Harnessing the Potential of Quinoa: Nutritional Profiling, Bioactive Components, and Implications for Health Promotion
Abstract
:1. Introduction
2. Nutritional Profile and Functional Components of Quinoa Seeds
2.1. Protein and Bioactive Peptides
2.2. Carbohydrates and Dietary Fiber
2.3. Lipids
2.4. Vitamins and Minerals
2.5. Polyphenols
2.6. Saponins
2.7. Other Compounds
3. Bioactive Activities of Quinoa
3.1. Antioxidant Activity
3.2. Anti-Inflammatory Activity
3.3. Antimicrobial Activity
3.4. Cardiovascular Protection and Metabolic Regulation
3.5. Protective Effects on Liver Function
3.6. Regulative Effects on Gut Homeostasis and Microbiota
3.7. Anti-Cancer Effect
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Repo-Carrasco, R.; Espinoza, C.; Jacobsen, S.-E. Nutritional Value and Use of the Andean Crops Quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule). Food Rev. Int. 2003, 19, 179–189. [Google Scholar] [CrossRef]
- Alandia, G.; Rodriguez, J.P.; Jacobsen, S.-E.; Bazile, D.; Condori, B. Global Expansion of Quinoa and Challenges for the Andean Region. Glob. Food Secur. 2020, 26, 100429. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Cao, B.; Wei, X.; Shen, Z.; Su, N. Assessment and Comparison of Nutritional Qualities of Thirty Quinoa (Chenopodium quinoa Willd.) Seed Varieties. Food Chem. X 2023, 19, 100808. [Google Scholar] [CrossRef] [PubMed]
- Escribano, J.; Cabanes, J.; Jiménez-Atiénzar, M.; Ibañez-Tremolada, M.; Gómez-Pando, L.R.; García-Carmona, F.; Gandía-Herrero, F. Characterization of Betalains, Saponins and Antioxidant Power in Differently Colored Quinoa (Chenopodium quinoa) Varieties. Food Chem. 2017, 234, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Vilcacundo, R.; Hernández-Ledesma, B. Nutritional and Biological Value of Quinoa (Chenopodium quinoa Willd.). Curr. Opin. Food Sci. 2017, 14, 1–6. [Google Scholar] [CrossRef]
- Dakhili, S.; Abdolalizadeh, L.; Hosseini, S.M.; Shojaee-Aliabadi, S.; Mirmoghtadaie, L. Quinoa Protein: Composition, Structure and Functional Properties. Food Chem. 2019, 299, 125161. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Hao, Y.; Yang, X.; Ren, G.; Richel, A. Exploration on Bioactive Properties of Quinoa Protein Hydrolysate and Peptides: A Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 2896–2909. [Google Scholar] [CrossRef] [PubMed]
- Zamudio, F.V.; Campos, M.R.S. Amaranth, Quinoa and Chia Bioactive Peptides: A Comprehensive Review on Three Ancient Grains and Their Potential Role in Management and Prevention of Type 2 Diabetes. Crit. Rev. Food Sci. Nutr. 2022, 62, 2707–2721. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Han, P.; Li, Y.; Wang, W.; Lai, D.; Zhou, L. Quinoa Secondary Metabolites and Their Biological Activities or Functions. Molecules 2019, 24, 2512. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal Grains: Nutritional Value, Health Benefits and Current Applications for the Development of Gluten-Free Foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef]
- Bazile, D.; Pulvento, C.; Verniau, A.; Al-Nusairi, M.S.; Ba, D.; Breidy, J.; Hassan, L.; Mohammed, M.I.; Mambetov, O.; Otambekova, M.; et al. Worldwide Evaluations of Quinoa: Preliminary Results from Post International Year of Quinoa FAO Projects in Nine Countries. Front. Plant Sci. 2016, 7, 850. [Google Scholar] [CrossRef] [PubMed]
- James, L.E.A. Quinoa (Chenopodium quinoa Willd.): Composition, Chemistry, Nutritional, and Functional Properties. Adv. Food Nutr. Res. 2009, 58, 1–31. [Google Scholar] [CrossRef]
- Brinegar, C.; Goundan, S. Isolation and Characterization of Chenopodin, the 11S Seed Storage Protein of Quinoa (Chenopodium quinoa). J. Agric. Food Chem. 1993, 41, 182–185. [Google Scholar] [CrossRef]
- Drzewiecki, J.; Delgado-Licon, E.; Haruenkit, R.; Pawelzik, E.; Martin-Belloso, O.; Park, Y.-S.; Jung, S.-T.; Trakhtenberg, S.; Gorinstein, S. Identification and Differences of Total Proteins and Their Soluble Fractions in Some Pseudocereals Based on Electrophoretic Patterns. J. Agric. Food Chem. 2003, 51, 7798–7804. [Google Scholar] [CrossRef] [PubMed]
- WHO. Energy and Protein Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation. In Energy and Protein Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation; WHO: Geneva, Switzerland, 1985; p. 206. [Google Scholar]
- Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E.A. Nutrition Facts and Functional Potential of Quinoa (Chenopodium quinoa Willd.), an Ancient Andean Grain: A Review. J. Sci. Food Agric. 2010, 90, 2541–2547. [Google Scholar] [CrossRef] [PubMed]
- Valcárcel-Yamani, B.; Lannes, S.C.D.S. Applications of Quinoa (Chenopodium quinoa Willd.) and Amaranth (Amaranthus spp.) and Their Influence in the Nutritional Value of Cereal Based Foods. Food Public Health 2012, 2, 265–275. [Google Scholar]
- Ruales, J.; Grijalva, Y.d.; Lopez-Jaramillo, P.; Nair, B.M. The Nutritional Quality of an Infant Food from Quinoa and Its Effect on the Plasma Level of Insulin-like Growth Factor-1 (IGF-1) in Undernourished Children. Int. J. Food Sci. Nutr. 2002, 53, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Daliri, E.; Oh, D.; Lee, B. Bioactive Peptides. Foods 2017, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Daliri, H.; Ahmadi, R.; Pezeshki, A.; Hamishehkar, H.; Mohammadi, M.; Beyrami, H.; Heshmati, M.K.; Ghorbani, M. Quinoa Bioactive Protein Hydrolysate Produced by Pancreatin Enzyme-Functional and Antioxidant Properties. LWT 2021, 150, 111853. [Google Scholar] [CrossRef]
- Mudgil, P.; Kilari, B.P.; Kamal, H.; Olalere, O.A.; FitzGerald, R.J.; Gan, C.-Y.; Maqsood, S. Multifunctional Bioactive Peptides Derived from Quinoa Protein Hydrolysates: Inhibition of α-Glucosidase, Dipeptidyl Peptidase-IV and Angiotensin I Converting Enzymes. J. Cereal Sci. 2020, 96, 103130. [Google Scholar] [CrossRef]
- Ren, G.; Zhu, Y.; Shi, Z.; Li, J. Detection of Lunasin in Quinoa (Chenopodium quinoa Willd.) and the in Vitro Evaluation of Its Antioxidant and Anti-inflammatory Activities. J. Sci. Food Agric. 2017, 97, 4110–4116. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, X.; Zhuang, Y.; Li, Y.; Tian, H.; Shi, P.; Li, G. Isolation of Novel ACE-Inhibitory and Antioxidant Peptides from Quinoa Bran Albumin Assisted with an in Silico Approach: Characterization, in Vivo Antihypertension, and Molecular Docking. Molecules 2019, 24, 4562. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Safdar, B.; Li, H.; Yang, L.; Ying, Z.; Liu, X. Identification of a Novel α-Amylase Inhibitory Activity Peptide from Quinoa Protein Hydrolysate. Food Chem. 2023, 403, 134434. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Hao, Y.; Richel, A.; Everaert, N.; Chen, Y.; Liu, M.; Yang, X.; Ren, G. Antihypertensive Effect of Quinoa Protein under Simulated Gastrointestinal Digestion and Peptide Characterization. J. Sci. Food Agric. 2020, 100, 5569–5576. [Google Scholar] [CrossRef] [PubMed]
- Vilcacundo, R.; Miralles, B.; Carrillo, W.; Hernández-Ledesma, B. In Vitro Chemopreventive Properties of Peptides Released from Quinoa (Chenopodium quinoa Willd.) Protein under Simulated Gastrointestinal Digestion. Food Res. Int. 2018, 105, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Vilcacundo, R.; Martínez-Villaluenga, C.; Hernández-Ledesma, B. Release of Dipeptidyl Peptidase IV, α-Amylase and α-Glucosidase Inhibitory Peptides from Quinoa (Chenopodium quinoa Willd.) during in Vitro Simulated Gastrointestinal Digestion. J. Funct. Foods 2017, 35, 531–539. [Google Scholar] [CrossRef]
- You, H.; Wu, T.; Wang, W.; Li, Y.; Liu, X.; Ding, L. Preparation and Identification of Dipeptidyl Peptidase IV Inhibitory Peptides from Quinoa Protein. Food Res. Int. 2022, 156, 111176. [Google Scholar] [CrossRef] [PubMed]
- Ajayi, F.F.; Mudgil, P.; Jobe, A.; Antony, P.; Vijayan, R.; Gan, C.-Y.; Maqsood, S. Novel Plant-Protein (Quinoa) Derived Bioactive Peptides with Potential Anti-Hypercholesterolemic Activities: Identification, Characterization and Molecular Docking of Bioactive Peptides. Foods 2023, 12, 1327. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, S.L.; Fernandes, Â.; Pereira, C.; Calhelha, R.C.; Sokovic, M.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C.F.R. Nutritional Value, Physicochemical Characterization and Bioactive Properties of the Brazilian Quinoa BRS Piabiru. Food Funct. 2020, 11, 2969–2977. [Google Scholar] [CrossRef]
- Li, G.; Zhu, F. Quinoa Starch: Structure, Properties, and Applications. Carbohydr. Polym. 2018, 181, 851–861. [Google Scholar] [CrossRef]
- Rezende, E.S.V.; Lima, G.C.; Naves, M.M.V. Dietary Fibers as Beneficial Microbiota Modulators: A Proposed Classification by Prebiotic Categories. Nutrition 2021, 89, 111217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, L.; Tan, B.; Zhang, W. Dietary Fibre Extracted from Different Types of Whole Grains and Beans: A Comparative Study. Int. J. Food Sci. Technol. 2020, 55, 2188–2196. [Google Scholar] [CrossRef]
- Zhu, F. Dietary Fiber Polysaccharides of Amaranth, Buckwheat and Quinoa Grains: A Review of Chemical Structure, Biological Functions and Food Uses. Carbohydr. Polym. 2020, 248, 116819. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xiong, M.; Bai, T.; Chen, D.; Zhang, Q.; Lin, D.; Liu, Y.; Liu, A.; Huang, Z.; Qin, W. Comparative Study on the Structure, Physicochemical, and Functional Properties of Dietary Fiber Extracts from Quinoa and Wheat. LWT 2021, 149, 111816. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Wang, Z.; Hao, Y.; Wang, Y.; Yang, Z.; Li, W.; Wang, J. Physicochemical and Functional Properties of Soluble Dietary Fiber from Different Colored Quinoa Varieties (Chenopodium quinoa Willd). J. Cereal Sci. 2020, 95, 103045. [Google Scholar] [CrossRef]
- Miranda, M.; Vega-Gálvez, A.; Martínez, E.A.; López, J.; Marín, R.; Aranda, M.; Fuentes, F. Influence of Contrasting Environments on Seed Composition of Two Quinoa Genotypes: Nutritional and Functional Properties. Chil. J. Agric. Res. 2013, 73, 108–116. [Google Scholar] [CrossRef]
- Wood, S.G.; Lawson, L.D.; Fairbanks, D.J.; Robison, L.R.; Andersen, W.R. Seed Lipid Content and Fatty Acid Composition of Three Quinoa Cultivars. J. Food Compos. Anal. 1993, 6, 41–44. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Chen, P.X.; Zhang, B.; Hernandez, M.; Zhang, H.; Marcone, M.F.; Liu, R.; Tsao, R. Characterisation of Fatty Acid, Carotenoid, Tocopherol/Tocotrienol Compositions and Antioxidant Activities in Seeds of Three Chenopodium quinoa Willd. Genotypes. Food Chem. 2015, 174, 502–508. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Gai, F.; Tassone, S. Fatty Acid Profile and Nutritive Value of Quinoa (Chenopodium quinoa Willd.) Seeds and Plants at Different Growth Stages. Anim. Feed Sci. Technol. 2013, 183, 56–61. [Google Scholar] [CrossRef]
- Matías, J.; Rodríguez, M.J.; Granado-Rodríguez, S.; Cruz, V.; Calvo, P.; Reguera, M. Changes in Quinoa Seed Fatty Acid Profile Under Heat Stress Field Conditions. Front. Nutr. 2022, 9, 820010. [Google Scholar] [CrossRef]
- Luo, X.; Du, Z.; Yang, K.; Wang, J.; Zhou, J.; Liu, J.; Chen, Z. Effect of Electron Beam Irradiation on Phytochemical Composition, Lipase Activity and Fatty Acid of Quinoa. J. Cereal Sci. 2021, 98, 103161. [Google Scholar] [CrossRef]
- Mufari, J.R.; Gorostegui, H.A.; Miranda-Villa, P.P.; Bergesse, A.E.; Calandri, E.L. Oxidative Stability and Characterization of Quinoa Oil Extracted from Wholemeal and Germ Flours. J. Am. Oil Chem. Soc. 2020, 97, 57–66. [Google Scholar] [CrossRef]
- Ng, S.-C.; Anderson, A.; Coker, J.; Ondrus, M. Characterization of Lipid Oxidation Products in Quinoa (Chenopodium quinoa). Food Chem. 2007, 101, 185–192. [Google Scholar] [CrossRef]
- Pathan, S.; Siddiqui, R.A. Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review. Nutrients 2022, 14, 558. [Google Scholar] [CrossRef] [PubMed]
- Ruales, J.; Nair, B.M. Saponins, Phytic Acid, Tannins and Protease Inhibitors in Quinoa (Chenopodium quinoa, Willd) Seeds. Food Chem. 1993, 48, 137–143. [Google Scholar] [CrossRef]
- Darwish, A.M.G.; Al-Jumayi, H.A.O.; Elhendy, H.A. Effect of Germination on the Nutritional Profile of Quinoa (Cheopodium quinoa Willd.) Seeds and Its Anti-anemic Potential in Sprague–Dawley Male Albino Rats. Cereal Chem. 2021, 98, 315–327. [Google Scholar] [CrossRef]
- Guzmán-Ortiz, F.A.; Castro-Rosas, J.; Gómez-Aldapa, C.A.; Mora-Escobedo, R.; Rojas-León, A.; Rodríguez-Marín, M.L.; Falfán-Cortés, R.N.; Román-Gutiérrez, A.D. Enzyme Activity during Germination of Different Cereals: A Review. Food Rev. Int. 2019, 35, 177–200. [Google Scholar] [CrossRef]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.-B. Fermentation and Germination Improve Nutritional Value of Cereals and Legumes through Activation of Endogenous Enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef]
- Rousseau, S.; Pallares Pallares, A.; Vancoillie, F.; Hendrickx, M.; Grauwet, T. Pectin and Phytic Acid Reduce Mineral Bioaccessibility in Cooked Common Bean Cotyledons Regardless of Cell Wall Integrity. Food Res. Int. 2020, 137, 109685. [Google Scholar] [CrossRef]
- Ghavidel, R.A.; Prakash, J. The Impact of Germination and Dehulling on Nutrients, Antinutrients, in Vitro Iron and Calcium Bioavailability and in Vitro Starch and Protein Digestibility of Some Legume Seeds. LWT—Food Sci. Technol. 2007, 40, 1292–1299. [Google Scholar] [CrossRef]
- Lemmens, E.; De Brier, N.; Goos, P.; Smolders, E.; Delcour, J.A. Steeping and Germination of Wheat (Triticum aestivum L.). I. Unlocking the Impact of Phytate and Cell Wall Hydrolysis on Bio-Accessibility of Iron and Zinc Elements. J. Cereal Sci. 2019, 90, 102847. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Repo-Carrasco-Valencia, R.; Hellström, J.K.; Pihlava, J.-M.; Mattila, P.H. Flavonoids and Other Phenolic Compounds in Andean Indigenous Grains: Quinoa (Chenopodium quinoa), Kañiwa (Chenopodium pallidicaule) and Kiwicha (Amaranthus caudatus). Food Chem. 2010, 120, 128–133. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, K.; Yao, Y.; Chen, Y.; Guo, H.; Ren, G.; Yang, X.; Li, J. Antioxidant, Anti-inflammatory, and Antitumor Activities of Phenolic Compounds from White, Red, and Black Chenopodium quinoa Seed. Cereal Chem. 2020, 97, 703–713. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Zhang, B.; Chen, P.X.; Liu, R.; Tsao, R. Characterisation of Phenolics, Betanins and Antioxidant Activities in Seeds of Three Chenopodium quinoa Willd. Genotypes. Food Chem. 2015, 166, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Gorinstein, S.; Vargas, O.J.M.; Jaramillo, N.O.; Salas, I.A.; Ayala, A.L.M.; Arancibia-Avila, P.; Toledo, F.; Katrich, E.; Trakhtenberg, S. The Total Polyphenols and the Antioxidant Potentials of Some Selected Cereals and Pseudocereals. Eur. Food Res. Technol. 2007, 225, 321–328. [Google Scholar] [CrossRef]
- Paśko, P.; Bartoń, H.; Zagrodzki, P.; Gorinstein, S.; Fołta, M.; Zachwieja, Z. Anthocyanins, Total Polyphenols and Antioxidant Activity in Amaranth and Quinoa Seeds and Sprouts during Their Growth. Food Chem. 2009, 115, 994–998. [Google Scholar] [CrossRef]
- Alvarez-Jubete, L.; Wijngaard, H.; Arendt, E.K.; Gallagher, E. Polyphenol Composition and in Vitro Antioxidant Activity of Amaranth, Quinoa Buckwheat and Wheat as Affected by Sprouting and Baking. Food Chem. 2010, 119, 770–778. [Google Scholar] [CrossRef]
- Huang, K.; Chu, G.; Yang, P.; Liu, Y.; Zhang, Y.; Guan, X.; Li, S.; Song, H.; Zhang, Y. Benefits of Monascus Anka Solid-State Fermentation for Quinoa Polyphenol Bioaccessibility and the Anti-Obesity Effect Linked with Gut Microbiota. Food Funct. 2024, 15, 2208–2220. [Google Scholar] [CrossRef]
- Jiang, H.-B.; Nie, P.; Lin, Z.-H.; Zhu, C.; Zhong, L.-Y.; Wei, F.-F.; Wu, Y.; Song, L.-H. The Polyphenols Profile of Co-Fermented Quinoa and Black Barley with Lactobacillus kisonensis and Its In Vitro Bioactivities. Food Biosci. 2024, 58, 103712. [Google Scholar] [CrossRef]
- Melini, F.; Melini, V. Impact of Fermentation on Phenolic Compounds and Antioxidant Capacity of Quinoa. Fermentation 2021, 7, 20. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Cheng, J.; Zhang, X.; Li, K.; Li, B.; Wang, C.; Liu, X. Viscozyme L Hydrolysis and Lactobacillus Fermentation Increase the Phenolic Compound Content and Antioxidant Properties of Aqueous Solutions of Quinoa Pretreated by Steaming with α-Amylase. J. Food Sci. 2021, 86, 1726–1736. [Google Scholar] [CrossRef] [PubMed]
- Gawlik-Dziki, U.; Świeca, M.; Sułkowski, M.; Dziki, D.; Baraniak, B.; Czyż, J. Antioxidant and Anticancer Activities of Chenopodium quinoa Leaves Extracts—In Vitro Study. Food Chem. Toxicol. 2013, 57, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Stoleru, V.; Vitanescu, M.; Teliban, G.-C.; Cojocaru, A.; Vlase, L.; Gheldiu, A.-M.; Mangalagiu, I.; Amăriucăi-Mantu, D.; Burducea, M.; Zheljazkov, V.; et al. Phytosterol and Polyphenol Contents and Quinoa Leave Yields Variation in Relationships to Variety, Density and Harvesting Date. Agronomy 2022, 12, 2397. [Google Scholar] [CrossRef]
- Villacrés, E.; Quelal, M.; Galarza, S.; Iza, D.; Silva, E. Nutritional Value and Bioactive Compounds of Leaves and Grains from Quinoa (Chenopodium quinoa Willd.). Plants 2022, 11, 213. [Google Scholar] [CrossRef] [PubMed]
- Fiallos-Jurado, J.; Pollier, J.; Moses, T.; Arendt, P.; Barriga-Medina, N.; Morillo, E.; Arahana, V.; Torres, M.d.L.; Goossens, A.; Leon-Reyes, A. Saponin Determination, Expression Analysis and Functional Characterization of Saponin Biosynthetic Genes in Chenopodium quinoa Leaves. Plant Sci. 2016, 250, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Sparg, S.G.; Light, M.E.; Staden, J. van Biological Activities and Distribution of Plant Saponins. J. Ethnopharmacol. 2004, 94, 219–243. [Google Scholar] [CrossRef] [PubMed]
- Medina-Meza, I.G.; Aluwi, N.A.; Saunders, S.R.; Ganjyal, G.M. GC–MS Profiling of Triterpenoid Saponins from 28 Quinoa Varieties (Chenopodium quinoa Willd.) Grown in Washington State. J. Agric. Food Chem. 2016, 64, 8583–8591. [Google Scholar] [CrossRef]
- Lim, J.G.; Park, H.-M.; Yoon, K.S. Analysis of Saponin Composition and Comparison of the Antioxidant Activity of Various Parts of the Quinoa Plant (Chenopodium quinoa Willd.). Food Sci. Nutr. 2020, 8, 694–702. [Google Scholar] [CrossRef]
- Hazzam, K.E.; Hafsa, J.; Sobeh, M.; Mhada, M.; Taourirte, M.; Kacimi, K.E.; Yasri, A. An Insight into Saponins from Quinoa (Chenopodium quinoa Willd): A Review. Molecules 2020, 25, 1059. [Google Scholar] [CrossRef]
- Kuljanabhagavad, T.; Wink, M. Biological Activities and Chemistry of Saponins from Chenopodium quinoa Willd. Phytochem. Rev. 2009, 8, 473–490. [Google Scholar] [CrossRef]
- Navarro del Hierro, J.; Herrera, T.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Martin, D. Ultrasound-Assisted Extraction and Bioaccessibility of Saponins from Edible Seeds: Quinoa, Lentil, Fenugreek, Soybean and Lupin. Food Res. Int. 2018, 109, 440–447. [Google Scholar] [CrossRef]
- Han, Y.; Chi, J.; Zhang, M.; Zhang, R.; Fan, S.; Huang, F.; Xue, K.; Liu, L. Characterization of Saponins and Phenolic Compounds: Antioxidant Activity and Inhibitory Effects on α-Glucosidase in Different Varieties of Colored Quinoa (Chenopodium quinoa Willd). Biosci. Biotechnol. Biochem. 2019, 83, 2128–2139. [Google Scholar] [CrossRef] [PubMed]
- Alrosan, M.; Tan, T.-C.; Easa, A.M.; Gammoh, S.; Alu’datt, M.H.; Aleid, G.M.; Alhamad, M.N.; Maghaydah, S. Evaluation of Quality and Protein Structure of Natural Water Kefir-Fermented Quinoa Protein Concentrates. Food Chem. 2023, 404, 134614. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Alvarado, P.; Pavón-Vargas, D.J.; Abarca-Robles, J.; Valencia-Chamorro, S.; Haros, C.M. Effect of Germination on the Nutritional Properties, Phytic Acid Content, and Phytase Activity of Quinoa (Chenopodium Quinoa Willd). Foods 2023, 12, 389. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Hönow, R.; Seidler, A.; Voss, S.; Hesse, A. Oxalate Contents of Species of the Polygonaceae, Amaranthaceae and Chenopodiaceae Families. Food Chem. 2006, 98, 220–224. [Google Scholar] [CrossRef]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, Squalene, Tocopherol Content and Fatty Acid Profile of Selected Seeds, Grains, and Legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Aluwi, N.A.; Saunders, S.R.; Ganjyal, G.M.; Medina-Meza, I.G. Metabolic Fingerprinting Unveils Quinoa Oil as a Source of Bioactive Phytochemicals. Food Chem. 2019, 286, 592–599. [Google Scholar] [CrossRef]
- Foucault, A.-S.; Mathé, V.; Lafont, R.; Even, P.; Dioh, W.; Veillet, S.; Tomé, D.; Huneau, J.-F.; Hermier, D.; Quignard-Boulangé, A. Quinoa Extract Enriched in 20-hydroxyecdysone Protects Mice from Diet-induced Obesity and Modulates Adipokines Expression. Obesity 2012, 20, 270–277. [Google Scholar] [CrossRef]
- Graf, B.L.; Poulev, A.; Kuhn, P.; Grace, M.H.; Lila, M.A.; Raskin, I. Quinoa Seeds Leach Phytoecdysteroids and Other Compounds with Anti-Diabetic Properties. Food Chem. 2014, 163, 178–185. [Google Scholar] [CrossRef]
- Enciso-Roca, E.C.; Aguilar-Felices, E.J.; Tinco-Jayo, J.A.; Arroyo-Acevedo, J.L.; Herrera-Calderon, O. Biomolecules with Antioxidant Capacity from the Seeds and Sprouts of 20 Varieties of Chenopodium quinoa Willd. (Quinoa). Plants 2021, 10, 2417. [Google Scholar] [CrossRef] [PubMed]
- Sobota, A.; Świeca, M.; Gęsiński, K.; Wirkijowska, A.; Bochnak, J. Yellow-Coated Quinoa (Chenopodium quinoa Willd)—Physicochemical, Nutritional, and Antioxidant Properties. J. Sci. Food Agric. 2020, 100, 2035–2042. [Google Scholar] [CrossRef] [PubMed]
- Ong, E.S.; Pek, C.J.N.; Tan, J.C.W.; Leo, C.H. Antioxidant and Cytoprotective Effect of Quinoa (Chenopodium quinoa Willd.) with Pressurized Hot Water Extraction (PHWE). Antioxidants 2020, 9, 1110. [Google Scholar] [CrossRef] [PubMed]
- Pedrali, D.; Giupponi, L.; Peña-Armada, R.D.l.; Villanueva-Suárez, M.J.; Mateos-Aparicio, I. The Quinoa Variety Influences the Nutritional and Antioxidant Profile Rather than the Geographic Factors. Food Chem. 2023, 402, 133531. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zheng, L.; Peng, Y.; Zhu, X.; Liu, F.; Yang, X.; Li, H. Physicochemical, Antioxidant and Anticancer Characteristics of Seed Oil from Three Chenopodium quinoa Genotypes. Molecules 2022, 27, 2453. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Moslehishad, M.; Salami, M. Antioxidant and Alpha-Glucosidase Enzyme Inhibitory Properties of Hydrolyzed Protein and Bioactive Peptides of Quinoa. Int. J. Biol. Macromol. 2022, 213, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.H.; Velázquez, F.; Burrieza, H.P.; Martínez, K.D.; Rubio, A.P.D.; Ferreira, C.D.S.; Buera, M.D.P.; Pérez, O.E. Betanin Loaded Nanocarriers Based on Quinoa Seed 11S Globulin. Impact on the Protein Structure and Antioxidant Activity. Food Hydrocoll. 2019, 87, 880–890. [Google Scholar] [CrossRef]
- Capraro, J.; Benedetti, S.D.; Dio, M.D.; Bona, E.; Abate, A.; Corsetto, P.A.; Scarafoni, A. Characterization of Chenopodin Isoforms from Quinoa Seeds and Assessment of Their Potential Anti-Inflammatory Activity in Caco-2 Cells. Biomolecules 2020, 10, 795. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.; Qin, P.; Shi, Z.; Zhang, W.; Yang, X.; Yao, Y.; Ren, G. Structural Characterization and Antioxidant Activity of Alkali-Extracted Polysaccharides from Quinoa. Food Hydrocoll. 2021, 113, 106392. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Zou, L.; Fu, C.; Li, P.; Zhao, G. Chemical Characterization, Antioxidant, Immune-Regulating and Anticancer Activities of a Novel Bioactive Polysaccharide from Chenopodium quinoa Seeds. Int. J. Biol. Macromol. 2017, 99, 622–629. [Google Scholar] [CrossRef]
- Lin, T.-A.; Ke, B.-J.; Cheng, S.-C.; Lee, C.-L. Red Quinoa Bran Extract Prevented Alcoholic Fatty Liver Disease via Increasing Antioxidative System and Repressing Fatty Acid Synthesis Factors in Mice Fed Alcohol Liquid Diet. Molecules 2021, 26, 6973. [Google Scholar] [CrossRef] [PubMed]
- López-Moreno, M.; Jiménez-Moreno, E.; Márquez Gallego, A.; Vera Pasamontes, G.; Uranga Ocio, J.A.; Garcés-Rimón, M.; Miguel-Castro, M. Red Quinoa Hydrolysates with Antioxidant Properties Improve Cardiovascular Health in Spontaneously Hypertensive Rats. Antioxidants 2023, 12, 1291. [Google Scholar] [CrossRef] [PubMed]
- Al-Qabba, M.M.; El-Mowafy, M.A.; Althwab, S.A.; Alfheeaid, H.A.; Aljutaily, T.; Barakat, H. Phenolic Profile, Antioxidant Activity, and Ameliorating Efficacy of Chenopodium quinoa Sprouts against CCl4-Induced Oxidative Stress in Rats. Nutrients 2020, 12, 2904. [Google Scholar] [CrossRef] [PubMed]
- Pasko, P.; Barton, H.; Zagrodzki, P.; Izewska, A.; Krosniak, M.; Gawlik, M.; Gawlik, M.; Gorinstein, S. Effect of Diet Supplemented with Quinoa Seeds on Oxidative Status in Plasma and Selected Tissues of High Fructose-Fed Rats. Plant Foods Hum. Nutr. 2010, 65, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Chi, J.; Zhang, M.; Zhang, R.; Fan, S.; Dong, L.; Huang, F.; Liu, L. Changes in Saponins, Phenolics and Antioxidant Activity of Quinoa (Chenopodium quinoa Willd) during Milling Process. LWT 2019, 114, 108381. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, Y.; Li, W.; Huang, K.; Li, S.; Cao, H.; Guan, X. Microwaving Released More Polyphenols from Black Quinoa Grains with Hypoglycemic Effects Compared with Traditional Cooking Methods. J. Sci. Food Agric. 2022, 102, 5948–5956. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, G.; Schneider, R.G. Quinoa Flavonoids and Their Bioaccessibility during in Vitro Gastrointestinal Digestion. J. Cereal Sci. 2020, 95, 103070. [Google Scholar] [CrossRef]
- Altıkardeş, E.; Güzel, N. Impact of Germination Pre-Treatments on Buckwheat and Quinoa: Mitigation of Anti-Nutrient Content and Enhancement of Antioxidant Properties. Food Chem. X 2024, 21, 101182. [Google Scholar] [CrossRef] [PubMed]
- Bhinder, S.; Kumari, S.; Singh, B.; Kaur, A.; Singh, N. Impact of Germination on Phenolic Composition, Antioxidant Properties, Antinutritional Factors, Mineral Content and Maillard Reaction Products of Malted Quinoa Flour. Food Chem. 2021, 346, 128915. [Google Scholar] [CrossRef]
- Carciochi, R.A.; Galván-D’Alessandro, L.; Vandendriessche, P.; Chollet, S. Effect of Germination and Fermentation Process on the Antioxidant Compounds of Quinoa Seeds. Plant Foods Hum. Nutr. 2016, 71, 361–367. [Google Scholar] [CrossRef]
- Meng, F.-B.; Zhou, L.; Li, J.-J.; Li, Y.-C.; Wang, M.; Zou, L.-H.; Liu, D.-Y.; Chen, W.-J. The Combined Effect of Protein Hydrolysis and Lactobacillus Plantarum Fermentation on Antioxidant Activity and Metabolomic Profiles of Quinoa Beverage. Food Res. Int. 2022, 157, 111416. [Google Scholar] [CrossRef] [PubMed]
- Piñuel, L.; Boeri, P.; Zubillaga, F.; Barrio, D.A.; Torreta, J.; Cruz, A.; Vásquez, G.; Pinto, A.; Carrillo, W. Production of White, Red and Black Quinoa (Chenopodium quinoa Willd Var. Real) Protein Isolates and Its Hydrolysates in Germinated and Non-Germinated Quinoa Samples and Antioxidant Activity Evaluation. Plants 2019, 8, 257. [Google Scholar] [CrossRef] [PubMed]
- Zevallos, V.F.; Raker, V.; Tenzer, S.; Jimenez-Calvente, C.; Ashfaq-Khan, M.; Rüssel, N.; Pickert, G.; Schild, H.; Steinbrink, K.; Schuppan, D. Nutritional Wheat Amylase-Trypsin Inhibitors Promote Intestinal Inflammation via Activation of Myeloid Cells. Gastroenterology 2017, 152, 1100–1113.e12. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Tsao, R. Phytochemicals in Quinoa and Amaranth Grains and Their Antioxidant, Anti-inflammatory, and Potential Health Beneficial Effects: A Review. Mol. Nutr. Food Res. 2017, 61, 1600767. [Google Scholar] [CrossRef]
- Yao, Y.; Yang, X.; Shi, Z.; Ren, G. Anti-Inflammatory Activity of Saponins from Quinoa (Chenopodium quinoa Willd.) Seeds in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages Cells. J. Food Sci. 2014, 79, H1018–H1023. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Song, Y.; Cao, Y.-N.; Zhang, L.-L.; Zhao, G.; Wu, D.-T.; Zou, L. Total Saponins from Quinoa Bran Alleviate High-fat Diet-induced Obesity and Systemic Inflammation via Regulation of Gut Microbiota in Rats. Food Sci. Nutr. 2022, 10, 3876–3889. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, Q.; Zhou, L.; Sun, Y.; Han, X.; Cheng, X.; Wu, M.; Lv, W.; Wang, J.; Zhao, W. Quinoa (Chenopodium quinoa Willd) Bran Saponins Alleviate Hyperuricemia and Inhibit Renal Injury by Regulating the PI3K/AKT/NFκB Signaling Pathway and Uric Acid Transport. J. Agric. Food Chem. 2023, 71, 6635–6649. [Google Scholar] [CrossRef] [PubMed]
- Franceschelli, S.; Gatta, D.M.P.; Pesce, M.; Ferrone, A.; Quiles, J.L.; Genovese, S.; Epifano, F.; Fiorito, S.; Taddeo, V.A.; Patruno, A.; et al. Modulation of CAT-2B-Mediated l-Arginine Uptake and Nitric Oxide Biosynthesis in HCT116 Cell Line Through Biological Activity of 4′-Geranyloxyferulic Acid Extract from Quinoa Seeds. Int. J. Mol. Sci. 2019, 20, 3262. [Google Scholar] [CrossRef]
- Orona-Tamayo, D.; Valverde, M.E.; Paredes-López, O. Bioactive Peptides from Selected Latin American Food Crops—A Nutraceutical and Molecular Approach. Crit. Rev. Food Sci. Nutr. 2019, 59, 1949–1975. [Google Scholar] [CrossRef]
- Pompeu, D.G.; Cordeiro, H.G.; Tonelli, F.C.P.; Godin, A.M.; Melo, I.S.F.d.; Matsui, T.C.; Rodrigues, F.F.; da Silva, J.A.; Coelho, M.d.M.; Machado, R.R.; et al. Chenopodin as an Anti-Inflammatory Compound. Nat. Prod. Res. 2022, 36, 4435–4438. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Hsieh, C.-C.; de Lumen, B.O. Lunasin, a Novel Seed Peptide for Cancer Prevention. Peptides 2009, 30, 426–430. [Google Scholar] [CrossRef]
- Shi, Z.; Hao, Y.; Teng, C.; Yao, Y.; Ren, G. Functional Properties and Adipogenesis Inhibitory Activity of Protein Hydrolysates from Quinoa (Chenopodium quinoa Willd.). Food Sci. Nutr. 2019, 7, 2103–2112. [Google Scholar] [CrossRef] [PubMed]
- Capraro, J.; Benedetti, S.D.; Heinzl, G.C.; Scarafoni, A.; Magni, C. Bioactivities of Pseudocereal Fractionated Seed Proteins and Derived Peptides Relevant for Maintaining Human Well-Being. Int. J. Mol. Sci. 2021, 22, 3543. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, S.; Chen, T.; Xiong, L.; Wang, F.; Song, H.; Zhou, J.; Wei, S.; Ren, B.; Shen, X. A Quinoa Peptide Protects Impaired Mucus Barriers in Colitis Mice by Inhibiting NF-κB-TRPV1 Signaling and Regulating the Gut Microbiota. Food Funct. 2024, 15, 1223–1236. [Google Scholar] [CrossRef] [PubMed]
- Srdić, M.; Ovčina, I.; Fotschki, B.; Haros, C.M.; Llopis, J.M.L. C. quinoa and S. hispanica L. Seeds Provide Immunonutritional Agonists to Selectively Polarize Macrophages. Cells 2020, 9, 593. [Google Scholar] [CrossRef]
- Laparra Llopis, J.M.; Brown, D.; Saiz, B. Chenopodium quinoa and Salvia hispanica Provide Immunonutritional Agonists to Ameliorate Hepatocarcinoma Severity under a High-Fat Diet. Nutrients 2020, 12, 1946. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Shi, Z.; Ren, G. Antioxidant and Immunoregulatory Activity of Polysaccharides from Quinoa (Chenopodium quinoa Willd.). Int. J. Mol. Sci. 2014, 15, 19307–19318. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Li, J.; Bai, B. Purification, Structural Elucidation and in Vivo Immunity-Enhancing Activity of Polysaccharides from Quinoa (Chenopodium quinoa Willd.) Seeds. Biosci. Biotechnol. Biochem. 2019, 83, 2334–2344. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Liang, L.; Zhu, Y.; Zhang, J.; Luo, L.; Wang, P.; Liu, D. The Protective Effect of Quinoa on the Gastric Mucosal Injury Induced by Absolute Ethanol. J. Sci. Food Agric. 2023, 103, 944–956. [Google Scholar] [CrossRef]
- Lin, T.-A.; Ke, B.-J.; Cheng, C.-S.; Wang, J.-J.; Wei, B.-L.; Lee, C.-L. Red Quinoa Bran Extracts Protects against Carbon Tetrachloride-Induced Liver Injury and Fibrosis in Mice via Activation of Antioxidative Enzyme Systems and Blocking TGF-Β1 Pathway. Nutrients 2019, 11, 395. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and Metabolic Disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Noratto, G.D.; Murphy, K.; Chew, B.P. Quinoa Intake Reduces Plasma and Liver Cholesterol, Lessens Obesity-Associated Inflammation, and Helps to Prevent Hepatic Steatosis in Obese Db/Db Mouse. Food Chem. 2019, 287, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Obaroakpo, J.U.; Nan, W.; Hao, L.; Liu, L.; Zhang, S.; Lu, J.; Pang, X.; Lv, J. The Hyperglycemic Regulatory Effect of Sprouted Quinoa Yoghurt in High-Fat-Diet and Streptozotocin-Induced Type 2 Diabetic Mice via Glucose and Lipid Homeostasis. Food Funct. 2020, 11, 8354–8368. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Chen, Y.-Y.; Li, X.-Y.; Li, Q.-M.; Pan, L.-H.; Luo, J.-P.; Zha, X.-Q. Hydrolytic Quinoa Protein and Cationic Lotus Root Starch-Based Micelles for Co-Delivery of Quercetin and Epigallo-Catechin 3-Gallate in Ulcerative Colitis Treatment. J. Agric. Food Chem. 2022, 70, 15189–15201. [Google Scholar] [CrossRef] [PubMed]
- Stuardo, M.; Martín, R.S. Antifungal Properties of Quinoa (Chenopodium quinoa Willd) Alkali Treated Saponins against Botrytis cinerea. Ind. Crop. Prod. 2008, 27, 296–302. [Google Scholar] [CrossRef]
- Dong, S.; Yang, X.; Zhao, L.; Zhang, F.; Hou, Z.; Xue, P. Antibacterial Activity and Mechanism of Action Saponins from Chenopodium quinoa Willd. Husks against Foodborne Pathogenic Bacteria. Ind. Crop. Prod. 2020, 149, 112350. [Google Scholar] [CrossRef]
- Sun, X.; Yang, X.; Xue, P.; Zhang, Z.; Ren, G. Improved Antibacterial Effects of Alkali-Transformed Saponin from Quinoa Husks against Halitosis-Related Bacteria. BMC Complement. Altern. Med. 2019, 19, 46. [Google Scholar] [CrossRef] [PubMed]
- Farajzadeh, Z.; Shakerian, A.; Rahimi, E.; Bagheri, M. Chemical, Antioxidant, Total Phenolic and Flavonoid Components and Antimicrobial Effects of Different Species of Quinoa Seeds. Egypt. J. Vet. Sci. 2020, 51, 43–54. [Google Scholar] [CrossRef]
- Abdelshafy, A.M.; El-Naggar, E.A.; Kenawi, M.N. Enhancing the Antibacterial Activity of Quinoa Fermented by Probiotics: In Vitro and In Vivo Study. J. Adv. Microbiol. 2022, 22, 8–15. [Google Scholar] [CrossRef]
- Tan, M.; Zhao, Q.; Zhao, B. Physicochemical Properties, Structural Characterization and Biological Activities of Polysaccharides from Quinoa (Chenopodium quinoa Willd.) Seeds. Int. J. Biol. Macromol. 2021, 193, 1635–1644. [Google Scholar] [CrossRef]
- Mahdavi-Yekta, M.; Reihani, S.F.S.; Mohammadi, M. Antimicrobial Activity of Quinoa Protein Hydrolysate against Streptococcus pyogenes and Escherichia coli. J. Food Qual. 2023, 2023, e9993241. [Google Scholar] [CrossRef]
- Khan, I.H.; Javaid, A. Anticancer, Antimicrobial and Antioxidant Compounds of Quinoa Inflorescence. Adv. Life Sci. 2020, 8, 68–72. [Google Scholar]
- Pagno, C.H.; Costa, T.M.H.; Menezes, E.W.d.; Benvenutti, E.V.; Hertz, P.F.; Matte, C.R.; Tosati, J.V.; Monteiro, A.R.; Rios, A.O.; Flôres, S.H. Development of Active Biofilms of Quinoa (Chenopodium quinoa W.) Starch Containing Gold Nanoparticles and Evaluation of Antimicrobial Activity. Food Chem. 2015, 173, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Yekta, M.M.; Rezaei, M.; Nouri, L.; Azizi, M.H.; Jabbari, M.; Eş, I.; Khaneghah, A.M. Antimicrobial and Antioxidant Properties of Burgers with Quinoa Peptide-loaded Nanoliposomes. J. Food Saf. 2020, 40, e12753. [Google Scholar] [CrossRef]
- Escamilla-García, M.; Ríos-Romo, R.A.; Melgarejo-Mancilla, A.; Díaz-Ramírez, M.; Hernández-Hernández, H.M.; Amaro-Reyes, A.; Pierro, P.D.; Regalado-González, C. Rheological and Antimicrobial Properties of Chitosan and Quinoa Protein Filmogenic Suspensions with Thyme and Rosemary Essential Oils. Foods 2020, 9, 1616. [Google Scholar] [CrossRef]
- Aziminezhad, H.; Esmaeilzadeh Kenari, R.; Raftani Amiri, Z. The Effect of Antimicrobial Properties of Nano-Encapsulated Red Quinoa and Ginseng Extracts on the Shelf Life of Cream. Food Res. J. 2024, 33, 113–129. [Google Scholar] [CrossRef]
- Robledo, N.; Vera, P.; López, L.; Yazdani-Pedram, M.; Tapia, C.; Abugoch, L. Thymol Nanoemulsions Incorporated in Quinoa Protein/Chitosan Edible Films; Antifungal Effect in Cherry Tomatoes. Food Chem. 2018, 246, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lietz, G.; Seal, C.J. Effects of Quinoa Intake on Markers of Cardiovascular Risk: A Systematic Literature Review and Meta-Analysis. Food Rev. Int. 2024, 40, 1–19. [Google Scholar] [CrossRef]
- Zeng, H.; Cai, X.; Qiu, Z.; Liang, Y.; Huang, L. Glucolipid Metabolism Improvement in Impaired Glucose Tolerance Subjects Consuming a Quinoa-Based Diet: A Randomized Parallel Clinical Trial. Front. Physiol. 2023, 14, 1179587. [Google Scholar] [CrossRef]
- Díaz-Rizzolo, D.A.; Acar-Denizli, N.; Kostov, B.; Roura, E.; Sisó-Almirall, A.; Delicado, P.; Gomis, R. Glycaemia Fluctuations Improvement in Old-Age Prediabetic Subjects Consuming a Quinoa-Based Diet: A Pilot Study. Nutrients 2022, 14, 2331. [Google Scholar] [CrossRef]
- Pourshahidi, L.K.; Caballero, E.; Osses, A.; Hyland, B.W.; Ternan, N.G.; Gill, C.I.R. Modest Improvement in CVD Risk Markers in Older Adults Following Quinoa (Chenopodium quinoa Willd.) Consumption: A Randomized-Controlled Crossover Study with a Novel Food Product. Eur. J. Nutr. 2020, 59, 3313–3323. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lietz, G.; Bal, W.; Watson, A.; Morfey, B.; Seal, C. Effects of Quinoa (Chenopodium quinoa Willd.) Consumption on Markers of CVD Risk. Nutrients 2018, 10, 777. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.G.D.; Ovídio, P.P.; Padovan, G.J.; Junior, A.A.J.; Marchini, J.S.; Navarro, A.M. Metabolic Parameters of Postmenopausal Women after Quinoa or Corn Flakes Intake—A Prospective and Double-Blind Study. Int. J. Food Sci. Nutr. 2014, 65, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Atefi, M.; Mirzamohammadi, S.; Darand, M.; Tarrahi, M.J. Meta-Analysis of the Effects of Quinoa (Chenopodium quinoa) Interventions on Blood Lipids. J. Herb. Med. 2022, 34, 100571. [Google Scholar] [CrossRef]
- Karimian, J.; Abedi, S.; Shirinbakhshmasoleh, M.; Moodi, F.; Moodi, V.; Ghavami, A. The Effects of Quinoa Seed Supplementation on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis of Controlled Clinical Trials. Phytother. Res. PTR 2021, 35, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Perez, D.; Radcliffe, J.; Tierney, A.; Jois, M. Quinoa Seed Lowers Serum Triglycerides in Overweight and Obese Subjects: A Dose-Response Randomized Controlled Clinical Trial. Curr. Dev. Nutr. 2017, 1, e001321. [Google Scholar] [CrossRef] [PubMed]
- Lopes, C.d.O.; Barcelos, M.d.F.P.; Vieira, C.N.d.G.; Abreu, W.C.d.; Ferreira, E.B.; Pereira, R.C.; de Angelis-Pereira, M.C. Effects of Sprouted and Fermented Quinoa (Chenopodium quinoa) on Glycemic Index of Diet and Biochemical Parameters of Blood of Wistar Rats Fed High Carbohydrate Diet. J. Food Sci. Technol. 2019, 56, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-Y.; Tao, S.-Y.; Wu, Y.-X.; An, T.; Lv, B.-H.; Liu, J.-X.; Liu, Y.-T.; Jiang, G.-J. Quinoa Reduces High-Fat Diet-Induced Obesity in Mice via Potential Microbiota-Gut-Brain-Liver Interaction Mechanisms. Microbiol. Spectr. 2022, 10, e00329-22. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Z.; Wu, T.; You, H.; Wang, W.; Liu, X.; Ding, L. Quinoa Peptides Alleviate Obesity in Mice Induced by a High-Fat Diet via Regulating of the PPAR-α/γ Signaling Pathway and Gut Microbiota. Mol. Nutr. Food Res. 2023, 67, 2300258. [Google Scholar] [CrossRef]
- Foucault, A.S.; Even, P.; Lafont, R.; Dioh, W.; Veillet, S.; Tomé, D.; Huneau, J.F.; Hermier, D.; Quignard-Boulangé, A. Quinoa Extract Enriched in 20-Hydroxyecdysone Affects Energy Homeostasis and Intestinal Fat Absorption in Mice Fed a High-Fat Diet. Physiol. Behav. 2014, 128, 226–231. [Google Scholar] [CrossRef]
- Teng, C.; Shi, Z.; Yao, Y.; Ren, G. Structural Characterization of Quinoa Polysaccharide and Its Inhibitory Effects on 3T3-L1 Adipocyte Differentiation. Foods 2020, 9, 1511. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Zhu, Y.; Gao, Y.; Shi, Z.; Hu, Y.; Ren, G. Suppressive Effects of Saponin-Enriched Extracts from Quinoa on 3T3-L1 Adipocyte Differentiation. Food Funct. 2015, 6, 3282–3290. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, M.; Bustos, M.; Mendez, D.; Fuentes, E.; Palomo, I.; Lutz, M. In Vitro Assay of Quinoa (Chenopodium quinoa Willd.) and Lupin (Lupinus spp.) Extracts on Human Platelet Aggregation. Plant Foods Hum. Nutr. 2020, 75, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Shi, Y.; Wei, C.; Uthamapriya, R.A.; Wu, Y.; Cao, L. The Effects of Quinoa Bran Dietary Fiber on Glucose and Lipid Metabolism and Hepatic Transcriptome in Obese Rats. J. Sci. Food Agric. 2024, 104, 2692–2703. [Google Scholar] [CrossRef] [PubMed]
- Busso, D.; González, A.; Santander, N.; Saavedra, F.; Quiroz, A.; Rivera, K.; González, J.; Olmos, P.; Marette, A.; Bazinet, L.; et al. A Quinoa Protein Hydrolysate Fractionated by Electrodialysis with Ultrafiltration Membranes Improves Maternal and Fetal Outcomes in a Mouse Model of Gestational Diabetes Mellitus. Mol. Nutr. Food Res. 2023, 67, e2300047. [Google Scholar] [CrossRef]
- Ozcaliskan Ilkay, H.; Karabulut, D.; Kamaci Ozocak, G.; Mehmetbeyoglu, E.; Kaymak, E.; Kisioglu, B.; Cicek, B.; Akyol, A. Quinoa (Chenopodium quinoa Willd.) Supplemented Cafeteria Diet Ameliorates Glucose Intolerance in Rats. Food Sci. Nutr. 2023, 11, 6920–6930. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Richel, A.; Hao, Y.; Fan, X.; Everaert, N.; Yang, X.; Ren, G. Novel Dipeptidyl Peptidase-IV and Angiotensin-I-Converting Enzyme Inhibitory Peptides Released from Quinoa Protein by in Silico Proteolysis. Food Sci. Nutr. 2020, 8, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Obaroakpo, J.U.; Liu, L.; Zhang, S.; Lu, J.; Liu, L.; Pang, X.; Lv, J. In Vitro Modulation of Glucagon-like Peptide Release by DPP-IV Inhibitory Polyphenol-Polysaccharide Conjugates of Sprouted Quinoa Yoghurt. Food Chem. 2020, 324, 126857. [Google Scholar] [CrossRef]
- Cao, M.; Wang, J.; Jiang, X.; Sun, Z.; Zhao, L.; Chen, G. Phenolic Constituents from Black Quinoa Alleviate Insulin Resistance in HepG2 Cells via Regulating IRS1/PI3K/Akt/GLUTs Signaling Pathways. J. Agric. Food Chem. 2023, 71, 18780–18791. [Google Scholar] [CrossRef]
- Tanisha; Venkategowda, S.; Majumdar, M. Amelioration of Hyperglycemia and Hyperlipidemia in a High-Fat Diet-Fed Mice by Supplementation of a Developed Optimized Polyherbal Formulation. 3 Biotech 2022, 12, 251. [Google Scholar] [CrossRef]
- Tanisha; Venkategowda, S.; Majumdar, M. Response Surface Methodology Based Development of an Optimized Polyherbal Formulation and Evaluation of Its Anti-Diabetic and Anti-Obesity Potential in High-Fat Diet-Induced Obese Mice. J. Tradit. Complement. Med. 2024, 14, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bai, B.; Yan, Y.; Liang, J.; Guan, X. Bound Polyphenols from Red Quinoa Prevailed over Free Polyphenols in Reducing Postprandial Blood Glucose Rises by Inhibiting α-Glucosidase Activity and Starch Digestion. Nutrients 2022, 14, 728. [Google Scholar] [CrossRef] [PubMed]
- Ayyash, M.; Johnson, S.K.; Liu, S.-Q.; Al-Mheiri, A.; Abushelaibi, A. Cytotoxicity, Antihypertensive, Antidiabetic and Antioxidant Activities of Solid-State Fermented Lupin, Quinoa and Wheat by Bifidobacterium Species: In-Vitro Investigations. LWT 2018, 95, 295–302. [Google Scholar] [CrossRef]
- Tan, M.; Chang, S.; Liu, J.; Li, H.; Xu, P.; Wang, P.; Wang, X.; Zhao, M.; Zhao, B.; Wang, L.; et al. Physicochemical Properties, Antioxidant and Antidiabetic Activities of Polysaccharides from Quinoa (Chenopodium quinoa Willd.) Seeds. Molecules 2020, 25, 3840. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho Oliveira, L.; Martinez-Villaluenga, C.; Frias, J.; Elena Cartea, M.; Francisco, M.; Cristianini, M.; Peñas, E. High Pressure-Assisted Enzymatic Hydrolysis Potentiates the Production of Quinoa Protein Hydrolysates with Antioxidant and ACE-Inhibitory Activities. Food Chem. 2024, 447, 138887. [Google Scholar] [CrossRef] [PubMed]
- Cisneros-Yupanqui, M.; Lante, A.; Mihaylova, D.; Krastanov, A.I.; Vílchez-Perales, C. Impact of Consumption of Cooked Red and Black Chenopodium quinoa Willd. over Blood Lipids, Oxidative Stress, and Blood Glucose Levels in Hypertension-induced Rats. Cereal Chem. 2020, 97, 1254–1262. [Google Scholar] [CrossRef]
- Obaroakpo, J.U.; Liu, L.; Zhang, S.; Lu, J.; Pang, X.; Lv, J. α-Glucosidase and ACE Dual Inhibitory Protein Hydrolysates and Peptide Fractions of Sprouted Quinoa Yoghurt Beverages Inoculated with Lactobacillus casei. Food Chem. 2019, 299, 124985. [Google Scholar] [CrossRef]
- Chirinos, R.; Pedreschi, R.; Velásquez-Sánchez, M.; Aguilar-Galvez, A.; Campos, D. In Vitro Antioxidant and Angiotensin I-converting Enzyme Inhibitory Properties of Enzymatically Hydrolyzed Quinoa (Chenopodium Quinoa) and Kiwicha (Amaranthus caudatus) Proteins. Cereal Chem. 2020, 97, 949–957. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Y.; Li, Y.; Wang, X.; Zheng, Y.; Xu, J.; Sang, S.; Liu, Y. A Novel Antihypertensive Pentapeptide Identified in Quinoa Bran Globulin Hydrolysates: Purification, In Silico Characterization, Molecular Docking with ACE and Stability against Different Food-Processing Conditions. Nutrients 2022, 14, 2420. [Google Scholar] [CrossRef]
- Guo, H.; Hao, Y.; Fan, X.; Richel, A.; Everaert, N.; Yang, X.; Ren, G. Administration with Quinoa Protein Reduces the Blood Pressure in Spontaneously Hypertensive Rats and Modifies the Fecal Microbiota. Nutrients 2021, 13, 2446. [Google Scholar] [CrossRef]
- González-Muñoz, A.; Valle, M.; Aluko, R.E.; Bazinet, L.; Enrione, J. Production of Antihypertensive and Antidiabetic Peptide Fractions from Quinoa (Chenopodium quinoa Willd.) by Electrodialysis with Ultrafiltration Membranes. Food Sci. Hum. Wellness. 2022, 11, 1650–1659. [Google Scholar] [CrossRef]
- Hussein, A.M.S.; Fouda, K.; Mehaya, F.M.; Mohamed, D.A.; Mohammad, A.A.; Abdelgayed, S.S.; Mohamed, R.S. Fortified Vegetarian Milk for Prevention of Metabolic Syndrome in Rats: Impact on Hepatic and Vascular Complications. Heliyon 2020, 6, e04593. [Google Scholar] [CrossRef] [PubMed]
- Selma-Gracia, R.; Haros, C.M.; Laparra Llopis, J.M. Inclusion of Salvia hispanica L. and Chenopodium quinoa into Bread Formulations Improves Metabolic Imbalances Derived from a High-Fat Intake in Hyperglycaemic Mice. Food Funct. 2020, 11, 7994–8002. [Google Scholar] [CrossRef]
- Marak, N.R.; Das, P.; Das Purkayastha, M.; Baruah, L.D. Effect of Quinoa (Chenopodium quinoa W.) Flour Supplementation in Breads on the Lipid Profile and Glycemic Index: An in Vivo Study. Front. Nutr. 2024, 11, 1341539. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Tianqi, F.; Zhang, C.; Deng, X.; Zhou, Y.; Wang, J.; Wang, L. High-Protein Compound Yogurt with Quinoa Improved Clinical Features and Metabolism of High-Fat Diet–Induced Nonalcoholic Fatty Liver Disease in Mice. J. Dairy Sci. 2023, 106, 5309–5327. [Google Scholar] [CrossRef]
- Song, C.; Lv, W.; Li, Y.; Nie, P.; Lu, J.; Geng, Y.; Heng, Z.; Song, L. Alleviating the Effect of Quinoa and the Underlying Mechanism on Hepatic Steatosis in High-Fat Diet-Fed Rats. Nutr. Metab. 2021, 18, 106. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Lyu, W.; Lin, Z.; Lu, J.; Geng, Y.; Song, L.; Zhang, H. Quinoa Ameliorates Hepatic Steatosis, Oxidative Stress, Inflammation and Regulates the Gut Microbiota in Nonalcoholic Fatty Liver Disease Rats. Foods 2023, 12, 1780. [Google Scholar] [CrossRef]
- Al-Okbi, S.Y.; Hamed, T.E.; Elewa, T.A.; Ramadan, A.A.; El-Karamany, M.F.; Bakry, B.A. Role of Polar Extracts from Two Quinoa Varieties in Prevention of Steatohepatitis and Cardiovascular Diseases and Improving Glucose Tolerance in Rats. J. Herbmed Pharmacol. 2020, 10, 93–101. [Google Scholar] [CrossRef]
- An, T.; Liu, J.-X.; Yang, X.; Lv, B.; Wu, Y.; Jiang, G. Supplementation of Quinoa Regulates Glycolipid Metabolism and Endoplasmic Reticulum Stress in the High-Fat Diet-Induced Female Obese Mice. Nutr. Metab. 2021, 18, 95. [Google Scholar] [CrossRef]
- Abdel-Wahhab, K.G.; Mannaa, F.A.; Ashry, M.; Khaled, D.M.; Hassan, L.K.; Gomaa, H.F. Chenopodium quinoa Ethanolic Extract Ameliorates Cyclophosphamide®-Induced Hepatotoxicity in Male Rats. Comp. Clin. Pathol. 2021, 30, 267–276. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Fotschki, B.; Juśkiewicz, J.; Jurgoński, A.; Amarowicz, R.; Opyd, P.; Bez, J.; Muranyi, I.; Petersen, I.L.; Llopis, M.L. Protein-Rich Flours from Quinoa and Buckwheat Favourably Affect the Growth Parameters, Intestinal Microbial Activity and Plasma Lipid Profile of Rats. Nutrients 2020, 12, 2781. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mazcorro, J.F.; Mills, D.; Noratto, G. Molecular Exploration of Fecal Microbiome in Quinoa-Supplemented Obese Mice. FEMS Microbiol. Ecol. 2016, 92, fiw089. [Google Scholar] [CrossRef] [PubMed]
- Gullón, B.; Gullón, P.; Tavaria, F.K.; Yáñez, R. Assessment of the Prebiotic Effect of Quinoa and Amaranth in the Human Intestinal Ecosystem. Food Funct. 2016, 7, 3782–3788. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yu, Q.; Ma, L.; Su, T.; Zhang, D.; Yao, D.; Li, Z. In Vitro Simulated Fecal Fermentation of Mixed Grains on Short-Chain Fatty Acid Generation and Its Metabolized Mechanism. Food Res. Int. 2023, 170, 112949. [Google Scholar] [CrossRef] [PubMed]
- Zeyneb, H.; Pei, H.; Cao, X.; Wang, Y.; Win, Y.; Gong, L. In Vitro Study of the Effect of Quinoa and Quinoa Polysaccharides on Human Gut Microbiota. Food Sci. Nutr. 2021, 9, 5735–5745. [Google Scholar] [CrossRef] [PubMed]
- Zang, Y.; Ge, Y.; Cao, Y.; Tang, H. Anti-Diabetic Effect of Red Quinoa Polysaccharide on Type 2 Diabetic Mellitus Mice Induced by Streptozotocin and High-Fat Diet. Front. Microbiol. 2024, 15, 1308866. [Google Scholar] [CrossRef]
- Agarwal, N.; Kolba, N.; Khen, N.; Even, C.; Turjeman, S.; Koren, O.; Tako, E. Quinoa Soluble Fiber and Quercetin Alter the Composition of the Gut Microbiome and Improve Brush Border Membrane Morphology In Vivo (Gallus gallus). Nutrients 2022, 14, 448. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Z.; Mai, P.; Hao, Y.; Wang, Z.; Wang, J. Quinoa Bran Soluble Dietary Fiber Ameliorates Dextran Sodium Sulfate Induced Ulcerative Colitis in BALB/c Mice by Maintaining Intestinal Barrier Function and Modulating Gut Microbiota. Int. J. Biol. Macromol. 2022, 216, 75–85. [Google Scholar] [CrossRef]
- Cao, Y.; Zou, L.; Li, W.; Song, Y.; Zhao, G.; Hu, Y. Dietary Quinoa (Chenopodium quinoa Willd.) Polysaccharides Ameliorate High-Fat Diet-Induced Hyperlipidemia and Modulate Gut Microbiota. Int. J. Biol. Macromol. 2020, 163, 55–65. [Google Scholar] [CrossRef]
- Shin, N.-R.; Whon, T.W.; Bae, J.-W. Proteobacteria: Microbial Signature of Dysbiosis in Gut Microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Ji, X.; Song, L.; Cao, Y.; Feng, J.; Zhang, R.; Tao, F.; Zhang, F.; Xue, P. Saponins from Chenopodium quinoa Willd. Husks Alleviated High-Fat-Diet-Induced Hyperlipidemia via Modulating the Gut Microbiota and Multiple Metabolic Pathways. J. Sci. Food Agric. 2024, 104, 2417–2428. [Google Scholar] [CrossRef] [PubMed]
- Hierro, J.N.D.; Casado-Hidalgo, G.; Reglero, G.; Martin, D. The Hydrolysis of Saponin-Rich Extracts from Fenugreek and Quinoa Improves Their Pancreatic Lipase Inhibitory Activity and Hypocholesterolemic Effect. Food Chem. 2021, 338, 128113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhai, Q.; Yu, Y.; Li, X.; Zhang, F.; Hou, Z.; Cao, Y.; Feng, J.; Xue, P. Safety Assessment of Crude Saponins from Chenopodium quinoa Willd. Husks: 90-Day Oral Toxicity and Gut Microbiota & Metabonomics Study in Rats. Food Chem. 2022, 375, 131655. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Guo, H.; Teng, C.; Yang, X.; Qin, P.; Richel, A.; Zhang, L.; Blecker, C.; Ren, G. Supplementation of Quinoa Peptides Alleviates Colorectal Cancer and Restores Gut Microbiota in AOM/DSS-Treated Mice. Food Chem. 2023, 408, 135196. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Tuo, Y.; You, H.; Li, J.; Wang, L.; Liu, X.; Ding, L. Quinoa Protein and Its Hydrolysate Ameliorated DSS-Induced Colitis in Mice by Modulating Intestinal Microbiota and Inhibiting Inflammatory Response. Int. J. Biol. Macromol. 2023, 253, 127588. [Google Scholar] [CrossRef] [PubMed]
- Bhaduri, S. An Assessment of Antioxidant and Antiproliferative Activities of Super Grain Quinoa. J. Food Process. Technol. 2016, 7, 549. [Google Scholar] [CrossRef]
- Paśko, P.; Tyszka-Czochara, M.; Namieśnik, J.; Jastrzębski, Z.; Leontowicz, H.; Drzewiecki, J.; Martinez-Ayala, A.L.; Nemirovski, A.; Barasch, D.; Gorinstein, S. Cytotoxic, Antioxidant and Binding Properties of Polyphenols from the Selected Gluten-Free Pseudocereals and Their by-Products: In Vitro Model. J. Cereal Sci. 2019, 87, 325–333. [Google Scholar] [CrossRef]
- Stikić, R.I.; Milinčić, D.D.; Kostić, A.Ž.; Jovanović, Z.B.; Gašić, U.M.; Tešić, Ž.L.; Djordjević, N.Z.; Savić, S.K.; Czekus, B.G.; Pešić, M.B. Polyphenolic Profiles, Antioxidant, and in Vitro Anticancer Activities of the Seeds of Puno and Titicaca Quinoa Cultivars. Cereal Chem. 2020, 97, 626–633. [Google Scholar] [CrossRef]
- Mollaei, H.; Karimi, F.; Ghorbany, M.; Hosseinzadeh, M.S.; Moudi, M.; Mousavi-Kouhi, S.M. Investigating Cytotoxic Effect and Molecular Mechanisms of Quinoa Seed Extract Against Human Lung Cancer Cell Line. Jentashapir J. Cell. Mol. Biol. 2021, 12, e121089. [Google Scholar] [CrossRef]
- Mohamed, D.A.; Fouda, K.A.; Mohamed, R.S. In Vitro Anticancer Activity of Quinoa and Safflower Seeds and Their Preventive Effects on Non-Alcoholic Fatty Liver. Pak. J. Biol. Sci. PJBS 2019, 22, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Seifati, S.E.; Ranaiezadeh, M.R.; Daneshmand, F.; Karimi Bekr, Z.; Rezaee, M.-B. The Phytochemical Content and Cytotoxic Effects of Quinoa Commercial Cultivars (Chenopodium quinoa Willd.) on MCF7 Cell Line of Breast Cancer. J. Med. Plants By-Prod. 2024. [Google Scholar] [CrossRef]
- Feng, Y.; Fan, X.; Zhang, S.; Wu, T.; Bai, L.; Wang, H.; Ma, Y.; Guan, X.; Wang, C.; Yang, H. Effects of Variety and Origin on the Metabolic and Texture Characteristics of Quinoa Seeds Based on Ultrahigh-Performance Liquid Chromatography Coupled with High-Field Quadrupole-Orbitrap High-Resolution Mass Spectrometry. Food Res. Int. 2022, 162, 111693. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.T.; Wong, T.Y.; Wei, C.I.; Huang, Y.W.; Lin, Y. Tannins and Human Health: A Review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef] [PubMed]
- Younas, M.; Rizwan, M.; Zubair, M.; Inam, A.; Ali, S. Biological Synthesis, Characterization of Three Metal-Based Nanoparticles and Their Anticancer Activities against Hepatocellular Carcinoma HepG2 Cells. Ecotoxicol. Environ. Saf. 2021, 223, 112575. [Google Scholar] [CrossRef] [PubMed]
- El makawy, A.I.; Abdel-Aziem, S.H.; Mohammed, S.E.; Ibrahim, F.M.; Abd EL-Kader, H.A.; Sharaf, H.A.; Youssef, D.A.; Mabrouk, D.M. Exploration of Tumor Growth Regression of Quinoa and Chia Oil Nanocapsules via the Control of PIK3CA and MYC Expression, Anti-Inflammation and Cell Proliferation Inhibition, and Their Hepatorenal Safety in Rat Breast Cancer Model. Bull. Natl. Res. Cent. 2024, 48, 7. [Google Scholar] [CrossRef]
- Aliyari, M.A.; Motahar, S.F.S.; Salami, M.; Betti, M.; Hosseini, E.; Habibi-Kelishomi, Z.; Goliaei, B.; Ghasemi, A. Structural, Functional, and Anti-Cancer Properties of Conjugates of Quinoa Protein Isolate and Olive Leaf Polyphenolic Extract: Application in Production of Bread. Food Struct. 2022, 33, 100292. [Google Scholar] [CrossRef]
- Fan, X.; Guo, H.; Teng, C.; Zhang, B.; Blecker, C.; Ren, G. Anti-Colon Cancer Activity of Novel Peptides Isolated from in Vitro Digestion of Quinoa Protein in Caco-2 Cells. Foods 2022, 11, 194. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Luján, R.; Pont, L.; Sanz-Nebot, V.; Benavente, F. A Proteomics Data Mining Strategy for the Identification of Quinoa Grain Proteins with Potential Immunonutritional Bioactivities. Foods 2023, 12, 390. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Zhang, X.; Shi, J.; Cui, K.; Yang, R.; Liu, F.; Shan, S.; Israr, G.; Li, Z. Terpenoids of Quinoa Bran Suppresses Colorectal Cancer by Inducing Cell Apoptosis. Food Biosci. 2023, 53, 102615. [Google Scholar] [CrossRef]
- Carpio-Paucar, G.N.; Palo-Cardenas, A.I.; Rondón-Ortiz, A.N.; Pino-Figueroa, A.; Gonzales-Condori, E.G.; Villanueva-Salas, J.A. Cytotoxic Activity of Saponins and Sapogenins Isolated from Chenopodium quinoa Willd. in Cancer Cell Lines. Scientifica 2023, 2023, e8846387. [Google Scholar] [CrossRef]
- Rotondo, R.; Ragucci, S.; Castaldo, S.; Oliva, M.A.; Landi, N.; Pedone, P.V.; Arcella, A.; Maro, A.D. Cytotoxicity Effect of Quinoin, Type 1 Ribosome-Inactivating Protein from Quinoa Seeds, on Glioblastoma Cells. Toxins 2021, 13, 684. [Google Scholar] [CrossRef] [PubMed]
- de Cedrón, M.G.; del Hierro, J.N.; Reguero, M.; Wagner, S.; Bouzas, A.; Quijada-Freire, A.; Reglero, G.; Martín, D.; Molina, A.R. Saponin-Rich Extracts and Their Acid Hydrolysates Differentially Target Colorectal Cancer Metabolism in the Frame of Precision Nutrition. Cancers 2020, 12, 3399. [Google Scholar] [CrossRef] [PubMed]
Bioactive Compound | Analysis Method | Typical Substances | Reference |
---|---|---|---|
Lunasin | UPLC-ESI-MS | 2.84 μg/g DW | [22] |
Protein hydrolysate | LC-MS | MMFPH, FDLSHGS, LDKFLST, KTLPAVF, TKLPAVF and PPFLQVVPEV | [24] |
Protein hydrolysate | ESI-Q-TOF-MS/MS | FHPFPR, NWFPLPR, PNFHPFPR, NIFRPF, SLPNFHPFPR, INNIFRPF, SVENWFPLPR, NSLSLPNFHPFPR, NSWGPNWGDHG, HYNPYFPGGA | [25] |
Protein concentrate | LC-MS/MS | LWREGM, DKDYPK, DVYSPEAG, IFQEYI, RELGEWGI | [26] |
Protein concentrate | RP-HPLC-MS/MS | peptide fragments included IQAEGGLT, DKDYPK, GEHGSDGNV | [27] |
Protein-derived peptides | UPLC-MS/MS | IPI, IPV, VAYPL, IPIN, IPIIN, APW, IPAV, VPF, IPF, IPNPI, WPI, LPY, FAYP, FAMP, LALP, MPAGV, FAMPA, LAFPH, LPW, IPR | [28] |
Protein-derived peptides | LCMS Q-TOF | FFE, DFTF, DFLM, ML, CDCP, CYTF, FSAGGLP | [29] |
Protein-derived peptides | LC-MS/MS | RGQVIYVL, ASPKPSSA, QFLLAGR | [23] |
Bioactive Compound | Analysis Method | Samples | Contents | Reference |
---|---|---|---|---|
Total saponin | Spectrophotometry | Available sample (Hongcheon, Republic of Korea) | 13.39 g/100 g | [70] |
Spectrophotometry | 4 available quinoa varieties (Shanxi, China) and 3 available quinoa varieties (Peru) | 7.51–12.12 mg OAE/g DW | [74] | |
Spectrophotometry | 28 quinoa varieties (Brigham Young University, Washington State University, and other sources) | 3.81–27.1 mg/g | [69] | |
Spectrophotometry | Commercially available sample (Moreno Valley, CA, USA) | 97.03 ± 1.53 mg OAE/100 g | [75] | |
Oleanolic acid | GC-MS/MS | Available sample (Hongcheon, Republic of Korea) | 0.301 mg/g | [70] |
GC-MS/MS | 28 quinoa varieties (Brigham Young University, Washington State University, and other sources) | 0.896 mg/g DW | [69] | |
Hederagenin | GC-MS/MS | Available sample (Hongcheon, Republic of Korea) | 0.300 mg/g | [70] |
GC-MS/MS | 28 quinoa varieties (Brigham Young University, Washington State University, and other sources) | 1.841 mg/g DW | [69] | |
Phytolaccagenic acid | GC-MS/MS | Available sample (Hongcheon, Republic of Korea) | 1.650 mg/g | [70] |
GC-MS/MS | 28 quinoa varieties (Brigham Young University, Washington State University, and other sources) | 7.818 mg/g DW | [69] | |
Sejanic acid | GC-MS/MS | 28 quinoa varieties (Brigham Young University, Washington State University, and other sources) | 0.459 mg/g DW | [69] |
Compounds | Cell Line | Cancer Type | Treatments/Conditions | Functional Activity | References |
---|---|---|---|---|---|
Purified quinoa polysaccharides Quinoa seed extract | MCF-7 | Breast Cancer | IC50 for 24 h and 48 h were 83.48 μg/mL and 64.67 μg/mL | Strong inhibition of MCF-7 but no inhibition on normal cells | [91] |
SMMC-7721 | Liver Cancer | IC50 for 24 h and 48 h were 121.4 μg/mL and 53.4 μg/mL | Strong inhibition of SMMC 7721 but no inhibition on normal cells | [91] | |
HCT-116 | Colorectal Cancer | The 48 h IC50 of two varieties of quinoa (Ponu and Titicaca) were 110.68 μg/mL and 239.47 µg/mL, respectively | Significant inhibition of proliferation | [200] | |
A549 | Lung Cancer | Dose-dependent 1.60 mg/mL and 1.92 mg/mL | Inhibiting cell viability; inducing strong apoptosis (increased BAX and decreased Bcl2 levels). | [201] | |
Quinoa leaf extract | MAT-LyLu | Prostate Cancer | Dose-dependent 0.186–1.86 mg/mL | Blocking intercellular communication connections and inhibiting cancer cell proliferation | [64] |
AT-2 | Prostate Cancer | Dose-dependent 0.186–1.86 mg/mL | Blocking intercellular communication connections and inhibiting cancer cell proliferation | [64] | |
Peptides derived from quinoa | HCT-116 | Colorectal Cancer | >5 kDa peptides showed IC50 = 0.176 ± 0.000 mg protein/mL, <5 kDa peptides showed IC50 = 0.928 ± 0.012 mg protein/mL | Inhibition of cell proliferation | [26] |
HT-29 | Colorectal Cancer | >5 kDa peptides showed IC50 = 0.085 ± 0.003 mg protein/mL, <5 kDa peptides showed IC50 = 0.781 ± 0.009 mg protein/mL | Inhibition of cell proliferation | [26] | |
Caco-2 | Colorectal Cancer | >5 kDa peptides showed IC50 = 0.239 ± 0.001 mg protein/mL, <5 kDa peptides showed IC50 = 0.676 ± 0.007 mg protein/mL | Inhibition of cell proliferation | [26] | |
Novel bioactive peptides FHPFPR, NWFPLPR, and HYNPYFPG obtained from quinoa protein digestion production (<5 kDa) | Caco-2 | Colorectal Cancer | IC50 was 0.87 g/L, 1.27 g/L and 1.85 g/L, respectively | Significant inhibition of Caco-2 cell proliferation by inhibiting histone deacetylase 1 (HDAC1) activity and regulating oncogenic gene expression | [209] |
Saponin-rich quinoa extract (QE) and its hydrolyzed extract as sapogenin-rich extracts (HQE) | DLD-1 | Colorectal Cancer | 48 h IC50 values close to 100 μg/mL | - | [214] |
SW620 | Colorectal Cancer | 48 h IC50 values close to 100 μg/mL | - | [214] | |
Quinoa ferments | Caco-2 | Colorectal Cancer | - | Cytotoxic effect | [164] |
MCF-7 | Breast Cancer | - | Cytotoxic effect | [164] | |
Quinoa extract | C4-I | Cervical Cancer | 1 mg/mL | Cytotoxic effect; a decrease in death cells by 28% | [199] |
HTB-35 | Cervical Cancer | 1 mg/mL | Cytotoxic effect; a decrease in death cells by 33% | [199] | |
HTB-34 | Cervical Cancer | 1 mg/mL | Cytotoxic effect; a decrease in death cells by 45% | [199] | |
Complexation of quinoa protein isolate (QPI) combined with different concentrations of olive leaf polyphenol extracts (OLE) | MKN-45 | Gastric Cancer | IC50 of QPI was 2.89 µg/mL | Inhibition of cell viability | [208] |
Phenolic compounds of white, red, and black quinoa | MCF-7 | Breast Cancer | For free fractions, IC50 values of white, red, and black quinoa were 2.20 mg/mL, 1.86 mg/mL, and 1.3 mg/mL, respectively; for bound fractions, IC50 values were 2.34 mg/mL, 1.75 mg/mL, and 1.61 mg/mL, respectively | Concentration-dependent inhibition of the proliferation | [55] |
Seed oil of white, red, and black quinoa (WSO, RSO, BSO) | HCT-116 | Colorectal Cancer | IC50 of BSO WSO and RSO were 281.9, 381.3, and 647.4 µg/mL, respectively | Apoptotic rates in HCT-116 cells treated with BSO at 125 and 250 μg/mL for 36 h were 10.4% and 21% | [86] |
Water soluble terpenoid isolated from quinoa bran (QBT) | HCT-8 | Colorectal Cancer | IC50 of QBT was 0.54 mg/mL | Promoting apoptosis; inducing caspase-related pathways and mitochondrial membrane potential changes | [211] |
DLD-1 | Colorectal Cancer | IC50 of QBT was 0.42 mg/mL | Concentration dependence | [211] | |
Quinoa extract and its component 4′-geranyloxyferulic acid (GOFA) | HCT-116 | Colorectal Cancer | - | GOFA interfered with the expression of the CAT-2B transporter, decreased the uptake of L-arginine of HCT-116 | [109] |
Quinoin (novel type 1 RIP derived from quinoa seeds) | U87Mg NULU ZAR | Glioblastoma | 2.5 and 5.0 nM | Cytotoxicity effect; exhibiting synergistic sensitization with drug temozolomide | [213] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, X.; Fan, G.; Xue, H.; Peng, S.; Huang, W.; Zhan, J. Harnessing the Potential of Quinoa: Nutritional Profiling, Bioactive Components, and Implications for Health Promotion. Antioxidants 2024, 13, 829. https://doi.org/10.3390/antiox13070829
Xi X, Fan G, Xue H, Peng S, Huang W, Zhan J. Harnessing the Potential of Quinoa: Nutritional Profiling, Bioactive Components, and Implications for Health Promotion. Antioxidants. 2024; 13(7):829. https://doi.org/10.3390/antiox13070829
Chicago/Turabian StyleXi, Xiaomin, Guanghe Fan, Huimin Xue, Shuai Peng, Weidong Huang, and Jicheng Zhan. 2024. "Harnessing the Potential of Quinoa: Nutritional Profiling, Bioactive Components, and Implications for Health Promotion" Antioxidants 13, no. 7: 829. https://doi.org/10.3390/antiox13070829
APA StyleXi, X., Fan, G., Xue, H., Peng, S., Huang, W., & Zhan, J. (2024). Harnessing the Potential of Quinoa: Nutritional Profiling, Bioactive Components, and Implications for Health Promotion. Antioxidants, 13(7), 829. https://doi.org/10.3390/antiox13070829