Processing of Enriched Pear Slices with Blueberry Juice: Phenolics, Antioxidant, and Color Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Samples
2.3. Blueberry Treatment by OH
2.4. VI/OH of PS with Blueberry Juice
2.5. Drying Processes of PS with Blueberry Juice
2.6. Total Bioactive Compounds and Antioxidant Capacity
2.7. Color Parameters
2.8. Phenolic Compounds by High-Performance Liquid Chromatography (HPLC)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Blueberry Treatment by OH
3.2. VI/OH of PS with Blueberry Juice
3.3. Drying Processes of PS with Blueberry Juice
3.3.1. Enriched PS with Blueberry Juice before Drying Processes
3.3.2. Enriched PS with Blueberry Juice after Drying Processes
AD and FD effects on Enriched PS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brahem, M.; Renard, C.M.G.C.; Eder, S.; Loonis, M.; Ouni, R.; Mars, M.; Le Bourvellec, C. Characterization and quantification of fruit phenolic compounds of European and Tunisian pear cultivars. Food Res. Int. 2017, 95, 125–133. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Wang, T.; Gao, W. Nutritional composition of pear cultivars (Pyrus spp.). In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2016; pp. 573–608. [Google Scholar]
- Muñoz-Fariña, O.; López-Casanova, V.; García-Figueroa, O.; Roman-Benn, A.; Ah-Hen, K.; Bastias-Montes, J.M.; Quevedo-León, R.; Ravanal-Espinosa, M.C. Bioaccessibility of phenolic compounds in fresh and dehydrated blueberries (Vaccinium corymbosum L.). Food Chem. Adv. 2023, 2, 100171. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Angeloni, S.; Abouelenein, D.; Acquaticci, L.; Xiao, J.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. A New HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity. Food Chem. 2022, 367, 130743. [Google Scholar] [CrossRef] [PubMed]
- Kolniak-Ostek, J.; Kłopotowska, D.; Rutkowski, K.P.; Skorupińska, A.; Kruczyńska, D.E. Bioactive compounds and health-promoting properties of pear (Pyrus communis L.) fruits. Molecules 2020, 25, 4444. [Google Scholar] [CrossRef]
- Becker Pertuzatti, P.; Teixeira Barcia, M.; Gómez-Alonso, S.; Teixeira Godoy, H.; Hermosin-Gutierrez, I. Phenolics Profiling by HPLC-DAD-ESI-MSn aided by principal component analysis to classify rabbiteye and highbush blueberries. Food Chem. 2021, 340, 127958. [Google Scholar] [CrossRef] [PubMed]
- Zia, M.P.; Alibas, I. Influence of the drying methods on color, vitamin C, anthocyanin, phenolic compounds, antioxidant activity, and in vitro bioaccessibility of blueberry fruits. Food Biosci. 2021, 42, 101179. [Google Scholar] [CrossRef]
- Pavez-Guajardo, C.; Ferreira, S.R.S.; Mazzutti, S.; Guerra-Valle, M.E.; Sáez-Trautmann, G.; Moreno, J. Influence of in vitro digestion on antioxidant activity of enriched apple snacks with grape juice. Foods 2020, 9, 1681. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Valle, M.E.; Moreno, J.; Lillo-Pérez, S.; Petzold, G.; Simpson, R.; Nuñez, H. Enrichment of apple slices with bioactive compounds from pomegranate cryoconcentrated juice as an osmodehydration agent. J. Food Qual. 2018, 2018, 7241981. [Google Scholar] [CrossRef]
- Moreno, J.; Gonzales, M.; Zúñiga, P.; Petzold, G.; Mella, K.; Muñoz, O. Ohmic heating and pulsed vacuum effect on dehydration processes and polyphenol component retention of osmodehydrated blueberries (cv. Tifblue). Innov. Food Sci. Emerg. Technol. 2016, 36, 112–119. [Google Scholar] [CrossRef]
- Misra, S.; Mandliya, S.; Panigrahi, C. Ohmic heating: Principles and applications. In Thermal Food Engineering Operations; Wiley: New York, NY, USA, 2022; pp. 261–299. [Google Scholar]
- Radziejewska-Kubzdela, E.; Biegańska-Marecik, R.; Kidoń, M. Applicability of vacuum impregnation to modify physico-chemical, sensory and nutritive characteristics of plant origin products—A review. Int. J. Mol. Sci. 2014, 15, 16577–16610. [Google Scholar] [CrossRef] [Green Version]
- Gavahian, M.; Tiwari, B.K.; Chu, Y.-H.; Ting, Y.; Farahnaky, A. Food texture as affected by ohmic heating: Mechanisms involved, recent findings, benefits, and limitations. Trends Food Sci. Technol. 2019, 86, 328–339. [Google Scholar] [CrossRef]
- Akman, P.K.; Uysal, E.; Ozkaya, G.U.; Tornuk, F.; Durak, M.Z. Development of probiotic carrier dried apples for consumption as snack food with the impregnation of Lactobacillus paracasei. LWT 2019, 103, 60–68. [Google Scholar] [CrossRef]
- Moreno, J.; Echeverria, J.; Silva, A.; Escudero, A.; Petzold, G.; Mella, K.; Escudero, C. Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology. Food Sci. Technol. Int. 2017, 23, 448–456. [Google Scholar] [CrossRef]
- Subbiah, V.; Duan, X.; Agar, O.T.; Dunshea, F.R.; Barrow, C.J.; Suleria, H.A.R. Comparative study on the effect of different drying techniques on phenolic compounds in australian beach-cast brown seaweeds. Algal Res. 2023, 72, 103140. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2010. [Google Scholar]
- Waterhouse, A.L. Determination of total phenolics. In Current Protocols in Food Analytical Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Eisele, T.; Giusti, M.M.; Hach, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; Kupina, S.; et al. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Comp. Anal. 2006, 19, 669–775. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, A.; Hermosí;n-Gutiérrez, I.; Mardones, C.; Vergara, C.; Herlitz, E.; Vega, M.; Dorau, C.; Winterhalter, P.; von Baer, D. Polyphenols and antioxidant activity of calafate (Berberis microphylla) fruits and other native berries from southern Chile. J. Agric. Food Chem. 2010, 58, 6081–6089. [Google Scholar] [CrossRef]
- Sarkis, J.R.; Jaeschke, D.P.; Tessaro, I.C.; Marczak, L.D.F. Effects of ohmic and conventional heating on anthocyanin degradation during the processing of blueberry pulp. LWT 2013, 51, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Zhao, Y.; Zou, B.; Li, X.; Dai, R. Ohmic heating in fruit and vegetable processing: Quality characteristics, enzyme inactivation, challenges and prospective. Trends Food Sci. Technol. 2021, 118, 601–616. [Google Scholar] [CrossRef]
- Martín-Gómez, J.; Varo, M.Á.; Mérida, J.; Serratosa, M.P. Influence of drying processes on anthocyanin profiles, total phenolic compounds and antioxidant activities of blueberry (Vaccinium corymbosum). LWT 2020, 120, 108931. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Balandrano, D.D.; Chai, Z.; Beta, T.; Feng, J.; Huang, W. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability. Trends Food Sci. Technol. 2021, 118, 808–821. [Google Scholar] [CrossRef]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Negri Rodríguez, L.M.; Arias, R.; Soteras, T.; Sancho, A.; Pesquero, N.; Rossetti, L.; Tacca, H.; Aimaretti, N.; Rojas Cervantes, M.L.; Szerman, N. Comparison of the quality attributes of carrot juice pasteurized by ohmic heating and conventional heat treatment. LWT 2021, 145, 111255. [Google Scholar] [CrossRef]
- Debbarma, T.; Thangalakshmi, S.; Tadakod, M.; Singh, R.; Singh, A. Comparative analysis of ohmic and conventional heat-treated carrot juice. J. Food Process. Preserv. 2021, 45, e15687. [Google Scholar] [CrossRef]
- Darvishi, H.; Salami, P.; Fadavi, A.; Saba, M.K. Processing kinetics, quality and thermodynamic evaluation of mulberry juice concentration process using ohmic heating. Food Bioprod. Process. 2020, 123, 102–110. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.-Y.; Gao, W.-Y.; Wang, Y.; Wang, H.-Y.; Cao, J.-G.; Huang, L.-Q. Chemical composition and anti-inflammatory and antioxidant activities of eight pear cultivars. J. Agric. Food Chem. 2012, 60, 8738–8744. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. A Comparative investigation on phenolic composition, characterization and antioxidant potentials of five different Australian grown pear varieties. Antioxidants 2021, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Abalos, R.A.; Naef, E.F.; Aviles, M.V.; Gómez, M.B. Vacuum impregnation: A methodology for the preparation of a ready-to-eat sweet potato enriched in polyphenols. LWT 2020, 131, 109773. [Google Scholar] [CrossRef]
- Tylewicz, U.; Tappi, S.; Mannozzi, C.; Romani, S.; Dellarosa, N.; Laghi, L.; Ragni, L.; Rocculi, P.; Dalla Rosa, M. Effect of pulsed electric field (PEF) pre-treatment coupled with osmotic dehydration on physico-chemical characteristics of organic strawberries. J. Food Eng. 2017, 213, 2–9. [Google Scholar] [CrossRef]
- Moreno, J.; Zúñiga, P.; Dorvil, F.; Petzold, G.; Mella, K.; Bugueño, G. Osmodehydration assisted by ohmic heating/pulse vacuum in apples (cv. fuji): Retention of polyphenols during refrigerated storage. Int. J. Food Sci. Technol. 2017, 52, 1203–1210. [Google Scholar] [CrossRef]
- Yılmaz, F.M.; Ersus Bilek, S. Ultrasound-assisted vacuum impregnation on the fortification of fresh-cut apple with calcium and black carrot phenolics. Ultrason. Sonochem. 2018, 48, 509–516. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic compounds: Current industrial applications, limitations and future challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Giada, M. de L.R. Food Phenolic compounds: Main classes, sources and their antioxidant power. In Oxidative Stress and Chronic Degenerative Diseases—A Role for Antioxidants; InTech: Saitama, Japan, 2013; pp. 87–112. [Google Scholar]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Vuolo, M.M.; Lima, V.S.; Maróstica, M.R., Jr. Phenolic compounds. In Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–50. ISBN 9780128147757. [Google Scholar]
- de la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2019; pp. 253–271. ISBN 9780128132784. [Google Scholar]
- Wang, R.; Zhou, W.; Jiang, X. Reaction kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range. J. Agric. Food Chem. 2008, 56, 2694–2701. [Google Scholar] [CrossRef] [PubMed]
- Zimeri, J.; Tong, C.H. Degradation kinetics of (−)-epigallocatechin gallate as a function of pH and dissolved oxygen in a liquid model system. J. Food Sci. 1999, 64, 753–758. [Google Scholar] [CrossRef]
- Zeng, J.; Xu, H.; Cai, Y.; Xuan, Y.; Liu, J.; Gao, Y.; Luan, Q. The effect of ultrasound, oxygen and sunlight on the stability of (−)-epigallocatechin gallate. Molecules 2018, 23, 2394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sang, S.; Lee, M.J.; Hou, Z.; Ho, C.T.; Yang, C.S. Stability of tea polyphenol (−)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J. Agric. Food Chem. 2005, 53, 9478–9484. [Google Scholar] [CrossRef]
- Tanaka, T.; Kondou, K.; Kouno, I. Oxidation and epimerization of epigallocatechin in banana fruits. Phytochemistry 2000, 53, 311–316. [Google Scholar] [CrossRef]
- Öztürk, A.; Demirsoy, L.; Demirsoy, H.; Asan, A.; Gül, O. Phenolic compounds and chemical characteristics of pears (Pyrus communis L.). Int. J. Food Prop. 2015, 18, 536–546. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Zymonė, K.; Viškelis, J.; Klevinskas, A.; Janulis, V. Determination of the phenolic composition and antioxidant activity of pear extracts. J. Chem. 2017, 2017, 7856521. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Saroglu, O.; Karadag, A.; Diaconeasa, Z.; Zoccatelli, G.; Conte-Junior, C.A.; Gonzalez-Aguilar, G.A.; Ou, J.; Bai, W.; Zamarioli, C.M.; et al. Available technologies on improving the stability of polyphenols in food processing. Food Front. 2021, 2, 109–139. [Google Scholar] [CrossRef]
- Montes-Ávila, J.; López-Angulo, G.; Delgado-Vargas, F. Tannins in fruits and vegetables: Chemistry and biological functions. In Fruit and Vegetable Phytochemicals; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 221–268. [Google Scholar]
- Das, A.K.; Islam, N.; Faruk, O.; Ashaduzzaman; Dungani, R. Review on tannins: Extraction processes, applications and possibilities. S. Afr. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- García-Villalba, R.; González-Sarrías, A.; Giménez-Bastida, J.A.; Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Metabolism of dietary (poly)phenols by the gut microbiota. In Comprehensive Gut Microbiota; Elsevier: Amsterdam, The Netherlands, 2022; pp. 149–175. [Google Scholar]
- Chen, Z.; Zheng, S.; Li, L.; Jiang, H. Metabolism of flavonoids in human: A comprehensive review. Curr. Drug Metab. 2014, 15, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Cosme, P.; Rodríguez, A.B.; Espino, J.; Garrido, M. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 2020, 9, 1263. [Google Scholar] [CrossRef] [PubMed]
Sample | TPC (mg GAE.100 g−1 DM) | TFC (mg CE.100 g−1 DM) | TMA (µg C3G.100 g−1 DM) | Antioxidant Capacity | Color Parameters | |||
---|---|---|---|---|---|---|---|---|
DPPH (µmol TE.100 g−1 DM) | FRAP (µmol TE.100 g−1 DM) | L* | a* | b* | ||||
PS-non-VI/OH | 228.03 ± 5.74 g | 84.76 ± 5.31 e | - | 838.42 ± 8.79 d | 876.34 ± 12.54 d | 76.16 ± 2.75 e | −3.36 ± 0.10 a | 17.86 ± 0.56 d |
AD40-non-VI/OH | 24.16 ± 1.25 abc | 3.42 ± 0.30 ab | - | 35.27 ± 1.24 a | 38.24 ± 1.12 a | 48.23 ± 1.51 c | 13.17 ± 0.40 e | 32.86 ± 1.43 fg |
AD50-non-VI/OH | 23.82 ± 4.43 ab | 1.82 ± 0.08 a | - | 33.74 ± 1.52 a | 37.25 ± 1.53 a | 46.33 ± 1.93 c | 14.28 ± 0.65 f | 32.58 ± 1.36 f |
AD60-non-VI/OH | 52.17 ± 2.45 cd | 6.74 ± 0.34 b | - | 127.36 ± 3.35 b | 145.25 ± 5.36 b | 38.33 ± 1.98 b | 13.59 ± 0.78 ef | 26.33 ± 1.44 e |
FD-non-VI/OH | 8.65 ± 0.24 a | 1.21 ± 0.04 a | - | 30.73 ± 1.03 a | 35.23 ± 1.35 a | 70.43 ± 2.66 d | 7.75 ± 0.44 d | 34.40 ± 1.67 g |
PS-VI/OH | 299.90 ± 7.50 h | 120.26 ± 5.43 f | 6290.02 ± 100.23 d | 1031.85 ± 14.42 e | 1097.43 ± 19.42 e | 20.57 ± 0.83 a | 6.16 ± 0.35 c | 1.43 ± 0.09 ab |
AD40-VI/OH | 67.33 ± 3.83 de | 12.73 ± 0.51 c | 1690.27 ± 50.24 bc | 136.73 ± 2.35 b | 153.45 ± 5.24 b | 18.86 ± 0.94 a | 2.08 ± 0.10 b | 1.32 ± 0.09 a |
AD50-VI/OH | 118.46 ± 6.83 f | 12.14 ± 0.45 c | 1180.53 ± 30.74 a | 123.27 ± 3.69 b | 142.53 ± 6.34 b | 21.50 ± 0.95 a | 6.24 ± 0.49 c | 3.11 ± 0.21 b |
AD60-VI/OH | 95.03 ± 2.75 ef | 15.64 ± 0.93 cd | 1900.62 ± 100.27 c | 218.12 ± 5.47 c | 254.78 ± 5.35 c | 19.26 ± 0.73 a | 1.73 ± 0.15 b | 1.29 ± 0.07 a |
FD-VI/OH | 47.64 ± 2.54 bcd | 18.25 ± 1.01 d | 1490.31 ± 110.71 b | 136.03 ± 4.24 b | 155.84 ± 4.24 b | 36.08 ± 2.07 b | 13.44 ± 0.61 e | 12.58 ± 0.83 c |
Phenolic Compound | Blueberry Juice (mg.100 mL−1) | PS (mg.100 g−1 Dry Matter) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PS-Non-VI/OH | AD40-Non-VI/OH | AD50-Non-VI/OH | AD60-Non-VI/OH | FD-Non-VI/OH | PS-VI/OH | AD40-VI/OH | AD50-VI/OH | AD60-VI/OH | FD-VI/OH | ||
Anthocyanin | |||||||||||
Pelargonin | 62.22 ± 2.62 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Cyanidin 3- glucosidase | 3.24 ± 0.15 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Petunidin 3- glucosidase | 6.83 ± 0.31 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Cyanidin | 23.55 ± 1.09 | nd | nd | nd | nd | nd | 20.18 ± 0.90 b | 0.76 ± 0.05 a | 0.69 ± 0.03 a | 0.56 ± 0.03 a | 0.87 ± 0.04 a |
Malvidin | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Non-anthocyanin flavonoid | |||||||||||
Epigallocatechin | 125.47 ± 5.65 | 169.98 ± 5.90 f | 34.10 ± 1.51 bc | 35.86 ± 1.46 bc | 40.91 ± 1.75 c | 11.33 ± 0.58 a | 347.92 ± 15.95 g | 62.39 ± 2.97 d | 58.32 ± 2.45 d | 80.48 ± 3.69 e | 27.36 ± 1.27 b |
Catechin | 18.49 ± 1.02 | 35.69 ± 1.60 d | 24.13 ± 1.09 ab | 25.44 ± 0.91 b | 31.01 ± 1.43 c | 23.49 ± 0.89 ab | 68.43 ± 2.82 e | 22.27 ± 0.95 a | 25.38 ± 0.90 b | 31.89 ± 1.60 c | 25.12 ± 1.08 b |
Epigallocatechin gallate | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Epicatechin | 30.81 ± 1.50 | 27.48 ± 1.41 g | 5.53 ± 0.28 c | 5.63 ± 0.27 c | 6.61 ± 0.30 d | 7.75 ± 0.29 e | 9.51 ± 0.47 f | 2.58 ± 0.12 a | 2.64 ± 0.11 ab | 3.05 ± 0.14 ab | 4.51 ± 0.17 c |
Myricetin | 8.84 ± 0.45 | nd | nd | nd | nd | nd | 9.98 ± 0.39 c | 2.14 ± 0.09 a | 2.00 ± 0.10 a | 1.91 ± 0.08 a | 2.62 ± 0.10 b |
Quercetin | 2.28 ± 0.10 | nd | 0.36 ± 0.02 a | 0.48 ± 0.02 b | 0.55 ± 0.03 c | 0.35 ± 0.02 a | nd | 0.66 ± 0.03 d | 0.75 ± 0.03 e | 0.96 ± 0.05 f | 0.67 ± 0.03 d |
Phenolic acid | |||||||||||
Gallic acid | 3.31 ± 0.14 | 8.08 ± 0.30 g | 7.70 ± 0.25 f | 7.24 ± 0.22 e | 6.69 ± 0.27 d | 7.01 ± 0.22 de | 4.73 ± 0.16 c | 4.36 ± 0.15 b | 4.18 ± 0.16 b | 3.80 ± 0.14 a | 4.01 ± 0.15 ab |
Caffeic acid | 5.17 ± 0.24 | 2.44 ± 0.11 e | 0.85 ± 0.03 c | 0.87 ± 0.04 c | 0.93 ± 0.04 c | 0.90 ± 0.04 c | 1.75 ± 0.07 d | 0.53 ± 0.02 a | 0.59 ± 0.03 ab | 0.62 ± 0.03 b | 0.59 ± 0.03 ab |
p-Coumaric acid | 3.04 ± 0.14 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Sum | 293.25 ± 7.45 | 243.68 ± 4.88 | 72.68 ± 2.50 | 75.52 ± 2.73 | 86.69 ± 2.97 | 50.83 ± 1.88 | 462.49 ± 18.53 | 95.70 ± 3.97 | 94.56 ± 3.37 | 123.27 ± 4.69 | 65.74 ± 2.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seraglio, S.K.T.; Hernández-Velásquez, B.S.; Osses-Millar, M.E.; Malverde-Muñoz, B.Y.; Guerra-Valle, M.E.; Pavez-Guajardo, C.; Moreno, J. Processing of Enriched Pear Slices with Blueberry Juice: Phenolics, Antioxidant, and Color Characteristics. Antioxidants 2023, 12, 1408. https://doi.org/10.3390/antiox12071408
Seraglio SKT, Hernández-Velásquez BS, Osses-Millar ME, Malverde-Muñoz BY, Guerra-Valle ME, Pavez-Guajardo C, Moreno J. Processing of Enriched Pear Slices with Blueberry Juice: Phenolics, Antioxidant, and Color Characteristics. Antioxidants. 2023; 12(7):1408. https://doi.org/10.3390/antiox12071408
Chicago/Turabian StyleSeraglio, Siluana Katia Tischer, Belkis Sarahí Hernández-Velásquez, Moira Elizabeth Osses-Millar, Bárbara Yolanda Malverde-Muñoz, María Estuardo Guerra-Valle, Constanza Pavez-Guajardo, and Jorge Moreno. 2023. "Processing of Enriched Pear Slices with Blueberry Juice: Phenolics, Antioxidant, and Color Characteristics" Antioxidants 12, no. 7: 1408. https://doi.org/10.3390/antiox12071408
APA StyleSeraglio, S. K. T., Hernández-Velásquez, B. S., Osses-Millar, M. E., Malverde-Muñoz, B. Y., Guerra-Valle, M. E., Pavez-Guajardo, C., & Moreno, J. (2023). Processing of Enriched Pear Slices with Blueberry Juice: Phenolics, Antioxidant, and Color Characteristics. Antioxidants, 12(7), 1408. https://doi.org/10.3390/antiox12071408