di-tert-dodecyl | 358.03 ± 8.23 | 12.49 ± 0.21 * | 13.43 ± 0.28 * | 14.56 ± 0.32 * | 5.44 ± 0.11 * | 16.04 ± 0.34 * |
6 | Diallyl disulfide | 290.03 ± 6.67 | 35.51 ± 0.69 * | 37.67 ± 0.79 * | 141.09 ± 3.10 * | 47.56 ± 0.95 * | 123.95 ± 2.65 * |
7 | Dipropenyl disulfide | 105.60 ± 2.43 | 16.26 ± 0.32 * | 17.90 ± 0.38 * | 93.63 ± 2.06 * | 28.21 ± 0.56 * | 80.02 ± 1.71 |
8 | Metoxymethyl isothiocyanate | 56.37 ± 1.30 | 19.63 ± 0.38 * | 13.31 ± 0.28 * | 13.24 ± 0.29 * | 7.86 ± 0.16 * | 19.57 ± 0.42 * |
9 | Allyl methyl trisulfide | 85.64 ± 1.97 | 17.56 ± 0.34 * | 17.28 ± 0.36 * | 33.89 ± 0.75 * | 2.57 ± 0.05 * | 22.91 ± 0.49 * |
10 | Isomer of Diallyl disulfide (1-propenyl allyl disulfide) | 3.35 ± 0.08 | 4.32 ± 0.08 * | 4.49 ± 0.09 * | 36.32 ± 0.80 * | 18.44 ± 0.37 * | 1.49 ± 0.03 * |
11 | Isomer of Diallyl disulfide (1-propenyl allyl disulfide) | 24.31 ± 0.56 | 1.54 ± 0.03 * | 5.26 ± 0.11 * | 2.60 ± 0.06 * | 0.54 ± 0.01 * | 2.12 ± 0.05 * |
12 | 3-vinyl-1,2-dithiacyclohex-4 ene | 1157.95 ± 26.36 | 465.26 ± 9.07 * | 446.20 ± 9.37 * | 430.46 ± 9.47 * | 458.25 ± 9.16 * | 427.19 ± 9.14 * |
13 | di-2 propenyl trisulfide | 142.53 ± 3.28 | 59.14 ± 1.15 * | 53.10 ± 1.12 * | 67.67 ± 1.49 * | 10.97 ± 0.22 * | 42.88 ± 0.92 * |
14 | 3-vinyl-1,2-dithiacyclohex-5 ene | 3747.55 ± 86.19 | 1741.02 ± 33.95 * | 1664.09 ± 34.95 * | 1293.59 ± 28.46 * | 1638.87 ± 32.78 * | 1187.99 ± 25.42 * |
Sulfur compounds | 6093.87 ± 140.16 | 3114.52 ± 93.44 * | 2299.15 ± 48.28 * | 2190.56 ± 48.19 * | 2231.87 ± 44.64 * | 1983.12 ± 42.44 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tedeschi, P.; Brugnoli, F.; Merighi, S.; Grassilli, S.; Nigro, M.; Catani, M.; Gessi, S.; Bertagnolo, V.; Travagli, A.; Caboni, M.F.; et al. The Effect of Different Storage Conditions on Phytochemical Composition, Shelf-Life, and Bioactive Compounds of Voghiera Garlic PDO. Antioxidants 2023, 12, 499. https://doi.org/10.3390/antiox12020499
Tedeschi P, Brugnoli F, Merighi S, Grassilli S, Nigro M, Catani M, Gessi S, Bertagnolo V, Travagli A, Caboni MF, et al. The Effect of Different Storage Conditions on Phytochemical Composition, Shelf-Life, and Bioactive Compounds of Voghiera Garlic PDO. Antioxidants. 2023; 12(2):499. https://doi.org/10.3390/antiox12020499
Chicago/Turabian StyleTedeschi, Paola, Federica Brugnoli, Stefania Merighi, Silvia Grassilli, Manuela Nigro, Martina Catani, Stefania Gessi, Valeria Bertagnolo, Alessia Travagli, Maria Fiorenza Caboni, and et al. 2023. "The Effect of Different Storage Conditions on Phytochemical Composition, Shelf-Life, and Bioactive Compounds of Voghiera Garlic PDO" Antioxidants 12, no. 2: 499. https://doi.org/10.3390/antiox12020499
APA StyleTedeschi, P., Brugnoli, F., Merighi, S., Grassilli, S., Nigro, M., Catani, M., Gessi, S., Bertagnolo, V., Travagli, A., Caboni, M. F., & Cavazzini, A. (2023). The Effect of Different Storage Conditions on Phytochemical Composition, Shelf-Life, and Bioactive Compounds of Voghiera Garlic PDO. Antioxidants, 12(2), 499. https://doi.org/10.3390/antiox12020499