Lithocholic Acid’s Ionic Compounds as Promising Antitumor Agents: Synthesis and Evaluation of the Production of Reactive Oxygen Species (ROS) in Mitochondria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.2. Cell Culturing
2.2.1. Preparation of Effluents and Solutions of Test Compounds for Biological Testing
2.2.2. Cytotoxicity Assay
2.2.3. Apoptosis Assay
2.2.4. Cell Cycle Analysis
2.2.5. ROS Ions Assay
2.2.6. Mitopotential Assay
2.2.7. Cytochrome c Assay
2.2.8. Statistica
3. Results
3.1. Chemistry
3.2. Biological Evaluation
3.2.1. Cytotoxic Activity In Vitro
3.2.2. Study of Apoptosis Induction
3.2.3. Study of the Effect on the Cell Cycle
3.2.4. A Study of the Accumulation of Reactive Oxygen Species (ROS) in Mitochondria
3.2.5. A Study of the Release of Cytochrome c from Mitochondria
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adachi, R.; Honma, Y.; Masuno, H.; Kawana, K.; Shimomura, I.; Yamada, S.; Makishima, M. Selective Activation of Vitamin D Receptor by Lithocholic Acid Acetate, a Bile Acid Derivative. J. Lipid Res. 2005, 46, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.F. Detoxification of Lithocholic Acid, A Toxic Bile Acid: Relevance to Drug Hepatotoxicity. Drug Metab. Rev. 2004, 36, 703–722. [Google Scholar] [CrossRef] [PubMed]
- Beach, A.; Richard, V.R.; Leonov, A.; Burstein, M.T.; Bourque, S.D.; Koupaki, O.; Juneau, M.; Feldman, R.; Iouk, T.; Titorenko, V.I. Mitochondrial Membrane Lipidome Defines Yeast Longevity. Aging 2013, 5, 551–574. [Google Scholar] [CrossRef] [PubMed]
- D’yakonov, V.A.; Tuktarova, R.A.; Dzhemileva, L.U.; Ishmukhametova, S.R.; Dzhemilev, U.M. Synthesis and Anticancer Activity of Hybrid Molecules Based on Lithocholic and (5Z,9Z)-Tetradeca-5,9-Dienedioic Acids Linked via Mono(Di,Tri,Tetra)Ethylene Glycol and α,ω-Diaminoalkane Units. Pharmaceuticals 2021, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Dang, Z.; Jung, K.; Qian, K.; Lee, K.-H.; Huang, L.; Chen, C.-H. Synthesis of Lithocholic Acid Derivatives as Proteasome Regulators. ACS Med. Chem. Lett. 2012, 3, 925–930. [Google Scholar] [CrossRef]
- Nascimento, P.G.G.d.; Lemos, T.L.G.; Almeida, M.C.S.; de Souza, J.M.O.; Bizerra, A.M.C.; Santiago, G.M.P.; da Costa, J.G.M.; Coutinho, H.D.M. Lithocholic Acid and Derivatives: Antibacterial Activity. Steroids 2015, 104, 8–15. [Google Scholar] [CrossRef]
- Mikó, E.; Vida, A.; Kovács, T.; Ujlaki, G.; Trencsényi, G.; Márton, J.; Sári, Z.; Kovács, P.; Boratkó, A.; Hujber, Z.; et al. Lithocholic Acid, a Bacterial Metabolite Reduces Breast Cancer Cell Proliferation and Aggressiveness. Biochim. Biophys. Acta (BBA)-Bioenerg. 2018, 1859, 958–974. [Google Scholar] [CrossRef]
- Schwarcz, S.; Kovács, P.; Nyerges, P.; Ujlaki, G.; Sipos, A.; Uray, K.; Bai, P.; Mikó, E. The Bacterial Metabolite, Lithocholic Acid, Has Antineo-plastic Effects in Pancreatic Adenocarcinoma. Cell Death Discov. 2024, 10, 248. [Google Scholar] [CrossRef]
- He, X.-L.; Xing, Y.; Gu, X.-Z.; Xiao, J.-X.; Wang, Y.-Y.; Yi, Z.; Qiu, W.-W. The Synthe-sis and Antitumor Activity of Lithocholic Acid and Its Derivatives. Steroids 2017, 125, 54–60. [Google Scholar] [CrossRef]
- Singh, M.; Bansal, S.; Kundu, S.; Bhargava, P.; Singh, A.; Motiani, R.K.; Shyam, R.; Sreekanth, V.; Sengupta, S.; Bajaj, A. Synthesis, Structure–Activity Relationship, and Mechanistic Investigation of Lithocholic Acidamphiphiles for Colon Cancer Therapy. MedChemComm 2015, 6, 192–201. [Google Scholar] [CrossRef]
- Dzhemileva, L.U.; D’yakonov, V.A.; Egorova, K.S.; Ananikov, V.P. Mechanisms of Cytotoxicity in Six Classes of Ionic Liquids: Evaluating Cell Cycle Impact and Genotoxic and Apoptotic Effects. Chemosphere 2024, 364, 142964. [Google Scholar] [CrossRef] [PubMed]
- Dzhemileva, L.U.; D’yakonov, V.A.; Seitkalieva, M.M.; Kulikovskaya, N.S.; Egorova, K.S.; Ananikov, V.P. A Large-Scale Study of Ionic Liquids Employed in Chemistry and Energy Research to Reveal Cytotoxicity Mechanisms and to Develop a Safe Design Guide. Green Chem. 2021, 23, 6414–6430. [Google Scholar] [CrossRef]
- Egorova, K.S.; Kibardin, A.V.; Posvyatenko, A.V.; Ananikov, V.P. Mechanisms of Biological Effects of Ionic Liquids: From Single Cells to Multicellular Organisms. Chem. Rev. 2024, 124, 4679–4733. [Google Scholar] [CrossRef] [PubMed]
- Egorova, K.S.; Seitkalieva, M.M.; Posvyatenko, A.V.; Khrustalev, V.N.; Ananikov, V.P. Cytotoxic Activity of Salicylic Acid-Containing Drug Models with Ionic and Covalent Binding. ACS Med. Chem. Lett. 2015, 6, 1099–1104. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.; Cornelius, C.; Cuzzocrea, S.; Iavicoli, I.; Rizzarelli, E.; Calabrese, E.J. Hormesis, Cellular Stress Response and Vitagenes as Critical Determinants in Aging and Longevity. Mol. Asp. Med. 2011, 32, 279–304. [Google Scholar] [CrossRef]
- Gems, D.; Partridge, L. Stress-Response Hormesis and Aging: ‘That Which Does Not Kill Us Makes Us Stronger’. Cell Metab. 2008, 7, 200–203. [Google Scholar] [CrossRef]
- Elefantova, K.; Lakatos, B.; Kubickova, J.; Sulova, Z.; Breier, A. Detection of the Mitochondrial Membrane Potential by the Cationic Dye JC-1 in L1210 Cells with Massive Overexpression of the Plasma Membrane ABCB1 Drug Transporter. Int. J. Mol. Sci. 2018, 19, 1985. [Google Scholar] [CrossRef]
- Ishizawa, M.; Matsunawa, M.; Adachi, R.; Uno, S.; Ikeda, K.; Masuno, H.; Shimizu, M.; Iwasaki, K.-I.; Yamada, S.; Makishima, M. Lithocholic Acid Derivatives Act as Selective Vitamin D Receptor Modulators without Inducing Hypercalcemia. J. Lipid Res. 2008, 49, 763–772. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Li, H.; Tang, J.J.; Wang, J.; Luo, J.; Liu, B.; Wang, J.K.; Shi, X.J.; Cui, H.W.; Tang, J.; et al. Discovery of a Potent HMG-CoA Reductase Degrader That Eliminates Statin-Induced Reductase Accumulation and Lowers Cholesterol. Nat. Commun. 2018, 9, 5138. [Google Scholar] [CrossRef]
- Dzhemileva, L.U.; Tuktarova, R.A.; Dzhemilev, U.M.; D’yakonov, V.A. Pentacyclic Triterpenoids-Based Ionic Compounds: Synthesis, Study of Structure–Antitumor Activity Relationship, Effects on Mitochondria and Activation of Signaling Pathways of Proliferation, Genome Reparation and Early Apoptosis. Cancers 2023, 15, 756. [Google Scholar] [CrossRef]
- Kauffman, M.; Kauffman, M.; Traore, K.; Zhu, H.; Trush, M.; Jia, Z.; Li, Y. MitoSOX-Based Flow Cytometry for Detecting Mitochondrial ROS. React. Oxyg. Species 2016, 2, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Kucherov, F.A.; Egorova, K.S.; Posvyatenko, A.V.; Eremin, D.B.; Ananikov, V.P. Investigation of Cytotoxic Activity of Mitoxantrone at the Individual Cell Level by Using Ionic-Liquid-Tag-Enhanced Mass Spectrometry. Anal. Chem. 2017, 89, 13374–13381. [Google Scholar] [CrossRef] [PubMed]
- Mizushina, Y.; Kasai, N.; Miura, K.; Hanashima, S.; Takemura, M.; Yoshida, H.; Sugawara, F.; Sakaguchi, K. Structural Relationship of Lithocholic Acid Derivatives Binding to the N-Terminal 8-KDa Domain of DNA Polymerase β. Biochemistry 2004, 43, 10669–10677. [Google Scholar] [CrossRef] [PubMed]
- Najjary, S.; Mohammadzadeh, R.; Mansoori, B.; Vahidian, F.; Mohammadi, A.; Doustvandi, M.A.; Khaze, V.; Hajiasgharzadeh, K.; Baradaran, B. Combination Therapy with MiR-34a and Doxorubicin Synergistically Induced Apoptosis in T-Cell Acute Lymphoblastic Leukemia Cell Line. Med. Oncol. 2021, 38, 142. [Google Scholar] [CrossRef] [PubMed]
- Perry, S.W.; Norman, J.P.; Barbieri, J.; Brown, E.B.; Gelbard, H.A. Mitochondrial Membrane Potential Probes and the Proton Gradient: A Practical Usage Guide. BioTechniques 2011, 50, 98–115. [Google Scholar] [CrossRef]
- Schroeder, E.A.; Raimundo, N.; Shadel, G.S. Epigenetic Silencing Mediates Mitochondria Stress-Induced Longevity. Cell Metab. 2013, 17, 954–964. [Google Scholar] [CrossRef]
- Soltani, A.; Pourgheysari, B.; Shirzad, H.; Sourani, Z. Antiproliferative and Apoptosis-Inducing Activities of Thymoquinone in Lymphoblastic Leukemia Cell Line. Indian J. Hematol. Blood Transfus. 2017, 33, 516–524. [Google Scholar] [CrossRef]
- Dang, Z.; Lin, A.; Ho, P.; Soroka, D.; Lee, K.H.; Huang, L.; Chen, C.H. Synthesis and Proteasome Inhibition of Lithocholic Acid Derivatives. Bioorganic Med. Chem. Lett. 2011, 21, 1926–1928. [Google Scholar] [CrossRef]
- Hofmann, A.F.; Hagey, L.R. Bile Acids: Chemistry, Pathochemistry, Biology, Pathobiology, and Therapeutics. Cell. Mol. Life Sci. 2008, 65, 2461–2483. [Google Scholar] [CrossRef]
- Sakamuru, S.; Zhao, J.; Attene-Ramos, M.S.; Xia, M. Mitochondrial Membrane Potential Assay. In Methods in Molecular Biology; Humana: New York, NY, USA, 2022; pp. 11–19. [Google Scholar] [CrossRef]
- Vringer, E.; Tait, S.W.G. Mitochondria and Cell Death-Associated Inflammation. Cell Death Differ. 2023, 30, 304–312. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, X. Cytochrome C-Mediated Apoptosis. Annu. Rev. Biochem. 2004, 73, 87–106. [Google Scholar] [CrossRef] [PubMed]
- Merlo-Pich, M.; Deleonardi, G.; Biondi, A.; Lenaz, G. Methods to Detect Mitochondrial Function. Exp. Gerontol. 2004, 39, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Comelli, M.; Pretis, I.; Buso, A.; Mavelli, I. Mitochondrial Energy Metabolism and Signalling in Human Glioblastoma Cell Lines with Different PTEN Gene Status. J. Bioenerg. Biomembr. 2018, 50, 33–52. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chobanov, N.M.; Dzhemileva, L.U.; Dzhemilev, U.M.; D’yakonov, V.A. Lithocholic Acid’s Ionic Compounds as Promising Antitumor Agents: Synthesis and Evaluation of the Production of Reactive Oxygen Species (ROS) in Mitochondria. Antioxidants 2024, 13, 1448. https://doi.org/10.3390/antiox13121448
Chobanov NM, Dzhemileva LU, Dzhemilev UM, D’yakonov VA. Lithocholic Acid’s Ionic Compounds as Promising Antitumor Agents: Synthesis and Evaluation of the Production of Reactive Oxygen Species (ROS) in Mitochondria. Antioxidants. 2024; 13(12):1448. https://doi.org/10.3390/antiox13121448
Chicago/Turabian StyleChobanov, Nuri M., Lilya U. Dzhemileva, Usein M. Dzhemilev, and Vladimir A. D’yakonov. 2024. "Lithocholic Acid’s Ionic Compounds as Promising Antitumor Agents: Synthesis and Evaluation of the Production of Reactive Oxygen Species (ROS) in Mitochondria" Antioxidants 13, no. 12: 1448. https://doi.org/10.3390/antiox13121448
APA StyleChobanov, N. M., Dzhemileva, L. U., Dzhemilev, U. M., & D’yakonov, V. A. (2024). Lithocholic Acid’s Ionic Compounds as Promising Antitumor Agents: Synthesis and Evaluation of the Production of Reactive Oxygen Species (ROS) in Mitochondria. Antioxidants, 13(12), 1448. https://doi.org/10.3390/antiox13121448