Bioactive Compounds and Antioxidant Capacity of Pulp, Peel and Seeds from Jeriva (Syagrus romanzoffiana)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Carotenoid Extraction
2.3. Carotenoid Identification and Quantification
2.4. Sample Extraction for HPLC Phenolic Compound Determination
2.5. HPLC Analysis for Polyphenols
2.6. Vitamin C Determination
2.7. Extraction for Total Phenolic Determination and Antioxidant Tests
2.8. Total Phenolic Determination
2.9. Trolox Equivalent Antioxidant Capacity (TEAC)
2.10. Oxygen Radical Absorbance Capacity (ORAC)
2.11. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amelia, O.; Sailah, I.; Kartika, I.A.; Suparno, O.; Bindar, Y. Virgin Callpohyllum Oil as a Antioxidant Potential and Potential Cosmetic Active Ingredient. S. Afr. J. Bot. 2024, 165, 331–338. [Google Scholar] [CrossRef]
- Thevamirtha, C.; Balasubramaniyam, A.; Srithayalan, S.; Selvakumar, P.M. An Insight into the Antioxidant Activity of the Facial Cream, Solid Soap and Liquid Soap Made Using the Carotenoid Extract of Palmyrah (Borassus flabellifer) Fruit Pulp. Ind. Crops Prod. 2023, 195, 116413. [Google Scholar] [CrossRef]
- Sathya, R.; Valan Arasu, M.; Ilavenil, S.; Rejiniemon, T.S.; Vijayaraghavan, P. Cosmeceutical Potentials of Litchi Fruit and Its By-Products for a Sustainable Revalorization. Biocatal. Agric. Biotechnol. 2023, 50, 102683. [Google Scholar] [CrossRef]
- Liu, C.-H.; Liu, F.; Xiong, L. Medicinal Parts of Mulberry (Leaf, Twig, Root Bark, and Fruit) and Compounds Thereof Are Excellent Traditional Chinese Medicines and Foods for Diabetes Mellitus. J. Funct. Foods 2023, 106, 105619. [Google Scholar] [CrossRef]
- Andrade, J.K.S.; Barros, R.G.C.; Rezende, Y.R.R.S.; Nogueira, J.P.; de Oliveira, C.S.; Gualberto, N.C.; Narain, N. Evaluation of Bioactive Compounds, Phytochemicals Profile and Antioxidant Potential of the Aqueous and Ethanolic Extracts of Some Traditional Fruit Tree Leaves Used in Brazilian Folk Medicine. Food Res. Int. 2021, 143, 110282. [Google Scholar] [CrossRef]
- Harris, J.; van Zonneveld, M.; Achigan-Dako, E.G.; Bajwa, B.; Brouwer, I.D.; Choudhury, D.; de Jager, I.; de Steenhuijsen Piters, B.; Dulloo, M.E.; Guarino, L.; et al. Fruit and Vegetable Biodiversity for Nutritionally Diverse Diets: Challenges, Opportunities, and Knowledge Gaps. Glob. Food Secur. 2022, 33, 100618. [Google Scholar] [CrossRef]
- Shi, L.; Liu, Z.; Gonzalez Viejo, C.; Ahmadi, F.; Dunshea, F.R.; Suleria, H.A.R. Comparison of Phenolic Composition in Australian-Grown Date Fruit (Phoenix dactylifera L.) Seeds from Different Varieties and Ripening Stages. Food Res. Int. 2024, 181, 114096. [Google Scholar] [CrossRef]
- Bellumori, M.; Innocenti, M.; Andrenelli, L.; Melani, F.; Cecchi, L.; Pandino, G.; Mauromicale, G.; La Malfa, S.; Mulinacci, N. Composition of Discarded Sicilian Fruits of Opuntia ficus indica L.: Phenolic Content, Mineral Profile and Antioxidant Activity in Peel, Seeds and Whole Fruit. Food Chem. 2023, 428, 136756. [Google Scholar] [CrossRef]
- Lescano, C.H.; de Oliveira, I.P.; Freitas de Lima, F.; Baldivia, D.D.S.; Justi, P.N.; Cardoso, C.A.L.; Raposo Júnior, J.L.; Sanjinez-Argandoña, E.J. Nutritional and Chemical Characterizations of Fruits Obtained from Syagrus romanzoffiana, Attalea dubia, Attalea phalerata and Mauritia flexuosa. J. Food Meas. Charact. 2018, 12, 1284–1294. [Google Scholar] [CrossRef]
- Andrade, A.C.; Marinho, J.F.U.; de Souza, A.C.; de Sousa Tavares, T.; Dias, D.R.; Schwan, R.F.; Nunes, C.A.; Bastos, S.C. Prebiotic Potential of Pulp and Kernel Cake from Jerivá (Syagrus romanzoffiana) and Macaúba Palm Fruits (Acrocomia aculeata). Food Res. Int. 2020, 136, 109595. [Google Scholar] [CrossRef]
- Falasca, S.L.; Miranda del Fresno, C.; Ulberich, A. Possibilities for Growing Queen Palm (Syagrus romanzoffiana) in Argentina as a Biodiesel Producer under Semi-Arid Climate Conditions. Int. J. Hydrogen Energy 2012, 37, 14843–14848. [Google Scholar] [CrossRef]
- Moreira, M.A.C.; Payret Arrúa, M.E.; Antunes, A.C.; Fiuza, T.E.R.; Costa, B.J.; Weirich Neto, P.H.; Antunes, S.R.M. Characterization of Syagrus romanzoffiana Oil Aiming at Biodiesel Production. Ind. Crops Prod. 2013, 48, 57–60. [Google Scholar] [CrossRef]
- Rodrigues, C.E.; Schäfer, L.; Gregolon, J.G.N.; de Oliveira, J.F.; Baez, O.P.; Deolindo, C.T.P.; de Melo, A.P.Z.; Singer, R.B.; Ledur Kist, T.B.; Hoff, R. Determination of Amino Acid Content, Fatty Acid Profiles, and Phenolic Compounds in Non-Conventional Edible Fruits of Seven Species of Palm Trees (Arecaceae) Native to the Southern Half of South America. Food Res. Int. 2022, 162, 111995. [Google Scholar] [CrossRef]
- Vallilo, M.I.; Tavares, M.; Aued-Pimentel, S.; Garbelotti, M.L.; Campos, N.C. Composição química e o perfil de ácidos graxos das sementes de quatro espécies de palmeiras cultivadas no estado de São Paulo. Rev. Inst. Florest. 2001, 13, 147–154. [Google Scholar] [CrossRef]
- Al-Yafeai, A.; Bellstedt, P.; Böhm, V. Bioactive Compounds and Antioxidant Capacity of Rosa Rugosa Depending on Degree of Ripeness. Antioxidants 2018, 7, 134. [Google Scholar] [CrossRef]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Carotenoids: Handbook; Birkhäuser Verlag: Basel, Switzerland, 2004; ISBN 3-7643-6180-8. [Google Scholar]
- Kschonsek, J.; Wolfram, T.; Stöckl, A.; Böhm, V. Polyphenolic Compounds Analysis of Old and New Apple Cultivars and Contribution of Polyphenolic Profile to the In Vitro Antioxidant Capacity. Antioxidants 2018, 7, 20. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Müller, L.; Gnoyke, S.; Popken, A.M.; Böhm, V. Antioxidant Capacity and Related Parameters of Different Fruit Formulations. LWT-Food Sci. Technol. 2010, 43, 992–999. [Google Scholar] [CrossRef]
- Zulueta, A.; Esteve, M.J.; Frígola, A. ORAC and TEAC Assays Comparison to Measure the Antioxidant Capacity of Food Products. Food Chem. 2009, 114, 310–316. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Cardoso, P.C.; Tomazini, A.P.B.; Stringheta, P.C.; Ribeiro, S.M.R.; Pinheiro-Sant’Ana, H.M. Vitamin C and Carotenoids in Organic and Conventional Fruits Grown in Brazil. Food Chem. 2011, 126, 411–416. [Google Scholar] [CrossRef]
- Office of Dietary Supplements—Vitamin C. Available online: https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/ (accessed on 22 March 2024).
- Vasco, C.; Ruales, J.; Kamal-Eldin, A. Total Phenolic Compounds and Antioxidant Capacities of Major Fruits from Ecuador. Food Chem. 2008, 111, 816–823. [Google Scholar] [CrossRef]
- Martins, V.; Braga, E.; Mazza, K.; Rocha, J.; Cunha, C.; Pacheco, S.; Nascimento, L.; Santiago, M.; Borguini, R.; Godoy, R. The Chemical Characterization of Jerivá (Syagrus romanzoffiana Cham.) Fruit Pulp. Rev. Virtual Quím. 2015, 7, 2422–2437. [Google Scholar] [CrossRef]
- Danielski, R.; Shahidi, F. Nutraceutical Potential of Underutilized Tropical Fruits and Their Byproducts: Phenolic Profile, Antioxidant Capacity, and Biological Activity of Jerivá (Syagrus romanzoffiana) and Butiá (Butia catarinensis). J. Agric. Food Chem. 2024, 72, 4035–4048. [Google Scholar] [CrossRef] [PubMed]
- Tristán, A.I.; Abreu, A.C.; Aguilera-Sáez, L.M.; Peña, A.; Conesa-Bueno, A.; Fernández, I. Evaluation of ORAC, IR and NMR Metabolomics for Predicting Ripening Stage and Variety in Melon (Cucumis melo L.). Food Chem. 2022, 372, 131263. [Google Scholar] [CrossRef] [PubMed]
- Takebayashi, J.; Oki, T.; Watanabe, J.; Yamasaki, K.; Chen, J.; Sato-Furukawa, M.; Tsubota-Utsugi, M.; Taku, K.; Goto, K.; Matsumoto, T.; et al. Hydrophilic Antioxidant Capacities of Vegetables and Fruits Commonly Consumed in Japan and Estimated Average Daily Intake of Hydrophilic Antioxidants from These Foods. J. Food Compos. Anal. 2013, 29, 25–31. [Google Scholar] [CrossRef]
- Niu, C.; Dong, M.; Niu, Y. Natural Polyphenol: Their Pathogenesis-Targeting Therapeutic Potential in Alzheimer’s Disease. Eur. J. Med. Chem. 2024, 269, 116359. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Zhang, Y. The Potential Benefits of Polyphenols for Corneal Diseases. Biomed. Pharmacother. 2023, 169, 115862. [Google Scholar] [CrossRef]
- Li, H.; Liang, J.; Han, M.; Gao, Z. Polyphenols Synergistic Drugs to Ameliorate Non-Alcoholic Fatty Liver Disease via Signal Pathway and Gut Microbiota: A Review. J. Adv. Res. 2024. [Google Scholar] [CrossRef]
- Albadrani, H.M.; Chauhan, P.; Ashique, S.; Babu, M.A.; Iqbal, D.; Almutary, A.G.; Abomughaid, M.M.; Kamal, M.; Paiva-Santos, A.C.; Alsaweed, M.; et al. Mechanistic Insights into the Potential Role of Dietary Polyphenols and Their Nanoformulation in the Management of Alzheimer’s Disease. Biomed. Pharmacother. 2024, 174, 116376. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, C.; Li, J. Comparison of Vitamin C and Its Derivative Antioxidant Activity: Evaluated by Using Density Functional Theory. ACS Omega 2020, 5, 25467–25475. [Google Scholar] [CrossRef] [PubMed]
- Romeo, R.; Bruno, A.D.; Piscopo, A.; Medina, E.; Ramírez, E.; Brenes, M.; Poiana, M. Effects of Phenolic Enrichment on Vitamin C and Antioxidant Activity of Commercial Orange Juice. Braz. J. Food Technol. 2020, 23, e2019130. [Google Scholar] [CrossRef]
- Almeida, M.M.B.; de Sousa, P.H.M.; Arriaga, Â.M.C.; do Prado, G.M.; de Carvalho Magalhães, C.E.; Maia, G.A.; de Lemos, T.L.G. Bioactive Compounds and Antioxidant Activity of Fresh Exotic Fruits from Northeastern Brazil. Food Res. Int. 2011, 44, 2155–2159. [Google Scholar] [CrossRef]
- Sun, J.; Chu, Y.-F.; Wu, X.; Liu, R.H. Antioxidant and Antiproliferative Activities of Common Fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef] [PubMed]
- Gardner, P.T.; White, T.A.C.; McPhail, D.B.; Duthie, G.G. The Relative Contributions of Vitamin C, Carotenoids and Phenolics to the Antioxidant Potential of Fruit Juices. Food Chem. 2000, 68, 471–474. [Google Scholar] [CrossRef]
- Leong, S.Y.; Oey, I. Effects of Processing on Anthocyanins, Carotenoids and Vitamin C in Summer Fruits and Vegetables. Food Chem. 2012, 133, 1577–1587. [Google Scholar] [CrossRef]
- Chan-León, A.C.; Estrella-Maldonado, H.; Dubé, P.; Fuentes Ortiz, G.; Espadas-Gil, F.; Talavera May, C.; Ramírez Prado, J.; Desjardins, Y.; Santamaría, J.M. The High Content of β-Carotene Present in Orange-Pulp Fruits of Carica papaya L. Is Not Correlated with a High Expression of the CpLCY-Β2 Gene. Food Res. Int. 2017, 100, 45–56. [Google Scholar] [CrossRef]
Vitamin C (mg/100 g dm) | Total Phenolics (mg GAEs/100 g dm) | ORAC (mmol TEs/100 g dm) | TEAC (mmol TEs/100 g dm) | |
---|---|---|---|---|
Pulp | 92.3 ± 3.5 a | 1089 ± 32 a | 16.9 ± 0.2 a | 3.5 ± 0.1 a |
Peel | 81.7 ± 2.3 b | 971 ± 30 b | 14.6 ± 1.4 b | 2.9 ± 0.1 b |
Seeds | 12.0 ± 1.0 c | 473 ± 39 c | 10.9 ± 0.4 c | 1.7 ± 0.1 c |
mg/g dm | Fumaric Acid | Catechin | Hydroxy Benzoic Acid | Procyanidin B2 | Coumaric Acid | Ferulic Acid |
---|---|---|---|---|---|---|
Pulp | 0.45 ± 0.18 | 0.89 ± 0.17 | 0.15 ± 0.02 | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.20 ± 0.04 |
Peel | 0.35 ± 0.13 | - | 0.08 ± 0.01 | 0.09 ± 0.01 | 0.10 ± 0.01 | 0.15 ± 0.08 |
Seeds | - | 0.23 ± 0.06 | 0.10 ± 0.02 | 0.04 ± 0.00 | 0.01 ± 0.00 | 0.07 ± 0.04 |
mg/100 g dm | (all-E)-β-Carotene | (9Z)-β-Carotene | (13Z)-β-Carotene | (all-E)-Lutein | (all-E)-β-Cryptoxanthin |
---|---|---|---|---|---|
Pulp | 3.14 ± 0.08 | 0.23 ± 0.04 | 0.72 ± 0.03 | 0.11 ± 0.01 | 0.03 ± 0.00 |
Peel | 5.16 ± 0.33 | 0.32 ± 0.04 | 0.70 ± 0.08 | 0.56 ± 0.01 | - |
Seeds | 0.63 ± 0.07 | 0.03 ± 0.00 | 0.13 ± 0.01 | - | 0.02 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mello, B.C.B.S.; Malarski, A.; Böhm, V. Bioactive Compounds and Antioxidant Capacity of Pulp, Peel and Seeds from Jeriva (Syagrus romanzoffiana). Antioxidants 2024, 13, 711. https://doi.org/10.3390/antiox13060711
Mello BCBS, Malarski A, Böhm V. Bioactive Compounds and Antioxidant Capacity of Pulp, Peel and Seeds from Jeriva (Syagrus romanzoffiana). Antioxidants. 2024; 13(6):711. https://doi.org/10.3390/antiox13060711
Chicago/Turabian StyleMello, Beatriz C. B. S., Angelika Malarski, and Volker Böhm. 2024. "Bioactive Compounds and Antioxidant Capacity of Pulp, Peel and Seeds from Jeriva (Syagrus romanzoffiana)" Antioxidants 13, no. 6: 711. https://doi.org/10.3390/antiox13060711
APA StyleMello, B. C. B. S., Malarski, A., & Böhm, V. (2024). Bioactive Compounds and Antioxidant Capacity of Pulp, Peel and Seeds from Jeriva (Syagrus romanzoffiana). Antioxidants, 13(6), 711. https://doi.org/10.3390/antiox13060711