Oxidation of Aldehydes Used as Food Additives by Peroxynitrite
Abstract
:1. Introduction
- The main pathway to produce nitric oxide is through nitric oxide synthase in uncured meats. This enzyme reduces its activity due to low pH, low-temperature storage, salting, and/or thermal processing operations typical for muscle foods.
- Postmortem calcium loss can stimulate nitric oxide synthase activity, increasing nitric oxide formation and creating favorable conditions for peroxynitrite production.
2. Materials and Methods
2.1. Reagents
2.1.1. Peroxynitrite Synthesis
- Synthesis of 2-ethoxyethylnitrite: 2.78 mL of sulfuric acid 2M are added dropwise to a 12 mL of ethoxyethanol 2.5 M solution with 40 gr sodium nitrite at 0 °C. The reaction finishes when no more nitrogen oxides are released. After an hour, the alkyl nitrite phase is refrigerated in an opaque container with 2 mm molecular sieves.
- Synthesis of peroxynitrite anion: Once peroxynitrite is prepared by mixing 0.2 mL of 2-ethoxyethylnitrite (precursor) with 15 mL of hydrogen peroxide 0.109 M and 15 mL of sodium hydroxide 2 M in 70 mL of H2O. The resulting anion must be stored at −18 °C. The peroxynitrite concentration is determined daily by spectrophotometry at 302 nm.
2.1.2. Other Reagents
2.2. Procedure and Measurements
2.3. Kinetic Analysis
- Product interference;
- Self-decomposition of reactants;
- Inhibition or autocatalysis effects;
- Presence of competitive reactions.
3. Results
3.1. Influence of Substrate and Oxidant Concentrations on the Reaction Rate
3.2. Influence of Peroxynitrite Concentration on the Initial Reaction Rate
3.3. Influence of pH on the Initial Reaction Rate
3.4. Influence of the Ionic Strength on the Initial Reaction Rate
3.5. Influence of Temperature on the Initial Reaction Rate
3.6. Product Determination
4. Discussion
- Firstly, the oxidation of the substrate by the radicals formed from peroxynitrite decomposition (11), (12), and (13).
- The second is the direct oxidation of the aldehyde by the peroxynitrite anion (14).
- The third is the nucleophilic attack of peroxynitrous acid on benzaldehyde to form an X species that can form benzoic acid and benzyl alcohol (a Cannizaro-type reaction).
- –
- The first one is the oxidation of the substrate by the radicals formed by peroxynitrite decomposition (11), (12), and (13) from the mechanism. As [·OH] = [·NO2] and presents a similar reactivity, the equation can be written as follows:
- –
- The second one is the direct oxidation of the aldehyde by the peroxynitrite anion (14) from the mechanism, which is described in the theoretical rate equation as follows:
- –
- The third one is the nucleophilic attack of peroxynitrous acid over de-protonated aldehyde that increases carbonyl carbon’s electrophilicity to form X. X can decompose or can react through a Cannizzaro-type. Thus, it can be written as:
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, J.-B.; Lim, S.-H.; Sim, H.-S.; Park, J.-H.; Kwon, H.-J.; Nam, H.S.; Kim, M.-D.; Baek, H.-H.; Ha, S.-J. Changes in antioxidant activities and volatile compounds of mixed berry juice through fermentation by lactic acid bacteria. Food Sci. Biotechnol. 2017, 26, 441–446. [Google Scholar] [CrossRef]
- Ullah, I.; Khan, A.L.; Ali, L.; Khan, A.R.; Waqas, M.; Hussain, J.; Lee, I.-J.; Shin, J.-H. Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021. J. Microbiol. 2015, 53, 127–133. [Google Scholar] [CrossRef]
- Ferysiuk, K.; Wójciak, K.M. The Possibility of Reduction of Synthetic Preservative E 250 in Canned Pork. Foods 2020, 9, 1869. [Google Scholar] [CrossRef]
- Ou, B.; Bosak, K.N.; Brickner, P.R.; Iezzoni, D.G.; Seymour, E.M. Processed Tart Cherry Products—Comparative Phytochemical Content, in vitro Antioxidant Capacity and in vitro Anti-inflammatory Activity. J. Food Sci. 2012, 77, H105–H112. [Google Scholar] [CrossRef]
- Rothe, M. Volatile Compounds in Foods and Beverages. Herausgegeben von H. Maarse. 764 Seiten, zahlr. Abb. und Tab. Marcel Dekker, Inc., New York, Basel, Hong Kong 1991. Preis 172.50$. Food/Nahr. 1991, 35, 1080. [Google Scholar] [CrossRef]
- Krings, U.; Berger, R.G. Biotechnological production of flavours and fragrances. Appl. Microbiol. Biotechnol. 1998, 49, 1–8. [Google Scholar] [CrossRef]
- 1999/217/EC: Commission Decision of 23 February 1999 Adopting a Register of Flavouring Substances Used in or on Foodstuffs Drawn up in Application of Regulation (EC) No 2232/96 of the European Parliament and of the Council of 28 October 1996. Available online: http://data.europa.eu/eli/dec/1999/217/oj (accessed on 29 January 2023).
- World Health Organization. World Health Organization Model List of Essential Medicines: 21st List; World Health Organization: Geneva, Italy, 2019. [Google Scholar]
- Gutiérrez-Salinas, J.; Mondragón-Terán, P.; García-Ortíz, L.; Hernández-Rodríguez, S.; Ramírez-García, S.; Núñez-Ramos, N.R. Breve descripción de los mecanismos moleculares de daño celular provocado por los radicales libres derivados de oxígeno y nitrógeno. Rev. Espec. Médico-Quirúrgicas 2014, 19, 446–454. [Google Scholar]
- Tamir, S.; Burney, S.; Tannenbaum, S.R. DNA Damage by Nitric Oxide. Chem. Res. Toxicol. 1996, 9, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Devasagayam, T.P.A.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Phys. India 2004, 52, 794–804. [Google Scholar]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Brannan, R.G.; Connolly, B.J.; Decker, E. Peroxynitrite: A potential initiator of lipid oxidation in food. Trends Food Sci. Technol. 2001, 12, 164–173. [Google Scholar] [CrossRef]
- Velasco, J.; Dobarganes, C.; Márquez-Ruiz, G. Oxidative rancidity in foods and food quality. In Chemical Deterioration and Physical Instability of Food and Beverages; Woodhead Publishing Limited: Sawston, UK, 2010; pp. 3–32. [Google Scholar] [CrossRef]
- Goldstein, S.; Czapski, G. The reaction of NO· with O2·− and HO2·−: A pulse radiolysis study. Free Radic. Biol. Med. 1995, 19, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Radi, R.; Beckman, J.S.; Bush, K.M.; Freeman, B.A. Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 1991, 288, 481–487. [Google Scholar] [CrossRef]
- Molina, C.; Kissner, R.; Koppenol, W.H. Decomposition kinetics of peroxynitrite: Influence of pH and buffer. Dalton Trans. 2013, 42, 9898–9905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras, R.; Galván, M.; Oliva, M.; Safont, V.S.; Andrés, J.; Guerra, D.; Aizman, A. Two state reactivity mechanism for the rearrangement of hydrogen peroxynitrite to nitric acid. Chem. Phys. Lett. 2008, 457, 216–221. [Google Scholar] [CrossRef]
- Berski, S.; Latajka, Z.; Gordon, A.J. Electron localization function and electron localizability indicator applied to study the bonding in the peroxynitrous acid HOONO. J. Comput. Chem. 2011, 32, 1528–1540. [Google Scholar] [CrossRef] [PubMed]
- Grubb, M.P.; Warter, M.L.; Xiao, H.; Maeda, S.; Morokuma, K.; North, S.W. No Straight Path: Roaming in Both Ground- and Excited-State Photolytic Channels of NO3 → NO + O2. Science 2012, 335, 1075–1078. [Google Scholar] [CrossRef]
- Nalwaya, N.; Deen, W.M. Analysis of Cellular Exposure to Peroxynitrite in Suspension Cultures. Chem. Res. Toxicol. 2003, 16, 920–932. [Google Scholar] [CrossRef]
- Shacka, J.J.; Garner, M.A.; Gonzalez, J.D.; Ye, Y.-Z.; D’Alessandro, T.L.; Estévez, A.G. Two distinct signaling pathways regulate peroxynitrite-induced apoptosis in PC12 cells. Cell Death Differ. 2006, 13, 1506–1514. [Google Scholar] [CrossRef] [Green Version]
- Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. USA 2018, 115, 5839–5848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients, 6th ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Uppu, R.M.; Winston, G.W.; Pryor, W.A. Reactions of Peroxynitrite with Aldehydes as Probes for the Reactive Intermediates Responsible for Biological Nitration. Chem. Res. Toxicol. 1997, 10, 1331–1337. [Google Scholar] [CrossRef]
- Knudsen, F.S.; Penatti, C.A.A.; Royer, L.O.; Bidart, K.A.; Christoff, M.; Ouchi, D.; Bechara, E.J.H. Chemiluminescent Aldehyde and β-Diketone Reactions Promoted by Peroxynitrite. Chem. Res. Toxicol. 2000, 13, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Ischiropoulos, H.; Nelson, J.; Duran, D.; Al-Mehdi, A. Reactions of nitric oxide and peroxynitrite with organic molecules and ferrihorseradish peroxidase: Interference with the determination of hydrogen peroxide. Free Radic. Biol. Med. 1996, 20, 373–381. [Google Scholar] [CrossRef]
- Nakao, L.; Ouchi, D.; Augusto, O. Oxidation of Acetaldehyde by Peroxynitrite and Hydrogen Peroxide/Iron(II). Production of Acetate, Formate, and Methyl Radicals. Chem. Res. Toxicol. 1999, 12, 1010–1018. [Google Scholar] [CrossRef]
- Leis, J.R.; Pena, M.E.; Ríos, A. A novel route to peroxynitrite anion. Chem. Commun. 1993, 1298–1299. [Google Scholar] [CrossRef]
- Fernandez, S.L. Técnicas de ajuste de las curvas de concentración en cinética química. Tend. Docencia Investig. Química. 2016, 1, 323–329. Available online: http://hdl.handle.net/11191/5146 (accessed on 15 March 2023).
- Laidler, K.J. Chemical Kinetics, 3rd ed.; Pearson: Chennai, India, 2003. [Google Scholar]
- Skoog, D.A. Fundamentals of Analytical Chemistry, 10th ed.; Cengage Learning: London, UK, 2021. [Google Scholar]
- Shrestha, K.P.; Giri, B.R.; Adil, M.; Seidel, L.; Zeuch, T.; Farooq, A.; Mauss, F. Detailed Chemical Kinetic Study of Acetaldehyde Oxidation and Its Interaction with NOx. Energy Fuels 2021, 35, 14963–14983. [Google Scholar] [CrossRef]
- Ingold, K.U. Inhibition of the Autoxidation of Organic Substances in the Liquid Phase. Chem. Rev. 1961, 61, 563–589. [Google Scholar] [CrossRef]
- Ritchie, C.D.; Sager, W.F. An Examination of Structure-Reactivity Relationships. Prog. Phys. Org. Chem. 1964, 2, 323–400. [Google Scholar] [CrossRef]
- Hammett, L.P. The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives. J. Am. Chem. Soc. 1937, 59, 96–103. [Google Scholar] [CrossRef]
- Pryor, W.A.; Squadrito, G.L. The chemistry of peroxynitrite: A product from the reaction of nitric oxide with superoxide. Am. J. Physiol. Lung Cell. Mol. Physiol. 1995, 268, L699–L722. [Google Scholar] [CrossRef] [PubMed]
- Yates, K.; Stewart, R. Protonation of the carbonyl group: II. the basicities of substituted benzaldehydes. Can. J. Chem. 1959, 37, 664–671. [Google Scholar] [CrossRef] [Green Version]
Conditions | Benzaldehydes | Peroxynitrite | pH | Na2SO4 | T |
---|---|---|---|---|---|
Range | (1.00–8.00) × 10−5 M | (4.00–20.00) × 10−5 M | 2–12 | 0.1 M | 25 °C |
Reagent | λ (nm) | ξ (M−1 cm−1) |
---|---|---|
Peroxynitrite (HOONO/ONOO−) | 302 | 1682 ± 11 |
Benzaldehyde (BZH) | 250 | 12,526 ± 128 |
4-Hidroxybenzaldehyde (pHBZH) | 285 | 15,762 ± 67 |
4-Methylbenzaldehyde (pMeBZH) | 280 | 12,648 ± 118 |
4-Metoxybenzaldehyde (pMoxBZH) | 282 | 20,490 ± 187 |
4-Nitrobenzaldehyde (pNBZH) | 270 | 12,771 ± 55 |
4-TrifluoroBenzaldehyde (pTFBZH) | 240 | 11,482 ± 119 |
Temperature (K) | 283 | 288 | 293 | 298 | 303 |
v0 × 106 (M·s−1) | 0.82 ± 0.02 | 1.52 ± 0.02 | 2.41 ± 0.02 | 3.82 ± 0.02 | 5.27 ± 0.02 |
pH = 2 | pH = 11.2 | |
---|---|---|
Radicals | 35% | 3% |
Oxidation | - | 97% |
Nucleophilic attack (Cannizzaro) | 65% | - |
Aldehyde | k4 × 10−3 (M−1s−1) | k5 (M−1s−1) | k6 × 10+14 (s−1) | σ |
---|---|---|---|---|
BZH | 24.37 ± 1.21 | 14.29 ± 0.71 | 1.06 ± 0.05 | 0.00 |
pHBZH | 1861.42 ± 93.07 | 6298.23 ± 314.91 | 2,300,000 ± 115,000 | −0.92 |
pMeBZH | 44.86 ± 2.24 | 75.14 ± 3.75 | 172 ± 8.6 | −0.17 |
pMoxBZH | 69.53 ± 3.47 | 340.31 ± 17.01 | 5450 ± 272.5 | −0.27 |
pNBZH | 0.20 ± 0.01 | 0.56 ± 0.02 | 0.01 ± 0.0005 | 0.78 |
pTFBZH | 0.82 ± 0.04 | 1.69 ± 0.08 | 0.05 ± 0.002 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcolado, C.I.; Garcia-Rio, L.; Mejuto, J.C.; Moreno, I.; Poblete, F.J.; Tejeda, J. Oxidation of Aldehydes Used as Food Additives by Peroxynitrite. Antioxidants 2023, 12, 743. https://doi.org/10.3390/antiox12030743
Alcolado CI, Garcia-Rio L, Mejuto JC, Moreno I, Poblete FJ, Tejeda J. Oxidation of Aldehydes Used as Food Additives by Peroxynitrite. Antioxidants. 2023; 12(3):743. https://doi.org/10.3390/antiox12030743
Chicago/Turabian StyleAlcolado, Clara I., Luis Garcia-Rio, Juan C. Mejuto, Inmaculada Moreno, Francisco J. Poblete, and Juan Tejeda. 2023. "Oxidation of Aldehydes Used as Food Additives by Peroxynitrite" Antioxidants 12, no. 3: 743. https://doi.org/10.3390/antiox12030743
APA StyleAlcolado, C. I., Garcia-Rio, L., Mejuto, J. C., Moreno, I., Poblete, F. J., & Tejeda, J. (2023). Oxidation of Aldehydes Used as Food Additives by Peroxynitrite. Antioxidants, 12(3), 743. https://doi.org/10.3390/antiox12030743