Effective Improvement of the Oxidative Stability of Acer truncatum Bunge Seed Oil, a New Woody Oil Food Resource, by Rosemary Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fatty Acid Composition Analysis of Aoil
2.3. Rosemary Crude Extract (RCE) Preparation
2.4. RA and CA Preparation
2.5. Determination of the Antioxidant Activity (AC)
2.6. Preparation of Aoil Enriched with Antioxidants
2.7. Enrichment of Aoil with Lecithin-CA
2.8. Accelerated Oxidation Assays
2.9. Determination of Malondialdehyde (MDA) Value and Free Fatty Acid (FFA) Value
2.10. Cryo-Scanning Electron Microscopy (Cryo-SEM) Analysis of the Oil Samples Microstructure
2.11. Viscosity and Weight Change of the Oil Samples Analysis
2.12. Analysis of Oil Volatile Lipid Oxidation Products by GC–MS
2.13. Nuclear Magnetic Resonance (NMR) Analysis of Oxidized Oil for Functional Group
2.14. Statistical Analyses
3. Results
3.1. Fatty Acid Composition
3.2. Analysis of the Composition of RCE and the Purity of RA, CA
3.3. The Antioxidant Properties of RCE, RA, and CA In Vitro and in Aoil
3.4. The Physical Characteristic of the Aoil Enriched with Antioxidants
3.5. Volatile Lipid Oxidation Products in Aoil Enriched with Different Antioxidants
3.6. Quantitative Evaluation of Aoil Enriched with Antioxidants by High Resolution Proton-NMR Spectroscopy (1H-NMR)
3.7. Improvement of the Oxidative Stability of Aoil by Enrichment with Lecithin-CA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, Q.; Sun, T.; Li, S.; Wen, J.; Zhu, L.; Yin, T.; Yan, K.; Xu, X.; Li, S.; Mao, J.; et al. The Acer truncatum genome provides insights into nervonic acid biosynthesis. Plant J. 2020, 104, 662–678. [Google Scholar] [CrossRef]
- Chen, D.J.; Yan, L.H.; Li, Q.; Zhang, C.J.; Si, C.L.; Li, Z.Y.; Song, Y.J.; Zhou, H.; Zhang, T.C.; Luo, X.G. Bioconversion of conjugated linoleic acid by Lactobacillus plantarum CGMCC8198 supplemented with Acer truncatum bunge seeds oil. Food Sci. Biotechnol. 2017, 26, 1595–1611. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, Y.; Zhu, L.; Bi, C.; Li, S.; Li, S.; Wen, J.; Yan, K.; Li, Q. Characterization of the complete chloroplast genome of Acer truncatum Bunge (Sapindales: Aceraceae): A new woody oil tree species producing nervonic acid. BioMed Res. Int. 2019, 2019, 7417239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, W.; Jin, F.; Shu, W.; Sun, R.C. A new resource of nervonic acid from purpleblow maple (Acer truncatum) seed oil. Forest Prod. J. 2006, 56, 147–150. [Google Scholar] [CrossRef]
- Chivandi, E.; Davidson, B.C.; Erlwanger, K.H. A comparison of the lipid and fatty acid profiles from the kernels of the fruit (nuts) of Ximenia caffra and Ricinodendron rautanenii from zimbabwe. Ind. Crop. Prod. 2008, 27, 29–32. [Google Scholar] [CrossRef]
- Li, Q.; Chen, J.; Yu, X.; Gao, J.M. A mini review of nervonic acid: Source, production, and biological functions. Food Chem. 2019, 301, 125286. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhang, L.; Li, P.; Yu, L.; Mao, J.; Wang, X.; Zhang, Q. A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends Food Sci. Technol. 2018, 74, 26–32. [Google Scholar] [CrossRef]
- Karami, H.; Rasekh, M.; Mirzaee-Ghaleh, E. Qualitative analysis of edible oil oxidation using an olfactory machine. J. Food Meas. Charact. 2020, 14, 2600–2610. [Google Scholar] [CrossRef]
- Corsinovi, L.; Biasi, F.; Poli, G.; Leonarduzzi, G.; Isaia, G. Dietary lipids and their oxidized products in Alzheimer’s disease. Mol. Nutri. Food Res. 2011, 55, S161–S172. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Rabiej, D.; Kyselka, J.; Dragoun, M.; Filip, V. Antioxidative effect of phenolic acids octyl esters on rapeseed oil stability. LWT-Food Sci. Technol. 2018, 96, 193–198. [Google Scholar] [CrossRef]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review. Medicines 2018, 5, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, J.; Cheung, S.; Wu, M.; Hasman, D. Antiproliferation effect of rosemary (Rosmarinus officinalis) on human ovarian cancer cells in vitro. Phytomedicine 2012, 19, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Rho, S.J.; Kim, Y.R. Enhancing antioxidant and antimicrobial activity of carnosic acid in rosemary (Rosmarinus officinalis L.) extract by complexation with cyclic glucans. Food Chem. 2019, 299, 125119. [Google Scholar] [CrossRef] [PubMed]
- Huber, G.M.; Rupasinghe, H.V.; Shahidi, F. Inhibition of oxidation of omega-3 polyunsaturated fatty acids and fish oil by quercetin glycosides. Food Chem. 2009, 117, 290–295. [Google Scholar] [CrossRef]
- Zhou, L.; Elias, R.J. Antioxidant and pro-oxidant activity of (-)-epigallocatechin-3-gallate in food emulsions: Influence of pH and phenolic concentration. Food Chem. 2013, 138, 1503–1509. [Google Scholar] [CrossRef]
- Luis, J.; Johnson, C. Seasonal variations of rosmarinic and carnosic acids in rosemary extracts. Analysis of their in vitro antiradical activity. Span. J. Agric. Res. 2005, 3, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Erkan, N.; Ayranci, G.; Ayranci, E. A kinetic study of oxidation development in sunflower oil under microwave heating: Effect of natural antioxidants. Food Res. Int. 2009, 42, 1171–1177. [Google Scholar] [CrossRef]
- Ercan, P.; El, S.N. Bioaccessibility and inhibitory effects on digestive enzymes of carnosic acid in sage and rosemary. Int. J. Biol. Macromol. 2018, 115, 933–939. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Babazadeh, A.; Hamishehkar, H. Nano-phytosome as a potential food-grade delivery system. Food Biosci. 2016, 15, 126–135. [Google Scholar] [CrossRef]
- Nikoo, M.; Regenstein, J.M.; Ahmadi Gavlighi, H. Antioxidant and antimicrobial activities of (-)-epigallocatechin-3-gallate (EGCG) and its potential to preserve the quality and safety of foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 732–753. [Google Scholar] [CrossRef] [Green Version]
- Devi, A.; Khatkar, B. Effects of fatty acids composition and microstructure properties of fats and oils on textural properties of dough and cookie quality. J. Food Sci. Technol. 2018, 55, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Guo, Y.; Vriesekoop, F.; Yuan, Q.; Zhao, S.; Liang, H. Improving oxidative stability of peanut oil under microwave treatment and deep fat frying by stearic acid–surfacant–tea polyphenols complex. Eur. J. Lipid Sci. Technol. 2015, 117, 1008–1015. [Google Scholar] [CrossRef]
- Maleki, M.; Ariaii, P.; Fallah, H. Effects of celery extracts on the oxidative stability of canola oil under thermal condition. J. Food Process. Pres. 2016, 40, 531–540. [Google Scholar] [CrossRef]
- Li, Y.; Pan, L.; Zhang, Y. Effects of combination of natural antioxidants on oxidative stability and sensory characteristics of flaxseed oil. China Oils Fats 2018, 43, 118–123. [Google Scholar] [CrossRef]
- Chen, P.; Sun, D.; Zheng, X.M. Preparation, structure and antioxidant activity of EGCG palmitate. J. Zhejiang Univ. Sci. Ed. 2003, 30, 422–425. [Google Scholar] [CrossRef]
- Li, X. 2-Phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO•) radical scavenging: A new and simple antioxidant assay in vitro. J. Agr. Food Chem. 2017, 65, 6288–6297. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- López-Froilán, R.; Hernández-Ledesma, B.; Cámara, M.; Pérez-Rodríguez, M.L. Evaluation of the antioxidant potential of mixed fruit-based beverages: A new insight on the folin-ciocalteu method. Food Anal. Methods 2018, 11, 2897–2906. [Google Scholar] [CrossRef]
- del Pilar Garcia-Mendoza, M.; Espinosa-Pardo, F.A.; Savoire, R.; Harscoat-Schiavo, C.; Cansell, M.; Subra-Paternault, P. Improvement of the oxidative stability of camelina oil by enrichment with phospholipid-quercetin formulations. Food Chem. 2021, 341, 128234. [Google Scholar] [CrossRef]
- Wang, R.; Yuan, J.; Zhang, C.; Wang, L.; Liu, Y.; Song, L.; Zhong, W.; Chen, X.; Dong, J. Neuropeptide Y-positive neurons in the dorsomedial hypothalamus are involved in the anorexic effect of Angptl8. Front. Mol. Neurosci. 2018, 11, 451. [Google Scholar] [CrossRef]
- Nishino, Y.; Miyazaki, K.; Kaise, M.; Miyazawa, A. Fine cryo-SEM observation of the microstructure of emulsions frozen via high-pressure freezing. Microscopy-JPN 2022, 71, 60–65. [Google Scholar] [CrossRef]
- Yin, H.; Sathivel, S. Physical properties and oxidation rates of unrefined menhaden oil (Brevoortia patronus). J. Food Sci. 2010, 75, E163–E168. [Google Scholar] [CrossRef]
- Van Aardt, M.; Duncan, S.E.; Long, T.E.; O’Keefe, S.F.; Marcy, J.E.; Sims, S.R. Effect of antioxidants on oxidative stability of edible fats and oils: Thermogravimetric analysis. J. Agric. Food Chem. 2004, 52, 587–591. [Google Scholar] [CrossRef]
- Łyczko, J.; Jałoszyński, K.; Surma, M.; Masztalerz, K.; Szumny, A. HS-SPME analysis of true lavender (Lavandula angustifolia Mill.) leaves treated by various drying methods. Molecules 2019, 24, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, H.S.; Winkler-Moser, J.K.; Liu, S.X. Reliability of 1H NMR analysis for assessment of lipid oxidation at frying temperatures. J. Am. Oil Chem. Soc. 2017, 94, 257–270. [Google Scholar] [CrossRef]
- Tyl, C.E.; Brecker, L.; Wagner, K.H. 1H NMR spectroscopy as tool to follow changes in the fatty acids of fish oils. Eur. J. Lipid Sci. Technol. 2008, 110, 141–148. [Google Scholar] [CrossRef]
- Delfanian, M.; Esmaeilzadeh Kenari, R.; Sahari, M.A. Influence of extraction techniques on antioxidant properties and bioactive compounds of loquat fruit (Eriobotrya japonica Lindl.) skin and pulp extracts. Food Sci. Nutr. 2015, 3, 179–187. [Google Scholar] [CrossRef]
- Du, L.; Sun, G.; Zhang, X.; Liu, Y.; Prinyawiwatkul, W.; Xu, Z.; Shen, Y. Comparisons and correlations of phenolic profiles and anti-oxidant activities of seventeen varieties of pineapple. Food Sci. Biotechnol. 2016, 25, 445–451. [Google Scholar] [CrossRef]
- de Oliveira, I.R.; Teófilo, R.F.; de Oliveira, E.B.; Ramos, A.M.; de Barros, F.A.; Maia, M.D.P.; Stringheta, P.C. Evaluation of potential interfering agents on in vitro methods for the determination of the antioxidant capacity in anthocyanin extracts. Int. J. Food Sci. Technol. 2017, 52, 511–518. [Google Scholar] [CrossRef]
- Al-Laith, A.A.; Alkhuzai, J.; Freije, A. Assessment of antioxidant activities of three wild medicinal plants from Bahrain. Arab. J. Chem. 2019, 12, 2365–2371. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Li, Y.; Wen, S.; Sun, Y.; Chen, J.; Gao, Y.; Sagymbek, A.; Yu, X. Analytical methods for determining the peroxide value of edible oils: A mini-review. Food Chem. 2021, 358, 129834. [Google Scholar] [CrossRef] [PubMed]
- Crosa, M.J.; Skerl, V.; Cadenazzi, M.; Olazábal, L.; Silva, R.; Suburú, G.; Torres, M. Changes produced in oils during vacuum and traditional frying of potato chips. Food Chem. 2014, 146, 603–607. [Google Scholar] [CrossRef]
- Akaza, I.; Aota, N. Colorimetric determination of lipid hydroperoxides in oils and fats with microperoxidase. Talanta 1990, 37, 925–929. [Google Scholar] [CrossRef] [PubMed]
- Kanner, J. Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol. Nutr. Food Res. 2007, 51, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Maskan, M. Change in colour and rheological behaviour of sunflower seed oil during frying and after adsorbent treatment of used oil. Eur. Food Res. Technol. 2003, 218, 20–25. [Google Scholar] [CrossRef]
- Kalogianni, E.P.; Karapantsios, T.D.; Miller, R. Effect of repeated frying on the viscosity, density and dynamic interfacial tension of palm and olive oil. J. Food Eng. 2011, 105, 169–179. [Google Scholar] [CrossRef]
- Shin, J.A.; Kim, Y.M.; Duan, B.; Lee, K.T. Evaluation of oxidation parameters of caffeic acid phenethyl ester comparing with caffeic acid, ascorbyl palmitate, and a-Tocopherol on the thermal oxidation model. J. Oleo Sci. 2020, 69, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, F.; Xia, J.; Wu, F.; Pu, C. Mechanism of ultrasonic physical–chemical viscosity reduction for different heavy oils. ACS Omega 2021, 6, 2276–2283. [Google Scholar] [CrossRef]
- Baig, A.; Zubair, M.; Sumrra, S.H.; Nazar, M.F.; Zafar, M.N.; Jabeen, K.; Hassan, M.B.; Rashid, U. Heating effect on quality characteristics of mixed canola cooking oils. BMC Chem. 2022, 16, 1–11. [Google Scholar] [CrossRef]
- Fullana, A.; Carbonell-Barrachina, A.A.; Sidhu, S. Comparison of volatile aldehydes present in the cooking fumes of extra virgin olive, olive, and canola oils. J. Agric. Food Chem. 2004, 52, 5207–5214. [Google Scholar] [CrossRef]
- Castejón, D.; Herrera, A.; Heras, Á.; Cambero, I.; Mateos-Aparicio, I. Oil quality control of culinary oils subjected to deep-fat frying based on NMR and EPR spectroscopy. Food Anal. Methods 2017, 10, 2467–2480. [Google Scholar] [CrossRef]
- Zhao, F.; Li, R.; Liu, Y.; Chen, H. Perspectives on lecithin from egg yolk: Extraction, physicochemical properties, modification, and applications. Front. Nutr. 2022, 9, 1082671. [Google Scholar] [CrossRef] [PubMed]
- Suárez, M.; Romero, M.P.; Ramo, T.; Motilva, M.J. Stability of a phenol-enriched olive oil during storage. Eur. J. Lipid Sci. Technol. 2011, 113, 894–903. [Google Scholar] [CrossRef]
- Ramadan, M.F. Antioxidant characteristics of phenolipids (quercetin-enriched lecithin) in lipid matrices. Ind. Crop. Prod. 2012, 36, 363–369. [Google Scholar] [CrossRef]
- Hidalgo, F.J.; León, M.M.; Zamora, R. Antioxidative activity of amino phospholipids and phospholipid/amino acid mixtures in edible oils as determined by the Rancimat method. J. Agric. Food Chem. 2006, 54, 5461–5467. [Google Scholar] [CrossRef]
- Cui, L.; McClements, D.J.; Decker, E.A. Impact of phosphatidylethanolamine on the antioxidant activity of α-tocopherol and trolox in bulk oil. J. Agric. Food Chem. 2015, 63, 3288–3294. [Google Scholar] [CrossRef]
- Min, B.; Ahn, D. Mechanism of lipid peroxidation in meat and meat products-a review. Food Sci. Biotechnol. 2005, 14, 152–163. [Google Scholar]
- Cardenia, V.; Waraho, T.; Rodriguez-Estrada, M.T.; Julian McClements, D.; Decker, E.A. Antioxidant and prooxidant activity behavior of phospholipids in stripped soybean oil-in-water emulsions. J. Am. Oil Chem. Soc. 2011, 88, 1409–1416. [Google Scholar] [CrossRef]
- Kittipongpittaya, K.; Panya, A.; Cui, L.; McClements, D.J.; Decker, E.A. Association colloids formed by multiple surface active minor components and their effect on lipid oxidation in bulk oil. J. Am. Oil Chem. Soc. 2014, 91, 1955–1965. [Google Scholar] [CrossRef]
Compound | Empirical Formula | RT | RI | Initial (µg) | CA (µg) | TBHQ (µg) | BHA (µg) | BHT (µg) | α-T (µg) | Control (µg) |
---|---|---|---|---|---|---|---|---|---|---|
1-Pentanol | C5H12O | 5.576 | 753.939 | - | - | - | 3.758 ± 1.293 b | 4.549 ± 1.293 b | 3.353 ± 0.377 b | 6.57 ± 0.44 a |
Hexanal | C6H12O | 6.750 | 800.665 | - | 0.615 ± 0.071 b | 0.094 ± 0.006 b | 169.806 ± 55.105 abcd | 121.044 ± 16.412 bcd | 111.657 ± 11.694 bcd | 259.331 ± 6.944 a |
Cyclotrisiloxane, hexamethyl- | C6H18O3Si3 | 7.898 | 823.127 | 0.187 ± 0.001 d | 0.759 ± 0.139 c | 0.724 ± 0.062 c | 5.161 ± 1.852 b | 5.085 ± 1.163 b | 4.651 ± 0.062 b | 7.182 ± 0.873 a |
2-Heptanone | C7H14O | 11.322 | 890.119 | - | - | - | 3.453 ± 0.678 b | 3.08 ± 0.568 b | 2.905 ± 0.254 b | 6.655 ± 0.494 a |
n-Caproic acid vinyl ester | C8H14O2 | 11.607 | 895.696 | - | - | - | 2.707 ± 0.88 c | 4.507 ± 0.288 ab | 3.77 ± 0.543 bc | 5.619 ± 0.082 a |
Heptanal | C7H14O | 11.927 | 901.519 | - | - | - | 3.324 ± 0.772 b | 2.528 ± 0.232 b | 2.538 ± 0.162 b | 6.753 ± 0.359 a |
Oxirane, pentyl- | C7H14O | 12.109 | 904.284 | - | - | - | - | 2.013 ± 0.288 b | 1.499 ± 0.098 c | 5.035 ± 0.008 a |
Hexanal, 3-methyl- | C7H14O | 12.364 | 908.157 | - | - | - | 9.511 ± 2.557 b | 12.709 ± 2.412 b | 9.153 ± 0.081 b | 19.773 ± 2.438 a |
Hexanoic acid, methyl ester | C7H14O2 | 13.481 | 925.125 | - | - | - | 4.348 ± 1.145 b | 2.586 ± 0.459 b | 3.037 ± 0.23 b | 10.52 ± 1.062 a |
2-Heptenal, (E)- | C7H12O | 15.374 | 953.881 | 0.07 ± 0.004 d | 0.29 ± 0.075 c | 0.234 ± 0.055 c | 37.217 ± 9.266 b | 43.898 ± 6.141 ab | 34.834 ± 1.37 b | 50.771 ± 3.22 a |
1-Octen-3-ol | C8H16O | 17.065 | 979.569 | - | - | - | 16.344 ± 4.223 | 22.283 ± 5.278 | 15.676 ± 3.47 | 16.419 ± 1.475 |
Furan, 2-pentyl- | C9H14O | 17.792 | 990.612 | - | 0.132 ± 0.033 d | - | 19.322 ± 3.573 b | 10.997 ± 0.929 c | 12.344 ± 0.695 c | 28.887 ± 3.205 a |
Octanal | C8H16O | 18.631 | 1003.111 | - | - | - | 9.447 ± 1.457 b | 6.041 ± 0.775 bc | 5.771 ± 0.275 c | 19.056 ± 2.499 a |
Cyclotetrasiloxane, octamethyl- | C8H24O4Si4 | 18.973 | 1007.926 | 0.242 ± 0.082 e | 0.366 ± 0.2 e | 0.637 ± 0.273 d | 8.689 ± 1.975 c | 18.58 ± 0.618 a | 15.37 ± 0.816 b | 17.633 ± 6.116 a |
Hexanoic acid | C6H12O2 | 20.836 | 1034.155 | - | - | - | 5.178 ± 0.031 | 6.798 ± 0.799 | 10.624 ± 5.355 | 17.7 ± 4.71 |
3,5-Octadien-2-ol | C8H14O | 21.155 | 1038.646 | - | - | - | 5.649 ± 1.214 ab | 3.847 ± 0.76 b | 3.844 ± 0.378 b | 6.341 ± 0.545 a |
5-Oxotetrahydrofuran-2-carboxylic acid, ethyl ester | C7H10O4 | 22.059 | 1051.373 | - | - | - | 3.051 ± 0.664 ab | 2.457 ± 0.287 b | 2.028 ± 0.052 b | 5.989 ± 0.174 a |
2-Octenal, (E)- | C8H14O | 22.508 | 1057.694 | - | 0.382 ± 0.087 | 0.227 ± 0.006 | 137.407 ± 29.366 | 178.448 ±16.335 | 129.053 ± 5.058 | 240.989 ± 28.915 |
Pentanoic acid, 2-methyl-, anhydride | C12H22O3 | 22.683 | 1060.158 | - | - | - | 49.564 ± 12.749 b | 79.554 ± 9.605 a | 59.212 ± 3.674 b | 87.662 ± 4.848 a |
1-Octanol | C8H18O | 23.568 | 1072.617 | - | - | - | 3.573 ± 1.358 b | 2.851 ± 0.482 b | 2.644 ± 0.38 b | 6.076 ± 0.52 a |
2,5-Dimethylcyclohexanol | C8H16O | 25.127 | 1094.566 | - | 0.15 ± 0.049 | 0.054 ± 0.001 | 72.127 ± 13.376 | 53.232 ± 3.127 | 53.992 ± 3.767 | 120.257 ± 5.245 |
Nonanal | C9H18O | 25.822 | 1104.376 | - | 0.606 ± 0.193 | 0.325 ± 0.023 | 37.056 ± 7.064 | 23.181 ± 2.039 | 23.211 ± 0.865 | 62.332 ± 1.466 |
9-Oxabicyclo[6.1.0]nonan-4-ol | C8H14O2 | 26.016 | 1107.123 | - | - | - | 5.207 ± 1.198 b | 5.527 ± 0.74 b | 4.817 ± 0.247 b | 8.025 ± 0.088 a |
3-Nonen-2-one | C9H16O | 28.300 | 1139.465 | - | - | - | 5.503 ± 1.361 b | 3.765 ± 0.614 b | 4.809 ± 0.61 b | 9.895 ± 0.681 a |
2-Nonenal, (E)- | C9H16O | 29.646 | 1158.524 | - | - | - | 13.272 ± 2.551 | 10.291 ± 0.835 | 11.775 ± 0.293 | 20.375 ± 2.287 |
2-tert-Butyl-1,4-benzoquinone | C10H12O₂ | 32.328 | 1196.502 | - | - | 3.277 ± 0.079 | - | - | - | - |
Decanal | C10H20O | 32.949 | 1205.513 | - | - | - | 7.066 ± 1.135 b | 3.849 ± 0.33 b | 4.001 ± 0.444 b | 11.44 ± 2.362 a |
2,4-Nonadienal, (E, E)- | C9H14O | 33.356 | 1211.512 | - | - | - | 21.42 ± 3.668 b | 21.546 ± 3.437 b | 23.512 ± 3.208 b | 33.922 ± 1.589 a |
trans-2-undecenoic acid | C11H20O2 | 34.336 | 1225.958 | - | - | - | 2.624 ± 0.518 | 1.421 ± 0.008 | 2.125 ± 0.409 | 5.535 ± 0.381 |
Cyclononanone | C9H16O | 35.051 | 1236.498 | - | - | - | 5.493 ± 1.021 b | 5.015 ± 0.37 b | 5.119 ± 0.286 b | 11.552 ± 0.837 a |
2-Sec-Butylcyclohexanone | C10H18O | 35.754 | 1246.860 | 0.056 ± 0.006 | 0.211 ± 0.101 | 0.059 ± 0.001 | 80.737 ± 18.734 | 47.42 ± 5.39 | 47.313 ± 6.818 | 115.601 ± 2.401 |
2-Ethylnon-1-en-3-ol | C11H22O | 36.267 | 1254.422 | - | - | - | 8.316 ± 3.154 b | 4.483 ± 1.276 b | 4.826 ± 1.609 b | 15.493 ± 2.473 a |
2-Decenal, (E)- | C10H18O | 36.731 | 1261.262 | - | - | - | 75.964 ± 14.733 | 49.299 ± 4.179 | 52.391 ± 5.574 | 137.881 ± 3.164 |
4a(2H)-Naphthalenol, octahydro-, trans- | C10H18O | 36.890 | 1263.606 | - | - | - | 5.811 ± 1.38 | 3.288 ± 0.15 | 3.335 ± 0.32 | 11.836 ± 0.673 |
1,7-Octadien-3-ol, 2,6-dimethyl- | C10H18O | 37.308 | 1269.767 | - | - | - | 3.54 ± 0.91 | 3.555 ± 0.255 | 4.082 ± 0.586 | 10.067 ± 1.65 |
3-Decanynoic acid | C10H16O2 | 37.784 | 1276.784 | - | - | - | 7.78 ± 2.156 b | 4.963 ± 0.502 b | 5.725 ± 0.752 b | 11.842 ± 1.304 a |
Nonanoic acid | C9H18O2 | 38.175 | 1282.547 | - | - | - | 7.812 ± 1.633 a | 4.033 ± 2.205 b | 1.805 ± 0.293 b | 9.862 ± 0.186 a |
5-Undecen-4-one | C11H20O | 39.661 | 1304.699 | - | - | - | 6.272 ± 1.741 b | 6.119 ± 1.049 b | 7.123 ± 1.246 b | 18.581 ± 1.654 a |
2,4-Decadienal, (E, E)- | C10H16O | 40.311 | 1314.813 | - | - | - | 144.685 ± 33.1 | 121.984 ± 9.562 | 154.824 ± 17.412 | 190.167 ± 6.62 |
Bicyclo[2.2.2]octane, 1-methoxy-4-methyl- | C10H18O | 42.082 | 1342.368 | - | - | - | 146.796 ± 33.812 | 72.405 ± 6.601 | 83.374 ± 12.952 | 264.051 ± 9.302 |
1,13-Tetradecadien-3-one | C14H24O | 42.485 | 1348.639 | - | - | - | 5.17 ± 1.512 b | 2.806 ± 0.269 c | 3.244 ± 0.343 bc | 7.447 ± 0.833 a |
Cyclohexanol, 1-butyl- | C10H20O | 42.899 | 1355.080 | - | - | - | 70.784 ± 18.432 b | 34.188 ± 7.701 c | 38.015 ± 9.553 c | 109.367 ± 8.796 a |
2-Undecenal | C11H20O | 43.439 | 1363.482 | - | - | - | 94.604 ± 25.497 | 44.549 ± 4.237 | 51.429 ± 5.972 | 166.774 ± 6.339 |
trans-4,5-Epoxy-(E)-2-decenal | C10H16O2 | 44.397 | 1378.388 | - | - | - | 53.754 ± 21.541 | 18.665 ± 9.526 | 27.748 ± 4.543 | 76.397 ± 4.575 |
4-Hydroxy-3-pentyl-cyclohexanone | C11H20O2 | 44.754 | 1383.943 | - | - | - | 4.254 ± 1.494 | 6.357 ± 6.604 | 1.961 ± 0.447 | 6.011 ± 0.517 |
total | 0.555 ± 0.093 f | 3.511 ± 0.948 e | 5.631 ± 0.506 d | 1383.556 ± 341.879 b | 1085.796 ± 136.13 c | 1054.519 ± 113.573 c | 2259.67 ± 134.35 a |
Peak Number | Chemical Shift (ppm) | Functional Group Structure | Functional Group Name |
---|---|---|---|
a | 5.55–5.20 | —CH=CH— | unsaturated double bond |
b | 4.50–4.00 | HOCH2CHOHCHOH— | glyceryl |
c | 3.00–2.60 | CH2=CH—CH2—CH=CH2 | diallyl |
d | 2.50–2.20 | —C=O—CH2 | alpha carbonyl peri-methyl |
e | 2.20–1.90 | H2C=CH—CH2— | allyl |
f | 1.80–1.55 | —C=O—CH2—CH3 | β-carbonyl vicinal methyl |
g | 1.50–1.15 | —CH2— | saturated methylene |
i | 1.10–0.75 | —CH3 | terminal methyl group (saturated acid, oleic acid, linoleic acid acyl) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Huang, Y.; Dong, Y.; Zhang, W.; Xia, F.; Bai, H.; Stevanovic, Z.D.; Li, H.; Shi, L. Effective Improvement of the Oxidative Stability of Acer truncatum Bunge Seed Oil, a New Woody Oil Food Resource, by Rosemary Extract. Antioxidants 2023, 12, 889. https://doi.org/10.3390/antiox12040889
Qi Y, Huang Y, Dong Y, Zhang W, Xia F, Bai H, Stevanovic ZD, Li H, Shi L. Effective Improvement of the Oxidative Stability of Acer truncatum Bunge Seed Oil, a New Woody Oil Food Resource, by Rosemary Extract. Antioxidants. 2023; 12(4):889. https://doi.org/10.3390/antiox12040889
Chicago/Turabian StyleQi, Yue, Yeqin Huang, Yanmei Dong, Wenying Zhang, Fei Xia, Hongtong Bai, Zora Dajic Stevanovic, Hui Li, and Lei Shi. 2023. "Effective Improvement of the Oxidative Stability of Acer truncatum Bunge Seed Oil, a New Woody Oil Food Resource, by Rosemary Extract" Antioxidants 12, no. 4: 889. https://doi.org/10.3390/antiox12040889
APA StyleQi, Y., Huang, Y., Dong, Y., Zhang, W., Xia, F., Bai, H., Stevanovic, Z. D., Li, H., & Shi, L. (2023). Effective Improvement of the Oxidative Stability of Acer truncatum Bunge Seed Oil, a New Woody Oil Food Resource, by Rosemary Extract. Antioxidants, 12(4), 889. https://doi.org/10.3390/antiox12040889