A Review on the Protecting Effects and Molecular Mechanisms of Berries Against a Silent Public Health Concern: Non-Alcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. NAFLD Pathogenesis
3. Risk Factors
4. Methodology for Literature Review
5. Protecting Effects of Berries
5.1. Goji Berry
Clinical Study
5.2. Bayberry
Clinical Study
5.3. Berberry
Clinical Study
5.4. Blueberry
5.5. Chokeberry
Clinical Study
5.6. Gooseberry
5.7. Bilberry
5.8. Blackberry
5.9. Açai
5.10. Blackcurrant
Ref. | Extract/Disease | Study Model | Dose | Biological Response |
---|---|---|---|---|
[43] | Aqueous and ethanolic extract of Lycium barbarum (LBAE and LBEE)/oxidative stress | Male Wistar rats | Normal control group High-fat diet (HFD) group HFD + simvastatin (20 mg/kg BW) group HFD + LBAE (50 mg/kg BW) group HFD + LBAE (100 mg/kg BW) group HFD + LBEE (50 mg/kg BW) group HFD + LBEE (100 mg/kg BW) group, 8 weeks | No significant difference in body weight. ↓severity of hepatic lesions, ↓TC, ↓TG, ↓LDL-C, ↑HDL-C, ↓AST, ↓ALP, ↓ALT, ↓Liver MDA, ↑liver GSH, ↑SOD, ↑CAT, ↑GSH-Px, and ↑TAOC. LBEE groups showed better results than LBAE groups. |
[44] | Lycium barbarum polysaccharides (LBP)/NASH | Female SD rats | Control group HFD group Vehicle group (LBP 1 mg/kg, one time/day) HFD + LBP (1 mg/kg), 8 weeks | No significant difference in body weight. ↓fat deposition, inflammation, and collagen formation within the liver. ↓SREBP-1c, ↓PPARγ2, ↑ATGL, ↑adiponectin, ↓pSMAD2, ↓pSMAD4, ↑CAT, ↑GPx, ↓CYP2E1, ↓TNF-α, ↓IL-1β, ↓COX-2, ↓iNOS, ↓p-ERK, ↓p-JNK, and ↓p-c-Jun. |
[45] | Lycium barbarum polysaccharides (LBP)/NASH | Female SD rats | Control group NASH group (HFD for 12 weeks) Vehicle group (LBP 1 mg/kg, one time/day, whole experiment period) Vehicle therapeutic group (LBP 1 mg/kg, one time/day, 9th to 12th week) HFD, + LBP (1 mg/kg), 12 weeks HFD+ therapeutic LBP (1 mg/kg), 9th to 12th week | Reduced body and liver weights of NASH mice. Improved insulin resistance, normalized blood glucose level, improved hepatic histopathology, ↓pSMAD2, ↓pSMAD4. ↓SREBP-1c, ↓PPARγ2, ↑ATGL, ↑adiponectin. ↑CAT, ↑GPx, ↓MDA, ↓TNF-α, ↓IL-1β, ↓COX-2, ↓MCP-1, ↓cleaved caspase-3, ↓Bax-1, ↑Bcl-2, ↓NF-kB, ↓p38 MAPK, ↓p-JNK, and ↓p-ERK1/2. |
BRL-3A cells | Control group Steatosis group (Sodium palmitate acid (0.35 mM PA), 24 h Vehicle-LBP group (LBP only); Steatosis 1 LBP group (PA + LBPs, 24 h) Vehicle-arabinose group (l-arabinose (3 mM) only) Steatosis 1 arabinose group (PA + l-arabinose) Vehicle-carotene group (β-carotene (2 mM) only) Steatosis 1 carotene group (PA and β-carotene (2 mM)), 24 h | Restored cell viability, ameliorated insulin and glucose metabolism, ↓fat accumulation, ↑CAT, ↓TNF-α, And ↓apoptosis. LBP showed stronger protection than β-carotene or 1-arabinose. | ||
[46] | Lycium barbarum polysaccharides (LBP)/NAFLD | Male C57BL/6 mice | Control group HFD group HFD+ LBP (100 mg/kg) group HFD+ LBP (200 mg/kg) group, 12 weeks | ↓TG levels in the serum and liver, ↑SIRT1, p-AMPK, ACC, and ATGL expressions, ↓FAS, blocked hepatic lipogenesis, and activation of SIRT1/AMPK pathway. |
HepG2 cells | 25 μM palmitic acid (PA), 12 h LBP (30, 100, 300, 600, 900 μg/mL), 24 h | ↑SIRT1 deacetylase activity, ↑NAD+/NADH, and ↑ NAD+ levels (dose-dependent). ↑LKB1 deacetylation, ↑pAMPK, ↑pACC, ↓FAS, and ↑ATGL. | ||
[47] | Lycium barbarum polysaccharide (LBP) and olive oil/Liver fibrosis | Male SD rats | Normal group Soybean oil group (CCl4, 1.0 mL/kg BW + soybean oil 4%) Olive oil group (CCl4 + olive oil 4%) Mixed oil group (CCl4 + 2% olive oil + soybean oil 2%) LBP (50 mg LBP/kg BW/day) and soyabean oil group (4% SO + LBP (S + L) LBP and olive oil group (4% olive oil + LBP (O + L) LBP and mixed oil group (Mixed oil + LBP (M+L), 9 weeks | LBP-inhibited caspase-9/3 activities, ↓TNF-α in liver, ↑IL-10, IL-10/TNF-α ratios, ↓TGF-β1, and TIMP-1 levels. LBP + olive oil = ↓liver apoptotic and inflammatory markers and attenuated hepatic TGF-β1 levels |
[48] | Lycium barbarum polysaccharides (LBP)/NASH | C57BL/6N mice | Control group Vehicle LBP group (LBP 1 mg/kg once a day) Methionine-choline deficient (MCD) group (MCD diet, 6 weeks) MCD + LBP group: MCD treatments first three weeks) + 1 mg/kg LBP from 4th to 6th week, once a day | Improved hepatic injury and fibrosis. ↓MDA level, restored CAT, GPx1, ↓Txnip ↓TNF-α, ↓NF-κB-p50, ↑IκB-α, ↓caspase-3/7, ↓Bax-1, ↓cytochrome c, ↓CYP2E1, ↑Bcl-2, ↓serum levels of IL-18/IL-1β, ↓cleaved caspase-1, ↓ASC, ↓NLRP3, and ↓NLRP6 in the liver. |
[49] | Lycium barbarum polysaccharides (LBP)/NAFLD | Male SD rats | Control group HFD group HFD + LBP group (50 mg/kg) HFD + medium intensity aerobic exercise (AE) group HFD + LBP aerobic exercise group, 8 weeks | Inhibiting inflammation and regulating host gut microbiota. ↑Bacteroidetes, ↑short-chain fatty acids, ↓Proteobacteria, and ↓Firmicutes/Bacteroidetes. Restored tight junction protein expressions. Observed additional benefits for LBP + AE than LBP or AE. |
[69] | Blueberry juice (BBJ) + Bifidobacterium (B.) lactis, Lactobacillus bulgaricus, Streptococcus thermophilus/NASH | Male SD rats | Control group Model rat group (saline solution (50 µL/kg) (I.P.) + liquid placebo (20 mL/kg) daily) BBJ group (saline + BBJ (10 mL/kg) + liquid placebo (10 mL/kg) daily) BBJ and PB group (Saline+ BBJ + P (10 mL/kg) daily) PPAR-α inhibitor group (PPAR-α (50 µL/kg) in saline BBJ and PPAR-α inhibitor group (PPAR-α + BBJ + liquid placebo daily) BBJ, P, and PPAR-α inhibitor group (PPAR-α in saline + BBJ+ P daily) | ↓size of lipid droplets, ↑SOD, ↑GSH, ↑HDL-C, ↓AST, ↓ALT, ↓LDL-C, ↓TG, ↓MDA, ↑PPAR-α, ↓SREBP-1c, ↓PNPLA-3,↓IL-6, ↓TNF-α, ↓caspase-3, and ↓Bcl-2. Increased protecting effects of BBJ + PB. |
[70] | Blueberry juice + B. infantis, B. animalis and Lactobacillus acidophilus/NAFLD | SD rats | Control group (CG) HFD group (MG) HFD + blueberry juice (1.5 mL per 100 g weight) once a day, 10 days (BG) HFD + blueberry juice + probiotics 250 mg/100 mL and 20 mL/100 g) once a day, 10 days (BPG) | Reversed hepatic mitochondrial damage, mitochondrial swelling, and hepatic necrosis. ↓MDA, ↓ROS, ↑GSH, ↑SOD, ↑PGC-1α. Antioxidative effect: Juice + probiotics was stronger than blueberry. |
[71] | Blueberry B. infantis, B. animalis and Lactobacillus acidophilus/NAFLD | Male SD rats | Normal control HFD+ lentivirus carrying siRNA NC HFD + SiRNA NC + blueberry and probiotics (BP) HFD + Si RNA HFD + SiRNA + BP Lentivirus carrying siRNA (1 × 108) at a time on alternate days, 12 weeks + BP (1.5 mL/100 g weight, once a day with probiotics at 108 CFU/mL), 8 weeks | ↓lipid deposition, ↓TG, ↑IL-22, ↑JAK1, ↑STAT3, ↓Bax ↓ALT, and ↓AST. |
L-02 | Normal group FFA + siRNA group (negative control) FFA + IL-22 siRNA group FFA + siRNA negative control + BPS group FFA + IL-22 siRNA + BPS group, 24 h, FFA (oleic acid (OA):palmitic acid (PA) = 2:1, 1 mM/L), 24 h | ↓lipid deposition, ↑IL-22, and ↓TG | ||
[72] | Malvidin-3-O-glucoside (M3G) and M3Ga from blueberry/NAFLD | L-02 | FFA (200 μM) + M3G (10, 100, 200, and 400 μM), 24 h | Inhibitory effect on ROS by M3G, M3Ga, ↑GSH compared to FFA treated group. M3G: ↑lysosomal biogenesis (dose-dependent). ↑LAMP1, TFEG (↑ Nuclear, ↓ Cytoplasmic), ↑HO-1, ↑NQO1, ↑γ-GCL, ↑SOD, ↑GPx, and ↑CAT. |
[74] | Chokeberry powder/NAFLD | Male C57BL/6J mice | Normal diet group High cholesterol and HFD group (HF) HF + powder (0.5%) HF + powder (1%), 8 weeks | ↓fat droplet size in the liver, ↓TG, ↓SREBP, ↓ACC, and ↓FAS. Not affected dose-dependently. |
[75] | Ethanol extract of Aronia melanocarpa/NAFLD | Male C57BL/6N mice | Normal diet group HFD group HFD + extract (50 mg/kg daily), 12 weeks | ↓body weight, ↓liver weight, ↓TG, ↓FAS, ↓ALT, ↓AST, ↓leptin, ↑SOD, ↑TEAC, ↓PPARγ2, ↓aP2, and ↓LPL. |
FL83B cells | FFA + extract (40, 80 μg/mL), 24 h | ↓intracellular lipid droplets, ↓PPARγ2, ↓aP2, and ↓LPL. | ||
[78] | Aronia melanocarpa polyphenols (AMP)/Liver disease | Male SD rats | Control group Model group (LPS, 200 μg/kg) Low-dose group: LPS (200 μg/kg) + AMP (50 mg/kg BW) Medium-dose group: LPS (200 μg/kg) + AMP (100 mg/kg BW) High-dose group: LPS (200 μg/kg) + AMP (200 mg/kg BW), 4 weeks | Dose-dependent effect: ↓IL-6, ↓IL-1β, ↓TNF-α. Dose-dependent effect: ↓cleaved caspase-3, ↓Bax, ↓cleaved PARP, ↑Bcl-2. Dose-dependent effect: ↓TLR4, ↓MyD88, ↓p-STAT3, ↓ROS, and ↑GSH. ↑claudin-1, no significant difference for Zonula Occludens-1 and occludin. ↑Lactobacillus, ↑Enterobacteriaceae. ↓Lachnospiraceae, ↓Phascolarctobacterium, and ↓Clostridiales. |
[82] | Emblica officinalis/NAFLD | HepG2 cells | Aqueous extract of E. officinalis (5, 10, 20, 50, and 100 μg/mL), 4, 8, 12, 16, 20, and 24 h | ↑cell death, ↑LDH, ↓ROS, ↑antioxidant capacity, ↑glutathione, ↑SOD, ↑CAT, ↑GPx, ↑GR, and ↑GST. |
[83] | Water extract of Phyllanthus emblica L. fruits (WEPL)/NAFLD | HepG2 cells | FFA (OA:PA, 2:11 mM) + WEPL (50, 100, and 200 μg/mL), 48 h | ↓cellular steatosis, ↓ROS, ↓lipid accumulation, ↑PPARα, ↑CPT-1, ↓ACC, ↓FAS, and ↑pAMPK. |
HSC-T6 cells | Leptin (100 ng/mL) + WEPL (50, 100 and 200 μg/mL), 24 h | ↓collagen I, ↓α-SMA, ↓MMP-2 activation, ↑cytotoxicity, ↑caspase-9, ↑caspase-3, and ↑Bax/Bcl-2. | ||
HepG2 cells | FFA (1 mM, 12 h) + Ellagic acid (EA, 2.5, 5 and 10 μM), 48 h | ↓lipid accumulation and ↓ROS. | ||
HSC-T6 cells | Leptin (100 ng/mL) + EA (2.5, 5 and 10 μM), 24 h | ↓collagen I, ↓α-SMA, ↑Bax/Bcl-2, ↑caspase-9, ↑caspase-3, and ↑PARP. | ||
[85] | Water extract of P. emblica fruit (WEPE)/NAFLD | Male SD rats | Control group HFD group HFD + gallic acid (100 mg/kg BW) HFD + WEPE (L: 125 mg/kg BW) HFD + WEPE (M: 250 mg/kg BW) HFD + WEPE (H: 500 mg/kg BW), 20 weeks | ↓body weight and ↓food efficiency ratio. ↓peritoneal and epididymal fat pads (significant reduction with medium and high doses). ↓AST (WEPE extracts). ↓ALT, ↓LDL, and ↑glutathione reductase (H: WEPE-significant). ↑CAT (all doses), ↑GST and ↑adiponectin (all WEPE doses and gallic acid). ↑PPARα (M-WEPE), ↓LXRα (H-WEPE), ↓SREBP-1c (all WEPE groups). |
[86] | Water extract of P. emblica fruit (WEPE)/NASH | C57BL/6 mice | Control group MCD group MCD + gallic acid group MCD diet + low-dose (125 mg/kg BW) group MCD diet + medium-dose (250 mg/kg BW) group MCD + high dose (500 mg/kg BW), 4 or 8 weeks | ↓AST, ↓ALT, ↑serum cholesterol, ↑serum TG, ↑CAT, ↑GPX, ↑SOD, ↓TBARS, ↓hepatic CYP2E1, ↓IL-1β, and ↓TNF-α. |
[88] | Ethanolic extracts of bilberry (BE)/NASH | Alpha mouse liver 12 cells | T090 (1 μM, LXRα agonist) or Fatty acids (100 μM), BE (5 μg to 10 μg), 3–5 days. | ↓LXR, ↑cell survival/proliferation, and ↓steatosis (dose-dependently). |
Leptin receptor-deficient (BKS.Cg-+ Leprdb/+ Leprdb/Jcl; db/db) mice | Normal control diet group High-fat and high-cholesterol diet (HF-HC) group HF-HC diet + BE (5%) HF-HC diet + BE (10%), 8 weeks | ↓lipid accumulation, ↓oxidative stress, and ↓Nrf2. Improved liver/body weight ratios, hepatic steatosis/TG contents, liver fibrosis ↓FAS, ↑rubicon, ↑p62/SQSTM1, ↓SREBP-1c, ↓FASN, ↓ACC-1, ↑Akt, ↑STAT3, ↑MnSOD, and ↑CAT. | ||
[89] | Bilberry anthocyanins (BA)/NAFLD | C57BL/6N mice | Normal diet Normal diet + BA (2%) Western diet Western Diet + BA (2%), 18 weeks | ↓body weight, ↓liver weight, ↓epididymis fat weight, and ↓lipid accumulation. ↓AST ↓ALT ↓MCP-1. ↓LDL-c, ↑HDL-c, and ↓TG. ↓insulin, ↓insulin resistance ↑Nrf2 ↑SOD2 ↓Keap-1, ↓TBARS, ↓α-SMA, ↑caecal weight, ↓Firmicutes/Bacteroidetes, ↑Bacteroides acidifaciens, ↑Parabacteroides distasonis, ↑Akkermansia muciniphila, ↓Prevotella |
[94] | Blackberry leaf (BL) and fruit (BF) extracts/NAFLD | HepG2 | Palmitate (0.5 mM), 24 h + pretreatment with BF and BL or mixture (BF and BL = 1:2) (30 or 90 μg/mL), 1 h | Improved cell viability and ↓TG. ↓ACC, ↓FAS, ↓SREBP-1c, ↑CPT-1, ↑SOD, ↑GSH-Px, ↓MDA, ↓TNF-α, and ↓IL-1β. ↑SCFA, butyric acid, and propionic acid. Improved gut microbiota composition. BF: ↑Bifidobacteriales, ↑Lactobacillales, ↓Clostridiales BL: ↑Bacteroidales, ↓Enterobacteriales |
[95] | Blackberry leaf and fruit extracts/NASH | SD rats | HFD + 50% ethanol leaf extract (450 mg/kg BW), 50% ethanol fruit extract (450 mg/kg BW), mixture group (2:1, 150 mg/kg BW) Dextrin (NAFLD control, 450 mg/kg BW; control), Positive control, milk thistle extracts (150 mg/kg BW) Normal control | Protection against liver enlargement. ↑CPT-1, ↓ACC, ↓FAS, ↓SREBP-1c. ↑SOD, ↑GSH-Px, and ↑GSH. ↓TNF-α, ↓IL-1β, ↓ALT, ↓AST, ↓TC, ↓LDL-C, and ↓HOMA-IR. ↑Akkermansia in all treatment controls than NAFLD control and ↑Lactobacillus higher in the mixture group than other groups. |
[97] | Açai aqueous extract (AAE)/NAFLD | Male Swiss mice | Control group HFD group HFD + AAE (3 g/kg) once daily, 12 weeks | Improved insulin resistance and ↑adiponectin. ↓TG and ↓lipid droplets. ↑AdipoR2, ↑PPAR-α, ↑CPT-1α, ↓SREBP-1c, ↓FAS, and ↓ACC1. |
[98] | Açai pulp/Hepatic steatosis | Rats Fischer 344 (F344) | Control group CA group (açai pulp, filtered (2 g/day) HF group (HFD diet) HFA (HFD + açai pulp, filtered (2 g/day)), 6 weeks | ↓ALT, ↓total liver fat, ↓TG, and ↓ox-LDL levels. ↑PON1, ↑PON3, ↑APOA-1, and ↑arylesterase activity of PON1. |
[100] | Açai/NAFLD | Male Fischer rats | Control group Fructose-rich diet (60%) + lyophilized açai (2%), 10 weeks | ↓ALT, ↓AST, and ↓degree of steatosis. |
[101] | Aqueous açai extract/NAFLD | Male Swiss mice | Control group HFD group Standard diet + extract (3 g/kg) single daily dose HFD + extract (3 g/kg) single daily dose, 6 weeks | ↓TNF-α, ↓liver weight, and liver fat percentage. ↓MDA/TBARS. Modulated GR, SOD, and CAT. |
HepG2 cells | TBHP + extract (50 and 100 mg/mL), 24 h | Inhibited ROS production. | ||
[102] | Açaí pulp/steatosis | Female Fisher rats, male offspring after birth (P1) and weaning (P21) | Control diet HFD diet Control diet + açaí pulp (2%) HFD + açaí pulp (2%) | ↓liver weight, ↓fat, and ↓cholesterol. ↑Srebpf1, ↑Sirt1, and ↑Fasn. Offspring (HF+ pulp diet) ↓liver weight and serum cholesterol only in P21 (weaning) not in P1 (after birth). |
[103] | Açaí pulp | Female Fisher rats dams and offspring (P21) | HFD + açaí pulp (2%), 21 days | ↑Gpx1, ↑Gpx4, and ↑SOD1 in offsprings. |
[108] | Whole blackcurrant powder/obesity-induced NASH | Male C57BL/6J mice | Low-fat diet group Low-fat diet + blackcurrant powder (6%) HFHD group HFHS + blackcurrant powder (6%), 24 weeks | ↓plasma ALT, ↓liver weight, ↓TG, and ↓ACC. ↓macrophage markers: F4/80, Cd11c, and CCL2. ↓fibrogenic genes: Col1a1, Col6a1, and Col6a3. ↓TGFβ1. ↓Hepatic miR-122-5p and miR-192-5p. |
Ex-vivo isolated splenocytes | LPS (500 ng/mL), 3 h | ↓IL-1β and ↓TNF-α. ↓IL-6 (non-significant). | ||
[109] | Blackcurrant extract (BCE)/Dyslipidemia and steatosis | SD OVX female rats | AIN-93M diet group AIN-93M diet group + BCE (3%), 3 months | ↓Body weight and ↓visceral fat weight. ↓serum TG, ↓TC, and ↓LDL-C. ↓adipocytes diameter. ↓TNF-α, ↓IL-6, and IL-1β. ↓adipocytokines. |
[110] | Acerola polysaccharides (ACP)/NAFLD | Male C57BL/6 mice | Normal diet group Normal diet + ACP (800 mg/kg/day) HFD group HFD + ACP (200 mg/kg/day) HFD + ACP (400 mg/kg/day) HFD + ACP (800 mg/kg/day), 9 weeks | ↓body and liver weights. ↓glucose level (middle and high dose). Serum: ↓insulin level, ↓TG, ↓TC, ↓LDL-C (high dose), and ↓serum ALT (high dose). Hepatic ↓TC, ↓TG, and ↓NEFA (high dose). ↓SREBP1c, ↓ACC, ↓FAS, and ↓SCD-1. ↓TNF-α, ↓IL-6, and ↓IL-1β. ↑GSH/GSSG, ↑SOD, and ↑CAT. ↑Nrf2, ↑HO-1, and ↑NQO-1. ↑complex V. ↓UCP2. ↑PGC-1α. |
[111] | Cranberry extract (CBE)/NAFLD | Male C57BL/6J mice | HFD die group HFD + CBE (0.8%), 21 weeks | ↓FAA and ↓IL-1β. ↓ALT. ↓Total lipid droplet area in the liver. ↓CCL2. ↓TNF-α, ↓COX-2, ↓IL-1β, and ↓UCP2. ↓NOS2 and ↓CCL2 (non-significant). ↓TLR4 and ↓NF-kB. ↓Ccr2 and ↓Ccl3. ↓NLRP3, ↓Txnip, ↓Pparα, and ↓Casp1. ↓caspase 1 (non-significant). |
[112] | Cranberry nutraceuticals/NAFLD | Male albino Wistar rats | Normal diet group HFCD group HFCD + cranberry (50 mg/kg/day) 3 times per week, 8 weeks HFCD + cranberry (100 mg/kg/day), 3 times per week, 8 weeks Normal cho diet + cranberry (100 mg/kg/day), 3 times per week, 8 weeks | ↓AST, ↓ALT, and ↓TG. ↓MDA, ↑GSH, ↑CAT, and ↑SOD. ↓TNF-α, ↓IL-6, and ↓NF-kB. ↑ADP. ↓TGF-β, ↓α-SMA, and ↓hydroxyproline. |
[113] | Cranberry powder/NAFLD | Male C57BL/6 mice | Normal diet group HFD group HFD + cranberry powder (1%) group HFD + cranberry powder (5%) group, 8 weeks | ↓IL-6, ↓serum TG, ↓SREBP-1, and ↓lipid droplets. ↓PPARγ and ↓MCP-1. |
[114] | G. mangostana pericarp ethanolic Extract/liver cirrhosis | Male/Female SD rats | Normal control TAA + Tween 20 (10%) TAA + silymarin TAA (200 mg/kg), 8 weeks (three times weekly) + extract (250 mg/kg), 2 months TAA + extract (500 mg/kg), 2 months | ↓PCNA, ↓α-SMA, and ↓TGF-β1. ↑SOD, ↑CAT, and ↓MDA. Restored ALP, ALT, and AST. |
[115] | G. mangostana pericarp extract/NAFLD/NASH | Male Balb/c mice | Normal diet group HFD group HFD + extract (50 mg/kg/day), 16 weeks | ↓body weight and liver weight. ↓ALT and ↓AST. ↓CD68 positive macrophages. ↓α-SMA expression. ↓FFA, ↓TG, ↓TC, ↓LDL-C, and ↑HDL-C. |
[116] | Lingonberry powder (air-dried)/NAFLD | Male C57BL/6N mice | Low-fat diet group HFD group HFD + LGB (20%) w/w group, 11 weeks | Prevented weight gain and liver weight gain. ↓serum ALT. ↓Lepr. ↓Saa1 and ↓Saa2. ↑Cyp3a11, ↑Cyp2c55, ↑Cyp2c29, ↑Cyp3a59, and ↓Cyp46a1. ↑Hsd17b6 and ↑Igfbp2. ↓Plin4 and Mogat1-lipid metabolism. ↓Lcn2, ↓Cxcl14, and ↓S100a10–inflammatory/immune response or cell migration. ↓Cdkn1a, ↓Tubb6, ↓Tubb2a, regulation of cell cycle. |
[117] | Lingonberry/NAFLD | C57BL/6J male | Control group HFD group HFD + berry (5% w/w), 12 weeks | ↓ALT and ↓AST. ↓plasma lipid levels. ↓TG and cholesterol. ↑lipid droplets compared. ↓ACC-1, ↓SREBP-1c. ↑pAMPK. ↓MDA. Restored GSH. ↑GSH/GSSG. ↑Gclc and ↑Gclm. Restored Nrf2. ↓IL-6, ↓MCP-1, and ↓TNF-α. |
[118] | Lingonberry extract (LBE)/NAFLD | C57BL/6J mice | Control group HFD group HFD + LBE (5% w/w), 12 weeks | ↓Notch1, ↓NICD1, and ↓HES. ↓TG and ↓TC in liver. ↓SREBP-1c and ↓ACC1. ↑ACOX1 and ↑CPTIα. ↓CD36, ↓DGAT1, and ↓DGAT2. |
HepG2 | Pretreated with LBE (1:2000, 1:1000 and 1:500) + C3Glu (0.1 and 1.0 M) and γ-secretase inhibitor, 30 min, + PA, 24 or 48 h | ↓Notch1. ↓SREBP-1c, ↓ACC1, and ↓HES. ↓TG. ↓lipid droplets. | ||
[119] | Maoberry extracts/NAFLD | Male SD rats | HFD group HFD, 4 weeks + extract (0.38 (ML), 0.76 (MM), 1.52 g/kg BW (MH)) HFD group + statin (10 mg/kg), 12 weeks | ↓oxidative stress (MH significant), ↓TNF-α, ↓IL-6, ↓ACC ↓GPAT-1, and ↓SREBP-1c. ↓TG (MH group). ↓AST. |
[120] | Lyophilized maqui/NAFLD | C57BL/6J male mice | HFD group HFD + extract (4 mg/day), 16 weeks | ↓hepatic TG. ↓Cpt1a, ↓Ehhdah, and ↓Pparα. ↓Fasting glucose levels and ↓G6Pase. ↑smile and ↓pgc1α. |
[121] | Raspberry ketone/NASH | SD rats | Normal control group HFD group HFD + raspberry ketone low-dose (0.5%) group HFD+ raspberry ketone middle dose (1%) group HFD+ raspberry ketone high-dose (2%) group, 8 weeks | ↓AST, ↓ALT, ↓ALP, ↓Glucose, ↓insulin, ↓IR, ↓Insulin-Sensitive Index, ↓leptin, ↓FFA, ↓TNF-α, ↓MDA (high dose effective), ↑SOD, ↑adiponectin ↑PPAR-α, ↑LDLR, and ↓hs-CRP. All doses were effective. |
[122] | Raspberry ketone (commercial)/NAFLD | Male Wistar rats | NC group = normal control diet (NCD) FLC group: HFFD diet FLN group: HFFD (7 weeks) shifted to NCD (8 weeks) FLCR group: HFFD (7 weeks) shifted to calorie-restricted diet (8 weeks) FLRK group: Rats fed HFFD (7 weeks), shifted to normal chew diet + RK (55 mg/kg/day, orally), 8 weeks | ↓body weight, ↓liver tissue, ↓TC, ↓TAG, ↓LDL-C, ↑HDL-C, ↓ALT, ↓AST, ↓SREBP-1c, ↑lipid oxidation, ↓FAS, ↑PPAR-α, ↑CPT-1, and ↑p-AMPK. |
[123] | Raspberry ketone (RK) | Male C57BL/6J mice | TAA (100 mg/kg, 3 times/week), 2nd to 5th week (200 mg/kg, 2 times/week) + RK (10, 20, and 40 mg/kg), and positive group TAA + curcumin (20 mg/kg), and individual group, RK (40 mg/kg) | ↓AST, ↓ALT, ↓hydroxy proline, ↓α-SMA, ↓collagen I, ↓TIMP-1, ↓TIMP-1/MMP13, ↓Cleaved caspase-1, ↓IL-6, ↓IL-1β, ↓MPO, ↓IL-18, and ↓TNF-α. Inhibited EMT ↑E-cadherin, ↑β-catenin, ↑ZO-1, ↓N-cadherin, and ↓vimentin. ↓PPARγ, ↑FXR, ↑PGC-1α, and ↑SHP. Activated FXR-PGC-1α signaling |
HSC-T6, LX-2, and THP-1 | HSC-T6 + pretreated with TGF-β (10 ng/mL), 2 h, and THP-1 + LPS pretreatment (10 ng/mL), 6 h + RK (6.25, 12.5, 25, and 50 μM), 24 h | RK (50 μM) ↓α-SMA, ↓collagen I, ↓TIMP-1, and ↓TIMP-1/MMP13. ↓Cleaved caspase-1, ↓IL-1β, and ↓IL-18. Inhibited EMT ↑E-cadherin, ↑β-catenin, ↑ZO-1, ↓N-cadherin, and ↓vimentin. ↓PPARγ, ↑FXR, ↑PGC-1α, and ↑SHP. | ||
[124] | Raspberry extract (RE)/NAFLD | Male Wistar rats | HFLF + RE (0.64%) (HP diet). HFLF + RE + Fructooligosaccharides (FOSs, 3%) (HPF diet) HFLF + RE + pectin (3%) (HPP), 12 weeks | ↓PPARα, ↓ANGPTL4, ↓PPARλ, ↓SREBP1c, ↓AST, ↓TG, and ↓IL-6 (mainly HPF>HP>HPP). RE+ FOSs = more favorable effect. |
[125] | Raspberry extract + FOSs/Advanced NAFLD | Zucker rats, genetically obese models | Control diet group HFD Raspberry extract (0.63%) + FOSs (3%), 12 weeks | ↓body weight gain, ↓body fat, ↓liver mass, ↓FFA, ↓insulin, ↓AST, ↓ALT, ↓ALP, ↑albumin, ↑collagen type IV, ↓TG, and ↓cholesterol. Hepatic oxidative stress and fibrosis indicators: ↓MDA, ↓collagen (measured as hydroxyproline content, ↑GSH/GSSG, ↑shp, ↑fxr, ↓ahr, ↓cyp7b1, and ↓cyp7a1. |
[126] | Lonicera caerulea polyphenols (LCP)/NASH | C57BL/6N mice | Normal diet Normal diet + LCP (1%) HFD group HFD + carbon tetrachloride (CCL4) HFD + CCL4 + LCP (0.5%), HFD + CCL4 + LCP (1%), 30 days, CCL4 (0.05 mL/BW) to each group every 3 days till day 45 (NASH induction) | Improved histopathological features, ↓GOT, ↓GGT, ↓TG, ↓GPT, ↓G-CSF, ↓KC, ↓TNF-α, ↓IL-1β, ↓IL-1α, ↓IL-2, ↓IL-3, ↓IL-4, ↓IL-5, ↓IL-6, ↓IL-10, ↓IL-13, ↓IL-17, ↓MCP-1, ↓IFN-λ, ↓IL-12(p70), ↓eotaxin, ↓GMCSF, ↓MIP-1α, ↓MIP-1β, and ↓RANTES. Recovered SOD with 1% LCP. Recovered mnSOD and Nrf2 (dose-dependent). ↓TBARS (dose-dependent). |
[127] | Lonicera caerulea polyphenols (LCBP)/NAFLD | C57BL/6N mice | Normal diet Normal diet + LCBP (1%) HFD group HFD + LCBP 0.5%, or HFD + LCBP 1%, 45 days | ↓IL-2, ↓IL-6, ↓MCP-1, ↓TNF-α, ↓endotoxin, ↓Firmicutes, ↑Bacteroidetes, ↑Proteobacteria, ↑Verrucomicrobia (with 1%), and ↓Firmicutes to Bacteroidetes (dose-dependent manner) |
[128] | Blue honeysuckle berry extract (BHE)/NAFLD | C57BL/6N mice | Normal diet group HFD group HFD + BHE (0.5%) HFD + BHE (1%), 45 days | ↓intra-abdominal fat, ↓TG, ↓glucose, ↓insulin, ↓HOMA-IR (dose-dependent). ↓lipid peroxidation (TBARS), ↑Nrf2, ↑HO-1, and ↑MnSOD. |
[129] | Honeyberry extract (HBE) NAFLD | Imprinting control region (ICR) male mice | Normal control diet group HFD group HFD + BHE (0.5%) HFD + BHE (1%), 6 weeks | ↓body mass, serum ↓leptin, ↓TC, ↓TG, ↓AST, ↓ALT, ↓NO, ↓MDA, ↓adipocyte size, ↑SOD, ↓PPARγ, ↑GPx, ↑CAT, ↓SREBP-1c, ↓C/EBPα, ↓FAS, ↑CPT-1, ↑PPARα. ↑p-AMPK, ↑p-ACC (dose-dependent) |
HepG2 | FFA (1 mM) + HBE (250, 500, and 1000 µg/mL), 24 h | ↓lipid accumulation, ↓TG, ↓SREBP-1c, ↓C/EBPα, ↓PPARγ, ↓FAS, ↑CPT-1, ↑PPARα (dose-dependent), ↑p-AMPK, and ↑p-ACC. | ||
[130] | Saskatoon berry powder (SBP)/Steatosis and insulin resistance | C57 BL/6J mice | Control diet group HFHS group HFHS + SBP/kg (5%) and HFHS + C3G/kg (45.2 mg) W/W, 10 weeks | ↓fasting plasma glucose, ↓TG, ↓fasting plasma cholesterol, ↓insulin, ↓HOMA-IR, ↓ALT, ↓PNPLA3, ↓PAI-1, ↓MCP-1, ↓TNF-α, ↓NOX2, ↓CHOP, ↓NOX4, ↓MCP-1, and ↓TLR4. Comparable results: SBP (5%) and equivalent dose of C3G (45.2 mg). |
[131] | Schisandra chinensis (SC) extract/NAFLD | C57BL/6J mice | ER stress development: SC extract (50 and 100 mg/kg BW), 2 days, + DMSO or tunicamycin (1 mg/kg BW) IP, 24 h HFD obese mice Control group HFD group HFD + SC extract group (100 mg/kg/day) HFD and SC extract group (300 mg/kg/day), 16 weeks | ↓GRP78, ↓CHOP, ↓TG, and ↓XBP-1c, dose-dependent effect in tunicamycin-injected mice Liver of obese mice: ↓IL-6, ↓TNF-α, and ↓MCP-1. |
HepG2 cells | Tunicamycin- or palmitate-treated + SC extract (10, 50, and 100 μg/mL), 16 h + tunicamycin (2 μg/mL), 6 h or palmitate (400 μM), 24 h | Tunicamycin- or palmitate-treated HepG2: ↓GRP78, ↓CHOP, ↓TG, and ↓XBP-1c. palmitate-treated HepG2: ↓IL-6, ↓TNF-α, and ↓MCP-1. ↓FAS, ↓SCD1, and ↓ACC1. | ||
[132] | Schisandra chinensis compound Gomisin J/NAFLD | HepG2 cells | Compound pretreatment (10, 20, and 40 μM), 1 h + OA−BSA complex (0.5 mM), 24 h | ↓SREBP-1c, ↓FAS, ↓ACC, ↓HMGCR, ↓DGAT1, ↑PPARα, ↑PPARδ, ↑PGC-1α, ↑ACOX1, ↑CPT-1, ↑UCP2, ↓fetuin-A, ↓TNF-α, ↓MCP-1, ↓NFKB1 ↓NFKB2, ↓TG, ↑p-AMPK, ↑p-ACC, ↑p-CaMKIIβ, and ↑p-LKB1. |
[133] | Schisandra chinensis berry ethanolic (SCE, 70%) extract/Steatosis | C57BL/6 J mice | Western diet Western diet + SCE (1% w/w), 12 weeks | ↓body weight, ↓liver weight, ↓SREBP-1c, ↓FAS, ↓PPARγ, ↓SCD-1, ↓ACC-1, ↓total acetyl lysine expression, and ↓histone H3 lysine 9 acetylation. |
HepG2 | Oleic acid (0.5 mM) + SCE (100, 200 μg/mL), 24 h | ↓total acetyl lysine expression. ↓histone H3 lysine 9 acetylation. Inhibited total HAT. | ||
[134] | Extract of dried seabuckthorn leaves (SL) and Flavonoid glycosides extract (SLG)/Steatosis and metabolic disturbances | C57 BL/6J mice | Normal diet group HFD diet group HFD, HFD + SL (1.8% w/w), HFD + SLG (0.04% w/w), 12 weeks | ↓body weight gain, ↓lipogenesis, ↑energy expenditure, ↑CPT1-a, ↓GOT, ↓GPT, ↓FAS, ↓ME, ↓PAP, ↓SREBP-1c, ↑fecal cholesterol, ↑fecal TG, ↑fecal fatty acids, ↑ABCG5, ↑ABCG8, ↓insulin, ↓HOMA-IR, ↓G6Pase, ↓PEPCK, ↑IRS2, ↓GIP, ↓resistin, ↓leptin, ↓TNF-α, ↓IL-1 , ↓IL-6, and ↓PAI-1. |
[135] | Sea buckthorn pulp oil (SBPO), sea buckthorn seed oil (SBSO)/NAFLD | male C57BL/6J mice | HFD + SBPO or HFD + SBSO, 12 weeks | Serum and hepatic: ↓TG, ↓LDL-C, ↓hepatic histopathological score, and ↓perirenal fat buildup. Modulated gut microbiota. |
5.11. Acerola
5.12. Cranberry
Clinical Study
5.13. Mangosteen
5.14. Lingonberry
5.15. Maoberry
5.16. Maqui
5.17. Raspberry
Clinical Study
5.18. Honeyberry
5.19. Saskatoon Berry
5.20. Schisandra Berry
5.21. Sea Buckthorn
Clinical Study
6. Mechanisms
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Rowe, I.A. Lessons from epidemiology: The burden of liver disease. Dig. Dis. 2017, 35, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; De, A.; Chowdhury, A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl. Gastroenterol. Hepatol. 2020, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef]
- Jeong, E.H.; Jun, D.W.; Cho, Y.K.; Choe, Y.G.; Ryu, S.; Lee, S.M.; Jang, E.C. Regional prevalence of non-alcoholic fatty liver disease in Seoul and Gyeonggi-do, Korea. Clin. Mol. Hepatol. 2013, 19, 266. [Google Scholar] [CrossRef]
- Ito, T.; Ishigami, M.; Zou, B.; Tanaka, T.; Takahashi, H.; Kurosaki, M.; Maeda, M.; Thin, K.N.; Tanaka, K.; Takahashi, Y. The epidemiology of NAFLD and lean NAFLD in Japan: A meta-analysis with individual and forecasting analysis, 1995–2040. Hepatol. Int. 2021, 15, 366–379. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, F.; Wang, W.; Zhang, X.J.; Ji, Y.X.; Zhang, P.; She, Z.G.; Zhu, L.; Cai, J.; Li, H. Epidemiological features of NAFLD from 1999 to 2018 in China. Hepatology 2020, 71, 1851–1864. [Google Scholar] [CrossRef]
- Eslam, M.; Sanyal, A.J.; George, J.; Sanyal, A.; Neuschwander-Tetri, B.; Tiribelli, C.; Kleiner, D.E.; Brunt, E.; Bugianesi, E.; Yki-Järvinen, H. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020, 158, 1999–2014.e1. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wong, V.W.-S.; Dufour, J.-F.; Schattenberg, J.M. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Kim, G.-A.; Moon, J.H.; Kim, W. Critical appraisal of metabolic dysfunction-associated steatotic liver disease: Implication of Janus-faced modernity. Clin. Mol. Hepatol. 2023, 29, 831–843. [Google Scholar] [CrossRef]
- Sozio, M.S.; Liangpunsakul, S.; Crabb, D. The role of lipid metabolism in the pathogenesis of alcoholic and nonalcoholic hepatic steatosis. In Seminars in Liver Disease; Thieme Medical Publishers: Stuttgart, Germany, 2010; pp. 378–390. [Google Scholar]
- Cotter, T.G.; Rinella, M. Nonalcoholic fatty liver disease 2020: The state of the disease. Gastroenterology 2020, 158, 1851–1864. [Google Scholar] [CrossRef]
- Younes, R.; Rosso, C.; Petta, S.; Cucco, M.; Marietti, M.; Caviglia, G.P.; Ciancio, A.; Abate, M.L.; Cammà, C.; Smedile, A. Usefulness of the index of NASH–ION for the diagnosis of steatohepatitis in patients with non-alcoholic fatty liver: An external validation study. Liver Int. 2018, 38, 715–723. [Google Scholar] [CrossRef]
- Wong, V.W.-S. Current prevention and treatment options for NAFLD. Obes. Fat. Liver Liver Cancer 2018, 1061, 149–157. [Google Scholar] [CrossRef]
- Hansen, H.H.; Feigh, M.; Veidal, S.S.; Rigbolt, K.T.; Vrang, N.; Fosgerau, K. Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Dis. Today 2017, 22, 1707–1718. [Google Scholar] [CrossRef]
- Bashir, A.; Duseja, A.; De, A.; Mehta, M.; Tiwari, P. Non-alcoholic fatty liver disease development: A multifactorial pathogenic phenomena. Liver Res. 2022, 6, 72–83. [Google Scholar] [CrossRef]
- Baratta, F.; Pastori, D.; Ferro, D.; Carluccio, G.; Tozzi, G.; Angelico, F.; Violi, F.; Del Ben, M. Reduced lysosomal acid lipase activity: A new marker of liver disease severity across the clinical continuum of non-alcoholic fatty liver disease? World J. Gastroenterol. 2019, 25, 4172. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, A.J.; Miller, V. Regulatory science and drug approval for alcoholic and nonalcoholic steatohepatitis. Gastroenterology 2016, 150, 1723–1727. [Google Scholar] [CrossRef] [PubMed]
- Serfaty, L. Management of patients with non-alcoholic steatohepatitis (NASH) in real life. Liver Int. 2018, 38, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.A.; Bedossa, P.; Guy, C.D.; Schattenberg, J.M.; Loomba, R.; Taub, R.; Labriola, D.; Moussa, S.E.; Neff, G.W.; Rinella, M.E.; et al. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N. Engl. J. Med. 2024, 390, 497–509. [Google Scholar] [CrossRef]
- Keam, S.J. Resmetirom: First Approval. Drugs 2024, 84, 729–735. [Google Scholar] [CrossRef]
- Kamzolas, I. A Systems Biology Approach to the Pathogenesis and Progression of Non-Alcoholic Fatty Liver Disease. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2022. [Google Scholar]
- Karkucinska-Wieckowska, A.; Simoes, I.C.; Kalinowski, P.; Lebiedzinska-Arciszewska, M.; Zieniewicz, K.; Milkiewicz, P.; Górska-Ponikowska, M.; Pinton, P.; Malik, A.N.; Krawczyk, M. Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. Eur. J. Clin. Investig. 2022, 52, e13622. [Google Scholar] [CrossRef] [PubMed]
- Jou, J.; Choi, S.S.; Diehl, A.M. Mechanisms of disease progression in nonalcoholic fatty liver disease. In Seminars in Liver Disease; Thieme Medical Publishers: Stuttgart, Germany, 2008; pp. 370–379. [Google Scholar]
- Pathania, D.; Millard, M.; Neamati, N. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv. Drug Delivery Rev. 2009, 61, 1250–1275. [Google Scholar] [CrossRef]
- Ajaz, S.; McPhail, M.J.; Gnudi, L.; Trovato, F.M.; Mujib, S.; Napoli, S.; Carey, I.; Agarwal, K. Mitochondrial dysfunction as a mechanistic biomarker in patients with non-alcoholic fatty liver disease (NAFLD). Mitochondrion 2021, 57, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Ajith, T.A. Role of mitochondria and mitochondria-targeted agents in non-alcoholic fatty liver disease. Clin. Exp. Pharmacol. Physiol. 2018, 45, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Meex, R.C.; Blaak, E.E. Mitochondrial dysfunction is a key pathway that links saturated fat intake to the development and progression of NAFLD. Mol. Nutr. Food Res. 2021, 65, 1900942. [Google Scholar] [CrossRef]
- Fotis, D.; Liu, J.; Dalamaga, M. Could gut mycobiome play a role in NAFLD pathogenesis? Insights and therapeutic perspectives. Metabol. Open 2022, 14, 100178. [Google Scholar] [CrossRef]
- Barreby, E.; Chen, P.; Aouadi, M. Macrophage functional diversity in NAFLD—More than inflammation. Nat. Rev. Endocrinol. 2022, 18, 461–472. [Google Scholar] [CrossRef]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef]
- Lonardo, A.; Nascimbeni, F.; Maurantonio, M.; Marrazzo, A.; Rinaldi, L.; Adinolfi, L.E. Nonalcoholic fatty liver disease: Evolving paradigms. World J. Gastroenterol. 2017, 23, 6571. [Google Scholar] [CrossRef]
- Duseja, A.; Singh, S.P.; Saraswat, V.A.; Acharya, S.K.; Chawla, Y.K.; Chowdhury, S.; Dhiman, R.K.; Jayakumar, R.V.; Madan, K.; Misra, S.P. Non-alcoholic fatty liver disease and metabolic syndrome—Position paper of the Indian National Association for the Study of the Liver, Endocrine Society of India, Indian College of Cardiology and Indian Society of Gastroenterology. J. Clin. Exp. Hepatol. 2015, 5, 51–68. [Google Scholar] [CrossRef]
- Jaiswal, V.; Lee, H.-J. Antioxidant activity of Urtica dioica: An important property contributing to multiple biological activities. Antioxidants 2022, 11, 2494. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Sanyal, A.J. Management of NAFLD: A stage-based approach. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Kortesniemi, M. Clinical evidence on potential health benefits of berries. Curr. Opin. Food Sci. 2015, 2, 36–42. [Google Scholar] [CrossRef]
- Golovinskaia, O.; Wang, C.-K. Review of Functional and Pharmacological Activities of Berries. Molecules 2021, 26, 3904. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Lee, H.-J. Anti-inflammatory activity of bilberry (Vaccinium myrtillus L.). Curr. Issues Mol. Biol. 2022, 44, 4570–4583. [Google Scholar] [CrossRef]
- Lavefve, L.; Howard, L.R.; Carbonero, F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct. 2020, 11, 45–65. [Google Scholar] [CrossRef]
- Yu, J.; Yan, Y.; Zhang, L.; Mi, J.; Yu, L.; Zhang, F.; Lu, L.; Luo, Q.; Li, X.; Zhou, X.; et al. A comprehensive review of goji berry processing and utilization. Food Sci. Nutr. 2023, 11, 7445–7457. [Google Scholar] [CrossRef]
- Aparecida Plastina Cardoso, M.; Windson Isidoro Haminiuk, C.; Pedro, A.C.; de Andrade Arruda Fernandes Fernandes, I.; Akemi Casagrande Yamato, M.; Maciel, G.M.; Do Prado, I.N. Biological Effects of Goji Berry and the Association with New Industrial Applications: A Review. Food Rev. Int. 2023, 39, 2990–3007. [Google Scholar] [CrossRef]
- Ma, R.-H.; Zhang, X.-X.; Ni, Z.-J.; Thakur, K.; Wang, W.; Yan, Y.-M.; Cao, Y.-L.; Zhang, J.-G.; Rengasamy, K.R.; Wei, Z.-J. Lycium barbarum (Goji) as functional food: A review of its nutrition, phytochemical structure, biological features, and food industry prospects. Crit. Rev. Food Sci. Nutr. 2022, 63, 1–15. [Google Scholar] [CrossRef]
- Cui, B.; Liu, S.; Lin, X.; Wang, J.; Li, S.; Wang, Q.; Li, S. Effects of Lycium barbarum aqueous and ethanol extracts on high-fat-diet induced oxidative stress in rat liver tissue. Molecules 2011, 16, 9116–9128. [Google Scholar] [CrossRef]
- Xiao, J.; Liong, E.; Ching, Y.; Chang, R.; Fung, M.; Xu, A.; So, K.; Tipoe, G. Lycium barbarum polysaccharides protect rat liver from non-alcoholic steatohepatitis-induced injury. Nutr. Diabetes 2013, 3, e81. [Google Scholar] [CrossRef]
- Xiao, J.; Xing, F.; Huo, J.; Fung, M.L.; Liong, E.C.; Ching, Y.P.; Xu, A.; Chang, R.C.C.; So, K.F.; Tipoe, G.L. Lycium barbarum polysaccharides therapeutically improve hepatic functions in non-alcoholic steatohepatitis rats and cellular steatosis model. Sci. Rep. 2014, 4, 5587. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Li, W.; Li, J.; Li, Y.; Song, H.; Luan, Y.; Qi, H.; Ma, L.; Lu, X.; Yang, Y. Lycium barbarum polysaccharide attenuates high-fat diet-induced hepatic steatosis by up-regulating SIRT1 expression and deacetylase activity. Sci. Rep. 2016, 6, 36209. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.-Y.; Chao, J.C.-J. Olive oil combined with Lycium barbarum polysaccharides attenuates liver apoptosis and inflammation induced by carbon tetrachloride in rats. J. Funct. Foods 2018, 48, 329–336. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, F.; Liong, E.C.; So, K.-F.; Tipoe, G.L. Lycium barbarum polysaccharides improve hepatic injury through NFkappa-B and NLRP3/6 pathways in a methionine choline deficient diet steatohepatitis mouse model. Int. J. Biol. Macromol. 2018, 120, 1480–1489. [Google Scholar] [CrossRef]
- Gao, L.-L.; Ma, J.-M.; Fan, Y.-N.; Zhang, Y.-N.; Ge, R.; Tao, X.-J.; Zhang, M.-W.; Gao, Q.-H.; Yang, J.-J. Lycium barbarum polysaccharide combined with aerobic exercise ameliorated nonalcoholic fatty liver disease through restoring gut microbiota, intestinal barrier and inhibiting hepatic inflammation. Int. J. Biol. Macromol. 2021, 183, 1379–1392. [Google Scholar] [CrossRef]
- Gao, L.-L.; Li, Y.-X.; Ma, J.-M.; Guo, Y.-Q.; Li, L.; Gao, Q.-H.; Fan, Y.-N.; Zhang, M.-W.; Tao, X.-J.; Yu, J.-Q. Effect of Lycium barbarum polysaccharide supplementation in non-alcoholic fatty liver disease patients: Study protocol for a randomized controlled trial. Trials 2021, 22, 566. [Google Scholar] [CrossRef]
- Bao, J.; Cai, Y.; Sun, M.; Wang, G.; Corke, H. Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J. Agric. Food Chem. 2005, 53, 2327–2332. [Google Scholar] [CrossRef]
- Kang, W.; Li, Y.; Xu, Y.; Jiang, W.; Tao, Y. Characterization of aroma compounds in Chinese bayberry (Myrica rubra Sieb. et Zucc.) by gas chromatography mass spectrometry (GC-MS) and olfactometry (GC-O). J. Food Sci. 2012, 77, C1030–C1035. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Z.; Sun, L.; Ren, H.; Zheng, X.; Liang, S.; Qi, X. An overview of the nutritional value, health properties, and future challenges of Chinese bayberry. PeerJ 2022, 10, e13070. [Google Scholar] [CrossRef]
- Guo, H.; Zhong, R.; Liu, Y.; Jiang, X.; Tang, X.; Li, Z.; Xia, M.; Ling, W. Effects of bayberry juice on inflammatory and apoptotic markers in young adults with features of non-alcoholic fatty liver disease. Nutrition 2014, 30, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Chan, H.Y.; Wong, G.H.; Chan, A.H.; Choi, P.L.; Chan, H.Y.; Chim, A.L.; Yeung, D.W.; Yu, J.; Chu, W.W. Assessment of non-alcoholic fatty liver disease using serum total cell death and apoptosis markers. Alim. Pharmacol. Ther. 2012, 36, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, S.F.; Saleem, H.; Khurshid, U.; Khursheed, A.; Alam, M.T.; Imran, M.; Abida, A.; Nayeem, N.; Ali Gill, M.S. Genus Berberis: A Comprehensive and Updated Review on Ethnobotanical Uses, Phytochemistry and Pharmacological Activities. Chem. Biodivers. 2024, e202400911. [Google Scholar] [CrossRef]
- Pérez-Rubio, K.G.; González-Ortiz, M.; Martínez-Abundis, E.; Robles-Cervantes, J.A.; Espinel-Bermúdez, M.C. Effect of berberine administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Met. Syndr. Relat. Disord. 2013, 11, 366–369. [Google Scholar] [CrossRef]
- Derosa, G.; Limas, C.P.; Macías, P.C.; Estrella, A.; Maffioli, P. State of the art papers Dietary and nutraceutical approach to type 2 diabetes. Arch. Med. Sci. 2014, 10, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Wang, Z.; Zhang, J.; Yan, H.; Bian, H.; Xia, M.; Lin, H.; Jiang, J.; Gao, X. Lipid profiling of the therapeutic effects of berberine in patients with nonalcoholic fatty liver disease. J. Transl. Med. 2016, 14, 266. [Google Scholar] [CrossRef]
- Yan, H.-M.; Xia, M.-F.; Wang, Y.; Chang, X.-X.; Yao, X.-Z.; Rao, S.-X.; Zeng, M.-S.; Tu, Y.-F.; Feng, R.; Jia, W.-P. Efficacy of berberine in patients with non-alcoholic fatty liver disease. PLoS ONE 2015, 10, e0134172. [Google Scholar] [CrossRef]
- Zhu, X.; Bian, H.; Wang, L.; Sun, X.; Xu, X.; Yan, H.; Xia, M.; Chang, X.; Lu, Y.; Li, Y. Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic. Biol. Med. 2019, 141, 192–204. [Google Scholar] [CrossRef]
- Wu, L.; Xia, M.; Duan, Y.; Zhang, L.; Jiang, H.; Hu, X.; Yan, H.; Zhang, Y.; Gu, Y.; Shi, H. Berberine promotes the recruitment and activation of brown adipose tissue in mice and humans. Cell Death Dis. 2019, 10, 468. [Google Scholar] [CrossRef]
- Afsharinasab, M.; Mohammad-Sadeghipour, M.; Hajizadeh, M.R.; Khoshdel, A.; Mirzaiey, V.; Mahmoodi, M. The effect of hydroalcoholic Berberis integerrima fruits extract on the lipid profile, antioxidant parameters and liver and kidney function tests in patients with nonalcoholic fatty liver disease. Saudi J. Biol. Sci. 2020, 27, 2031–2037. [Google Scholar] [CrossRef]
- Harrison, S.A.; Gunn, N.; Neff, G.W.; Kohli, A.; Liu, L.; Flyer, A.; Goldkind, L.; Di Bisceglie, A.M. A phase 2, proof of concept, randomised controlled trial of berberine ursodeoxycholate in patients with presumed non-alcoholic steatohepatitis and type 2 diabetes. Nat. Commun. 2021, 12, 5503. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, C.; Hao, S.; Song, H.; Yang, L. The therapeutic effect of berberine in the treatment of nonalcoholic fatty liver disease: A meta-analysis. Evid.-Based Complement. Altern. Med. 2016, 2016, 3593951. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Zhao, Y.; Dong, F.; Yan, Z.; Zheng, W.; Fan, J.; Sun, G. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. J. Ethnopharmacol. 2015, 161, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Costa, E.M.; Veiga, M.; Morais, R.M.; Calhau, C.; Pintado, M. Health promoting properties of blueberries: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 181–200. [Google Scholar] [CrossRef]
- Norberto, S.; Silva, S.; Meireles, M.; Faria, A.; Pintado, M.; Calhau, C. Blueberry anthocyanins in health promotion: A metabolic overview. J. Funct. Foods 2013, 5, 1518–1528. [Google Scholar] [CrossRef]
- Ren, T.; Zhu, J.; Zhu, L.; Cheng, M. The combination of blueberry juice and probiotics ameliorate non-alcoholic steatohepatitis (NASH) by affecting SREBP-1c/PNPLA-3 pathway via PPAR-α. Nutrients 2017, 9, 198. [Google Scholar] [CrossRef]
- Ren, T.; Zhu, L.; Shen, Y.; Mou, Q.; Lin, T.; Feng, H. Protection of hepatocyte mitochondrial function by blueberry juice and probiotics via SIRT1 regulation in non-alcoholic fatty liver disease. Food Funct. 2019, 10, 1540–1551. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, M.; Zhao, X.; Mu, M.; Cheng, M. Blueberry, combined with probiotics, alleviates non-alcoholic fatty liver disease via IL-22-mediated JAK1/STAT3/BAX signaling. Food Funct. 2018, 9, 6298–6306. [Google Scholar] [CrossRef]
- Xu, Y.; Ke, H.; Li, Y.; Xie, L.; Su, H.; Xie, J.; Mo, J.; Chen, W. Malvidin-3-O-Glucoside from blueberry ameliorates nonalcoholic fatty liver disease by regulating transcription factor EB-mediated lysosomal function and activating the Nrf2/ARE signaling pathway. J. Agric. Food Chem. 2021, 69, 4663–4673. [Google Scholar] [CrossRef]
- Borowska, S.; Brzóska, M.M. Chokeberries (Aronia melanocarpa) and their products as a possible means for the prevention and treatment of noncommunicable diseases and unfavorable health effects due to exposure to xenobiotics. Compr. Rev. Food Sci. Food Saf. 2016, 15, 982–1017. [Google Scholar] [CrossRef]
- Park, H.; Liu, Y.; Kim, H.-S.; Shin, J.-H. Chokeberry attenuates the expression of genes related to de novo lipogenesis in the hepatocytes of mice with nonalcoholic fatty liver disease. Nutr. Res. 2016, 36, 57–64. [Google Scholar] [CrossRef]
- Park, C.-H.; Kim, J.-H.; Lee, E.B.; Hur, W.; Kwon, O.-J.; Park, H.-J.; Yoon, S.K. Aronia melanocarpa extract ameliorates hepatic lipid metabolism through PPARγ2 downregulation. PLoS ONE 2017, 12, e0169685. [Google Scholar] [CrossRef]
- Peng, Y.; Yan, Y.; Wan, P.; Chen, D.; Ding, Y.; Ran, L.; Mi, J.; Lu, L.; Zhang, Z.; Li, X. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Rad. Biol. Med. 2019, 136, 96–108. [Google Scholar] [CrossRef]
- Wan, M.L.; Ling, K.; El-Nezami, H.; Wang, M. Influence of functional food components on gut health. Crit. Rev. Food Sci. Nutr. 2019, 59, 1927–1936. [Google Scholar] [CrossRef]
- Kong, Y.; Yan, T.; Tong, Y.; Deng, H.; Tan, C.; Wan, M.; Wang, M.; Meng, X.; Wang, Y. Gut microbiota modulation by polyphenols from Aronia melanocarpa of LPS-induced liver diseases in rats. J. Agric. Food Chem. 2021, 69, 3312–3325. [Google Scholar] [CrossRef]
- Boncheva, M.; Georgiev, G.; Shishov, V. Effects of Aronia Melanocarpa fruit juice in improving medical test results and creating a feeling of health in patients with non-alcoholic fatty liver disease-NAFLD (steatosis). J. Gene Med. 2013, 2, 21–30. [Google Scholar]
- Khan, K.H. Roles of Emblica officinalis in medicine-A review. Bot. Res. Int. 2009, 2, 218–228. [Google Scholar]
- Srivasuki, K. Nutritional and health care benefits of Amla. J. Pharmacogn. 2012, 3, 147–151. [Google Scholar]
- Shivananjappa, M.M.; Joshi, M.K. Influence of Emblica officinalis aqueous extract on growth and antioxidant defense system of human hepatoma cell line (HepG2). Pharm. Biol. 2012, 50, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-C.; Yang, S.-H.; Hsia, S.-M.; Wu, C.-H.; Yen, G.-C. Inhibitory effects of Phyllanthus emblica L. on hepatic steatosis and liver fibrosis in vitro. J. Funct. Foods 2016, 20, 20–30. [Google Scholar] [CrossRef]
- Chang, J.-J.; Hsu, M.-J.; Huang, H.-P.; Chung, D.-J.; Chang, Y.-C.; Wang, C.-J. Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. J. Agric. Food Chem. 2013, 61, 6069–6076. [Google Scholar] [CrossRef]
- Huang, C.-Z.; Tung, Y.-T.; Hsia, S.-M.; Wu, C.-H.; Yen, G.-C. The hepatoprotective effect of Phyllanthus emblica L. fruit on high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in SD rats. Food Funct. 2017, 8, 842–850. [Google Scholar] [CrossRef]
- Tung, Y.-T.; Huang, C.-Z.; Lin, J.-H.; Yen, G.-C. Effect of Phyllanthus emblica L. fruit on methionine and choline-deficiency diet-induced nonalcoholic steatohepatitis. J. Food Drug Anal. 2018, 26, 1245–1252. [Google Scholar] [CrossRef]
- Cassinese, C.; Combarieu, E.D.; Falzoni, M.; Fuzzati, N.; Pace, R.; Sardone, N. New liquid chromatography method with ultraviolet detection for analysis of anthocyanins and anthocyanidins in Vaccinium myrtillus fruit dry extracts and commercial preparations. J. AOAC Int. 2007, 90, 911–919. [Google Scholar] [CrossRef]
- Haga, S.; Yamaki, H.; Jin, S.; Sogon, T.; Morita, N.; Ozaki, M. Extracts of bilberry (Vaccinium myrtillus L.) fruits improve liver steatosis and injury in mice by preventing lipid accumulation and cell death. Biosci. Biotechnol. Biochem. 2019, 83, 2110–2120. [Google Scholar] [CrossRef]
- Nakano, H.; Wu, S.; Sakao, K.; Hara, T.; He, J.; Garcia, S.; Shetty, K.; Hou, D.-X. Bilberry anthocyanins ameliorate NAFLD by improving dyslipidemia and gut microbiome dysbiosis. Nutrients 2020, 12, 3252. [Google Scholar] [CrossRef]
- Strik, B.C.; Clark, J.R.; Finn, C.E.; Banados, M.P. Worldwide production of blackberries. Acta Hortic. 2008, 777, 209. [Google Scholar] [CrossRef]
- Kaume, L.; Gilbert, W.C.; Brownmiller, C.; Howard, L.R.; Devareddy, L. Cyanidin 3-O-β-D-glucoside-rich blackberries modulate hepatic gene expression, and anti-obesity effects in ovariectomized rats. J. Funct. Foods 2012, 4, 480–488. [Google Scholar] [CrossRef]
- Robinson, J.A.; Bierwirth, J.E.; Greenspan, P.; Pegg, R.B. Blackberry polyphenols: Review of composition, quantity, and health impacts from in vitro and in vivo studies. J. Food Bioact. 2020, 9, 40–51. [Google Scholar] [CrossRef]
- Kaume, L.; Howard, L.R.; Devareddy, L. The Blackberry Fruit: A Review on Its Composition and Chemistry, Metabolism and Bioavailability, and Health Benefits. J. Agric. Food Chem. 2012, 60, 5716–5727. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Jin, B.R.; Yang, H.J.; Kim, M.J.; Park, S. A mixture of blackberry leaf and fruit extracts decreases fat deposition in HepG2 cells, modifying the gut microbiome. J. Appl. Biol. Chem. 2019, 62, 229–237. [Google Scholar] [CrossRef]
- Park, S.; Cho, S.M.; Jin, B.R.; Yang, H.J.; Yi, Q.J. Mixture of blackberry leaf and fruit extracts alleviates non-alcoholic steatosis, enhances intestinal integrity, and increases Lactobacillus and Akkermansia in rats. Exp. Biol. Med. 2019, 244, 1629–1641. [Google Scholar] [CrossRef]
- da Silveira Vasconcelos, M.; Mota, E.F.; Gomes-Rochette, N.F.; Nunes-Pinheiro, D.C.S.; Nabavi, S.M.; de Melo, D.F. Açai or Brazilian berry (Euterpe oleracea). In Nonvitamin and Nonmineral Nutritional Supplements; Academic Press Elsevier: London, UK, 2019; pp. 131–133. [Google Scholar]
- da Costa Guerra, J.F.; Maciel, P.S.; de Abreu, I.C.M.E.; Pereira, R.R.; Silva, M.; de Morais Cardoso, L.; Pinheiro-Sant’Ana, H.M.; de Lima, W.G.; Silva, M.E.; Pedrosa, M.L. Dietary açai attenuates hepatic steatosis via adiponectin-mediated effects on lipid metabolism in high-fat diet mice. J. Funct. Foods 2015, 14, 192–202. [Google Scholar] [CrossRef]
- Pereira, R.R.; Abreu, I.C.M.E.d.; Guerra, J.F.d.C.; Lage, N.N.; Lopes, J.M.M.; Silva, M.; Lima, W.G.d.; Silva, M.E.; Pedrosa, M.L. Açai (Euterpe oleracea Mart.) upregulates paraoxonase 1 gene expression and activity with concomitant reduction of hepatic steatosis in high-fat diet-fed rats. Oxid. Med. Cell Longev. 2016, 2016, 8379105. [Google Scholar] [CrossRef]
- Mohammed, C.J.; Lamichhane, S.; Connolly, J.A.; Soehnlen, S.M.; Khalaf, F.K.; Malhotra, D.; Haller, S.T.; Isailovic, D.; Kennedy, D.J. A PON for All Seasons: Comparing Paraoxonase Enzyme Substrates, Activity and Action including the Role of PON3 in Health and Disease. Antioxidants 2022, 11, 590. [Google Scholar] [CrossRef]
- Medeiros-de-Freitas-Carvalho, M.; Lélis-Teixeira-Reis, L.; Márcia-Macedo-Lopes, J.; Nunes-Lage, N.; Ferreira-da-Costa-Guerra, J.; Porto-Zago, H.; de-Freitas-Bonomo, L.; Pereira, R.-R.; de Lima, W.G.; Silva, M.-E. Açai improves non-alcoholic fatty liver disease (NAFLD) induced by fructose. Nutr. Hosp. 2018, 35, 318–325. [Google Scholar] [CrossRef]
- de Freitas Carvalho, M.M.; Lage, N.N.; de Souza Paulino, A.H.; Pereira, R.R.; de Almeida, L.T.; da Silva, T.F.; de Brito Magalhães, C.L.; de Lima, W.G.; Silva, M.E.; Pedrosa, M.L. Effects of açai on oxidative stress, ER stress, and inflammation-related parameters in mice with high fat diet-fed induced NAFLD. Sci. Rep. 2019, 9, 8107. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, P.O.; de Souza, M.O.; Paiva, D.P.; Silva, M.E.; Lima, W.G.; Bermano, G.; Freitas, R.N. Açaí (Euterpe oleracea Martius) supplementation in the diet during gestation and lactation attenuates liver steatosis in dams and protects offspring. Eur. J. Nutr. 2020, 59, 1895–1908. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, P.O.; Souza, M.O.; Silva, M.P.; Santos, G.T.; Silva, M.E.; Bermano, G.; Freitas, R.N. Açaí (Euterpe oleracea Martius) supplementation improves oxidative stress biomarkers in liver tissue of dams fed a high-fat diet and increases antioxidant enzymes’ gene expression in offspring. Biomed. Pharmacother. 2021, 139, 111627. [Google Scholar] [CrossRef]
- Gopalan, A.; Reuben, S.C.; Ahmed, S.; Darvesh, A.S.; Hohmann, J.; Bishayee, A. The health benefits of blackcurrants. Food Funct. 2012, 3, 795–809. [Google Scholar] [CrossRef]
- Cortez, R.E.; Gonzalez de Mejia, E. Blackcurrants (Ribes nigrum): A Review on Chemistry, Processing, and Health Benefits. J. Food Sci. 2019, 84, 2387–2401. [Google Scholar] [CrossRef] [PubMed]
- Benn, T.; Kim, B.; Park, Y.-K.; Wegner, C.J.; Harness, E.; Nam, T.-G.; Kim, D.-O.; Lee, J.S.; Lee, J.-Y. Polyphenol-rich blackcurrant extract prevents inflammation in diet-induced obese mice. J. Nutr. Biochem. 2014, 25, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Benn, T.; Kim, B.; Park, Y.-K.; Yang, Y.; Pham, T.X.; Ku, C.S.; Farruggia, C.; Harness, E.; Smyth, J.A.; Lee, J.-Y. Polyphenol-rich blackcurrant extract exerts hypocholesterolaemic and hypoglycaemic effects in mice fed a diet containing high fat and cholesterol. Br. J. Nutr. 2015, 113, 1697–1703. [Google Scholar] [CrossRef]
- Lee, Y.; Pham, T.X.; Bae, M.; Hu, S.; O’Neill, E.; Chun, O.K.; Han, M.J.; Koo, S.I.; Park, Y.K.; Lee, J.Y. Blackcurrant (Ribes nigrum) Prevents Obesity-Induced Nonalcoholic Steatohepatitis in Mice. Obesity 2019, 27, 112–120. [Google Scholar] [CrossRef]
- Nanashima, N.; Horie, K.; Yamanouchi, K.; Tomisawa, T.; Kitajima, M.; Oey, I.; Maeda, H. Blackcurrant (Ribes nigrum) extract prevents dyslipidemia and hepatic steatosis in ovariectomized rats. Nutrients 2020, 12, 1541. [Google Scholar] [CrossRef]
- Hu, Y.; Yin, F.; Liu, Z.; Xie, H.; Xu, Y.; Zhou, D.; Zhu, B. Acerola polysaccharides ameliorate high-fat diet-induced non-alcoholic fatty liver disease through reduction of lipogenesis and improvement of mitochondrial functions in mice. Food Funct. 2020, 11, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Glisan, S.L.; Ryan, C.; Neilson, A.P.; Lambert, J.D. Cranberry extract attenuates hepatic inflammation in high-fat-fed obese mice. J. Nutr. Biochem. 2016, 37, 60–66. [Google Scholar] [CrossRef]
- Faheem, S.A.; Saeed, N.M.; El-Naga, R.N.; Ayoub, I.M.; Azab, S.S. Hepatoprotective effect of cranberry nutraceutical extract in non-alcoholic fatty liver model in rats: Impact on insulin resistance and Nrf-2 expression. Front. Pharmacol. 2020, 11, 218. [Google Scholar] [CrossRef]
- Shimizu, K.; Ono, M.; Imoto, A.; Nagayama, H.; Tetsumura, N.; Terada, T.; Tomita, K.; Nishinaka, T. Cranberry attenuates progression of non-alcoholic fatty liver disease induced by high-fat diet in mice. Biol. Pharm. Bull. 2019, 42, 1295–1302. [Google Scholar] [CrossRef]
- Abood, W.N.; Bradosty, S.W.; Shaikh, F.K.; Salehen, N.A.; Farghadani, R.; Agha, N.F.S.; Al-Medhtiy, M.H.; Kamil, T.D.A.; Agha, A.S.; Abdulla, M.A. Garcinia mangostana peel extracts exhibit hepatoprotective activity against thioacetamide-induced liver cirrhosis in rats. J. Funct. Foods 2020, 74, 104200. [Google Scholar] [CrossRef]
- Mohamed, S.; Mohammed, D.; Abd Elhaliem, N.; Elbadry, M.; Abu-Dief, E. Mangosteen Can Improve Steatohepatitis through Modulating Inflammatory and Autophagy/Apoptosis Cell Injury: An Animal Model Study. Cytol. Gen. 2021, 55, 480–490. [Google Scholar] [CrossRef]
- Ryyti, R.; Pemmari, A.; Peltola, R.; Hämäläinen, M.; Moilanen, E. Effects of lingonberry (Vaccinium vitis-idaea L.) supplementation on hepatic gene expression in high-fat diet fed mice. Nutrients 2021, 13, 3693. [Google Scholar] [CrossRef]
- Madduma Hewage, S.; Prashar, S.; O, K.; Siow, Y.L. Lingonberry improves non-alcoholic fatty liver disease by reducing hepatic lipid accumulation, oxidative stress and inflammatory response. Antioxidants 2021, 10, 565. [Google Scholar] [CrossRef]
- Madduma Hewage, S.; Au-Yeung, K.K.; Prashar, S.; Wijerathne, C.U.; O, K.; Siow, Y.L. Lingonberry Improves Hepatic Lipid Metabolism by Targeting Notch1 Signaling. Antioxidants 2022, 11, 472. [Google Scholar] [CrossRef]
- Ngamlerst, C.; Udomkasemsab, A.; Kongkachuichai, R.; Kwanbunjan, K.; Chupeerach, C.; Prangthip, P. The potential of antioxidant-rich Maoberry (Antidesma bunius) extract on fat metabolism in liver tissues of rats fed a high-fat diet. BMC Complement. Altern. Med. 2019, 19, 294. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, V.; Sanz-Lamora, H.; Marrero, P.F.; Relat, J.; Haro, D. Lyophilized maqui (Aristotelia chilensis) berry administration suppresses high-fat diet-induced liver lipogenesis through the induction of the nuclear corepressor smile. Antioxidants 2021, 10, 637. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Meng, X.; Zhang, F. Raspberry ketone protects rats fed high-fat diets against nonalcoholic steatohepatitis. J. Med. Food 2012, 15, 495–503. [Google Scholar] [CrossRef]
- Askar, M.E.; Ali, S.I.; Younis, N.N.; Shaheen, M.A.; Zaher, M.E. Raspberry ketone ameliorates nonalcoholic fatty liver disease in rats by activating the AMPK pathway. Eur. J. Pharmcol. 2023, 957, 176001. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-C.; Dou, J.-Y.; Xuan, M.-Y.; Gao, C.; Li, Z.-X.; Lian, L.-H.; Cui, Z.-Y.; Nan, J.-X.; Wu, Y.-L. Raspberry Ketone Attenuates Hepatic Fibrogenesis and Inflammation via Regulating the Crosstalk of FXR and PGC-1α Signaling. J. Agric. Food Chem. 2024, 72, 15740–15754. [Google Scholar] [CrossRef]
- Fotschki, B.; Juśkiewicz, J.; Jurgoński, A.; Sójka, M. Fructo-oligosaccharides and pectins enhance beneficial effects of raspberry polyphenols in rats with nonalcoholic fatty liver. Nutrients 2021, 13, 833. [Google Scholar] [CrossRef]
- Fotschki, B.; Sójka, M.; Kosmala, M.; Juśkiewicz, J. Prebiotics Together with Raspberry Polyphenolic Extract Mitigate the Development of Nonalcoholic Fatty Liver Diseases in Zucker Rats. Nutrients 2023, 15, 3115. [Google Scholar] [CrossRef]
- Wu, S.; Yano, S.; Hisanaga, A.; He, X.; He, J.; Sakao, K.; Hou, D.X. Polyphenols from Lonicera caerulea L. berry attenuate experimental nonalcoholic steatohepatitis by inhibiting proinflammatory cytokines productions and lipid peroxidation. Mol. Nutr. Food Res. 2017, 61, 1600858. [Google Scholar] [CrossRef]
- Wu, S.; Hu, R.; Nakano, H.; Chen, K.; Liu, M.; He, X.; Zhang, H.; He, J.; Hou, D.-X. Modulation of gut microbiota by Lonicera caerulea L. berry polyphenols in a mouse model of fatty liver induced by high fat diet. Molecules 2018, 23, 3213. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Tan, J.; He, Z.; He, X.; Hou, D.-X.; He, J.; Wu, S. Inhibitory effect of blue honeysuckle extract on high-fat-diet-induced fatty liver in mice. Animal Nut. 2018, 4, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Yoo, J.-H.; Lee, Y.-S.; Lee, H.-J. Lonicera caerulea extract attenuates non-alcoholic fatty liver disease in free fatty acid-induced HepG2 hepatocytes and in high fat diet-fed mice. Nutrients 2019, 11, 494. [Google Scholar] [CrossRef]
- Zhao, R.; Xiang, B.; Dolinsky, V.W.; Xia, M.; Shen, G.X. Saskatoon berry powder reduces hepatic steatosis and insulin resistance in high fat-high sucrose diet-induced obese mice. J. Nutr. Biochem. 2021, 95, 108778. [Google Scholar] [CrossRef]
- Jang, M.-K.; Nam, J.S.; Kim, J.H.; Yun, Y.-R.; Han, C.W.; Kim, B.J.; Jeong, H.-S.; Ha, K.-T.; Jung, M.H. Schisandra chinensis extract ameliorates nonalcoholic fatty liver via inhibition of endoplasmic reticulum stress. J. Ethnopharmacol. 2016, 185, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lim, S.J.; Lee, H.-J.; Kim, S.Y.; Nho, C.W. Gomisin J inhibits oleic acid-induced hepatic lipogenesis by activation of the AMPK-dependent pathway and inhibition of the hepatokine fetuin-A in HepG2 cells. J. Agric. Food Chem. 2015, 63, 9729–9739. [Google Scholar] [CrossRef]
- Chung, M.-Y.; Shin, E.J.; Choi, H.-K.; Kim, S.H.; Sung, M.J.; Park, J.H.; Hwang, J.-T. Schisandra chinensis berry extract protects against steatosis by inhibiting histone acetylation in oleic acid–treated HepG2 cells and in the livers of diet-induced obese mice. Nutr. Res. 2017, 46, 1–10. [Google Scholar] [CrossRef]
- Kwon, E.-Y.; Lee, J.; Kim, Y.J.; Do, A.; Choi, J.-Y.; Cho, S.-J.; Jung, U.J.; Lee, M.-K.; Park, Y.B.; Choi, M.-S. Seabuckthorn leaves extract and flavonoid glycosides extract from seabuckthorn leaves ameliorates adiposity, hepatic steatosis, insulin resistance, and inflammation in diet-induced obesity. Nutrients 2017, 9, 569. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, S.; Jiang, Y. Sea buckthorn pulp and seed oils ameliorate lipid metabolism disorders and modulate gut microbiota in C57BL/6J mice on high-fat diet. Front. Nutr. 2022, 9, 1067813. [Google Scholar] [CrossRef]
- Prakash, A.; Baskaran, R. Acerola, an untapped functional superfruit: A review on latest frontiers. J. Food Sci. Technol. 2018, 55, 3373–3384. [Google Scholar] [CrossRef]
- Klosterhoff, R.R.; Kanazawa, L.K.; Furlanetto, A.L.; Peixoto, J.V.; Corso, C.R.; Adami, E.R.; Iacomini, M.; Fogaça, R.T.; Acco, A.; Cadena, S.M. Anti-fatigue activity of an arabinan-rich pectin from acerola (Malpighia emarginata). Int. J. Biol. Macromol. 2018, 109, 1147–1153. [Google Scholar] [CrossRef]
- Blumberg, J.B.; Camesano, T.A.; Cassidy, A.; Kris-Etherton, P.; Howell, A.; Manach, C.; Ostertag, L.M.; Sies, H.; Skulas-Ray, A.; Vita, J.A. Cranberries and their bioactive constituents in human health. Adv. Nutr. 2013, 4, 618–632. [Google Scholar] [CrossRef]
- Nemzer, B.V.; Al-Taher, F.; Yashin, A.; Revelsky, I.; Yashin, Y. Cranberry: Chemical Composition, Antioxidant Activity and Impact on Human Health: Overview. Molecules 2022, 27, 1503. [Google Scholar] [CrossRef]
- Mohammadshahi, M.; Hormoznejad, R.; Rahim, F.; Helli, B.; Alavinejad, P.; Sharhani, A. The Impact of Combined Cranberry Supplementation and Weight Loss Diet on Inflammatory, Antioxidant and Apoptosis Biomarkers in Patients with Non-Alcoholic Fatty Liver Disease. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Luster, M.I.; Simeonova, P.P.; Gallucci, R.M.; Bruccoleri, A.; Blazka, M.E.; Yucesoy, B. Role of inflammation in chemical-induced hepatotoxicity. Toxicol. Lett. 2001, 120, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Sikdar, A.; Sharma, U.; Barua, R.; Igamberdiev, A.U.; Debnath, S.C. Epigenomic Insight of Lingonberry: Health Promoting Trait Under Micropropagation. Sci. Rep. 2021, 12, 12487. [Google Scholar] [CrossRef]
- Kowalska, K. Lingonberry (Vaccinium vitis-idaea L.) Fruit as a source of bioactive compounds with health-promoting effects—A review. Int. J. Mol. Sci. 2021, 22, 5126. [Google Scholar] [CrossRef] [PubMed]
- Heyman-Lindén, L.; Kotowska, D.; Sand, E.; Bjursell, M.; Plaza, M.; Turner, C.; Holm, C.; Fåk, F.; Berger, K. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice. Food Nutr. Res. 2016, 60, 29993. [Google Scholar] [CrossRef] [PubMed]
- Valenti, L.; Mendoza, R.M.; Rametta, R.; Maggioni, M.; Kitajewski, C.; Shawber, C.J.; Pajvani, U.B. Hepatic notch signaling correlates with insulin resistance and nonalcoholic fatty liver disease. Diabetes 2013, 62, 4052–4062. [Google Scholar] [CrossRef]
- Puangpronpitag, D.; Yongvanit, P.; Boonsiri, P.; Suttajit, M.; Areejitranusorn, P.; Na, H.-K.; Surh, Y.-J. Molecular mechanism underlying anti-apoptotic and anti-inflammatory effects of Mamao (Antidesma thwaitesianum Müll. Arg.) polyphenolics in human breast epithelial cells. Food Chem. 2011, 127, 1450–1458. [Google Scholar] [CrossRef]
- Masoodi, H.; Villaño, D.; Zafrilla, P. A comprehensive review on fruit Aristotelia chilensis (Maqui) for modern health: Towards a better understanding. Food Funct. 2019, 10, 3057–3067. [Google Scholar] [CrossRef] [PubMed]
- García-Milla, P.; Peñalver, R.; Nieto, G. A Review of the Functional Characteristics and Applications of Aristotelia chilensis (Maqui Berry), in the Food Industry. Foods 2024, 13, 838. [Google Scholar] [CrossRef]
- Sandoval, V.; Femenias, A.; Martínez-Garza, Ú.; Sanz-Lamora, H.; Castagnini, J.M.; Quifer-Rada, P.; Lamuela-Raventós, R.M.; Marrero, P.F.; Haro, D.; Relat, J. Lyophilized maqui (Aristotelia chilensis) berry induces browning in the subcutaneous white adipose tissue and ameliorates the insulin resistance in high fat diet-induced obese mice. Antioxidants 2019, 8, 360. [Google Scholar] [CrossRef]
- Gomes, M.d.S.; Cardoso, M.d.G.; Guimarães, A.C.G.; Guerreiro, A.C.; Gago, C.M.L.; Vilas Boas, E.V.d.B.; Dias, C.M.B.; Manhita, A.C.C.; Faleiro, M.L.; Miguel, M.G.C. Effect of edible coatings with essential oils on the quality of red raspberries over shelf-life. J. Sci. Food Agric. 2017, 97, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Corona, A.V.; Valencia-Espinosa, I.; González-Sánchez, F.A.; Sánchez-López, A.L.; Garcia-Amezquita, L.E.; Garcia-Varela, R. Antioxidant, Anti-Inflammatory and Cytotoxic Activity of Phenolic Compound Family Extracted from Raspberries (Rubus idaeus): A General Review. Antioxidants 2022, 11, 1192. [Google Scholar] [CrossRef]
- Ramalingam, G.; Natarajasundaram, U.; Maheswari, T.; Kumar, S.R. Raspberries: An Aggregation of its Bioactive Constituents-A Narrative Review. J. Clin. Diagn. Res. 2024, 18, ZE11–ZE15. [Google Scholar] [CrossRef]
- Li, X.; Wei, T.; Wu, M.; Chen, F.; Zhang, P.; Deng, Z.-y.; Luo, T. Potential metabolic activities of raspberry ketone. J. Food Biochem. 2022, 46, e14018. [Google Scholar] [CrossRef]
- Hamdy, S.M.; El-Khayat, Z.; Farrag, A.R.; Sayed, O.N.; El-Sayed, M.M.; Massoud, D. Hepatoprotective effect of Raspberry ketone and white tea against acrylamide-induced toxicity in rats. Drug Chem. Toxicol. 2022, 45, 722–730. [Google Scholar] [CrossRef]
- Shahraki Jazinaki, M.; Barghchi, H.; Rahbarinejad, P.; Pahlavani, N. The effects of raspberry consumption on anthropometric indices and liver function tests in adults: A GRADE-assessed systematic review and meta-analysis. Front. Nutr. 2024, 11, 1419417. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Lee, H.-J. Lonicera caerulea: An updated account of its phytoconstituents and health-promoting activities. Trends Food Sci. Technol. 2021, 107, 130–149. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, F.; Hui, A.L.; Shen, G.X. Bioactive Components and Health Benefits of Saskatoon Berry. J. Diabetes Res. 2020, 2020, 3901636. [Google Scholar] [CrossRef] [PubMed]
- Juríková, T.; Balla, S.; Sochor, J.; Pohanka, M.; Mlcek, J.; Baron, M. Flavonoid Profile of Saskatoon Berries (Amelanchier alnifolia Nutt.) and Their Health Promoting Effects. Molecules 2013, 18, 12571–12586. [Google Scholar] [CrossRef]
- Lavola, A.; Karjalainen, R.; Julkunen-Tiitto, R. Bioactive polyphenols in leaves, stems, and berries of Saskatoon (Amelanchier alnifolia Nutt.) cultivars. J. Agric. Food Chem. 2012, 60, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Xie, X.; Le, K.; Li, W.; Moghadasian, M.H.; Beta, T.; Shen, G.X. Endoplasmic reticulum stress in diabetic mouse or glycated LDL-treated endothelial cells: Protective effect of Saskatoon berry powder and cyanidin glycans. J. Nutr. Biochem. 2015, 26, 1248–1253. [Google Scholar] [CrossRef]
- Xu, H.; Wang, W.; Sun, Y.; Li, Y.; Jiang, Y.; Deng, C.; Song, X.; Zhang, D. A systematic review on triterpenoids from genus Schisandra: Botany, traditional use, pharmacology and modern application. Arab. J. Chem. 2023, 16, 105178. [Google Scholar] [CrossRef]
- Panossian, A.; Wikman, G. Pharmacology of Schisandra chinensis Bail.: An overview of Russian research and uses in medicine. J. Ethnopharmacol. 2008, 118, 183–212. [Google Scholar] [CrossRef]
- Ciesarová, Z.; Murkovic, M.; Cejpek, K.; Kreps, F.; Tobolková, B.; Koplík, R.; Belajová, E.; Kukurová, K.; Daško, Ľ.; Panovská, Z.; et al. Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Res. Int. 2020, 133, 109170. [Google Scholar] [CrossRef]
- Suryakumar, G.; Gupta, A. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.). J. Ethnopharmacol. 2011, 138, 268–278. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, C.; Jin, L.; Yao, W. Efficacy of sea buckthorn therapy in patients with nonalcoholic fatty liver disease. Chin. Med. 2014, 5, 223. [Google Scholar] [CrossRef]
- Suk, K.T.; Kim, D.J. Gut microbiota: Novel therapeutic target for nonalcoholic fatty liver disease. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Krishan, P.; Kaur, A.; Arora, S.; Trehanpati, N.; Singh, T.G.; Bedi, O. Mechanistic and physiological approaches of fecal microbiota transplantation in the management of NAFLD. Inflamm. Res. 2021, 70, 765–776. [Google Scholar] [CrossRef]
- Parlati, L.; Régnier, M.; Guillou, H.; Postic, C. New targets for NAFLD. JHEP Rep. 2021, 3, 100346. [Google Scholar] [CrossRef]
- Oligschlaeger, Y.; Shiri-Sverdlov, R. NAFLD Preclinical Models: More than a Handful, Less of a Concern? Biomedicines 2020, 8, 28. [Google Scholar] [CrossRef]
- Morrison, M.C.; Kleemann, R.; Van Koppen, A.; Hanemaaijer, R.; Verschuren, L. Key inflammatory processes in human NASH are reflected in Ldlr−/−. Leiden mice: A translational gene profiling study. Front. Physiol. 2018, 9, 132. [Google Scholar] [CrossRef]
- Alkhouri, N.; Feldstein, A.E. Noninvasive diagnosis of nonalcoholic fatty liver disease: Are we there yet? Metabolism 2016, 65, 1087–1095. [Google Scholar] [CrossRef]
- van Os, E.A.; Cools, L.; Eysackers, N.; Szafranska, K.; Smout, A.; Verhulst, S.; Reynaert, H.; McCourt, P.; Mannaerts, I.; van Grunsven, L.A. Modelling fatty liver disease with mouse liver-derived multicellular spheroids. Biomaterials 2022, 290, 121817. [Google Scholar] [CrossRef] [PubMed]
- Pingitore, P.; Sasidharan, K.; Ekstrand, M.; Prill, S.; Lindén, D.; Romeo, S. Human multilineage 3D spheroids as a model of liver steatosis and fibrosis. Int. J. Mol. Sci. 2019, 20, 1629. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Wang, Z.; Zhang, X.; Zhang, Y.; Lin, J.; Du, Y.; Wang, S.; Si, D.; Bao, J. Integration of metabolomics, lipidomics, and proteomics reveals the metabolic characterization of nonalcoholic steatohepatitis. J. Proteome Res. 2023, 22, 2577–2592. [Google Scholar] [CrossRef]
- Xu, X.; Poulsen, K.L.; Wu, L.; Liu, S.; Miyata, T.; Song, Q.; Wei, Q.; Zhao, C.; Lin, C.; Yang, J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct. Target. Ther. 2022, 7, 287. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Ma, Y.; Fu, J.; Wang, X.; Yu, C.; Lv, J.; Man, S.; Wang, B.; Li, L. A dynamic machine learning model for prediction of NAFLD in a health checkup population: A longitudinal study. Heliyon 2023, 9, e18758. [Google Scholar] [CrossRef] [PubMed]
- Lampignano, L.; Tatoli, R.; Donghia, R.; Bortone, I.; Castellana, F.; Zupo, R.; Lozupone, M.; Panza, F.; Conte, C.; Sardone, R. Nutritional patterns as machine learning predictors of liver health in a population of elderly subjects. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A.; Lee, H.-J. A Review on the Protecting Effects and Molecular Mechanisms of Berries Against a Silent Public Health Concern: Non-Alcoholic Fatty Liver Disease. Antioxidants 2024, 13, 1389. https://doi.org/10.3390/antiox13111389
Sharma A, Lee H-J. A Review on the Protecting Effects and Molecular Mechanisms of Berries Against a Silent Public Health Concern: Non-Alcoholic Fatty Liver Disease. Antioxidants. 2024; 13(11):1389. https://doi.org/10.3390/antiox13111389
Chicago/Turabian StyleSharma, Anshul, and Hae-Jeung Lee. 2024. "A Review on the Protecting Effects and Molecular Mechanisms of Berries Against a Silent Public Health Concern: Non-Alcoholic Fatty Liver Disease" Antioxidants 13, no. 11: 1389. https://doi.org/10.3390/antiox13111389
APA StyleSharma, A., & Lee, H.-J. (2024). A Review on the Protecting Effects and Molecular Mechanisms of Berries Against a Silent Public Health Concern: Non-Alcoholic Fatty Liver Disease. Antioxidants, 13(11), 1389. https://doi.org/10.3390/antiox13111389