Pyrroloquinoline Quinone Improved Boar Sperm Quality via Maintaining Mitochondrial Function During Cryopreservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Media Preparation
2.3. Animals and Semen Collection
2.4. Sperm Processing and Cryopreservation
2.5. Evaluation of Sperm Motility
2.6. Thermo-Resistance Test
2.7. Flow Cytometric Evaluation of Sperm Viability and Acrosome Integrity
2.8. Evaluation of Mitochondrial Membrane Potential
2.9. Measure of Sperm ATP Levels
2.10. Sperm Oxidative DNA Damage
2.11. Sperm DNA Fragmentation
2.12. Measurement of Sperm MDA Levels
2.13. Measurement of Sperm SOD Activity
2.14. Detection of Sperm Reactive Oxygen Species
2.15. Western Blotting
2.16. The Ability of Frozen–Thawed Sperm to Bind to the Explants Was Evaluated
2.17. Sperm–Zona Pellucida Binding Capacity
2.18. Statistical Analysis
3. Results
3.1. PQQ Improved the Frozen–Thawed Boar Sperm Motility, Viability and Acrosome Integrity
3.2. PQQ Enhanced the Thermo-Resistance of Frozen–Thawed Sperm
3.3. PQQ Increased the Frozen–Thawed Mitochondrial Membrane Potential and ATP Levels
3.4. PQQ Reduced DNA Oxidative Damage in the Frozen–Thawed Sperm
3.5. PQQ Reduced Oxidative Stress Levels in Frozen–Thawed Sperm
3.6. PQQ Maintained Boar Sperm Mitochondrial Proteins Levels
3.7. PQQ Improved the Binding Capacity of Frozen–Thawed Sperm to Explants and Zona Pellucida
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bolarin, A.; Berndtson, J.; Tejerina, F.; Cobos, S.; Pomarino, C.; D’Alessio, F.; Blackburn, H.; Kaeoket, K. Boar semen cryopreservation: State of the art, and international trade vision. Anim. Reprod. Sci. 2024, 269, 107496. [Google Scholar] [CrossRef] [PubMed]
- Knox, R.V. The Fertility of Frozen Boar Sperm When used for Artificial Insemination. Reprod. Domest. Anim. 2015, 50 (Suppl. S2), 90–97. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, W.; Li, R.; Zeng, W. Reducing the Glucose Level in Pre-treatment Solution Improves Post-thaw Boar Sperm Quality. Front. Vet. Sci. 2022, 9, 856536. [Google Scholar] [CrossRef] [PubMed]
- Hammerstedt, R.H.; Graham, J.K.; Nolan, J.P. Cryopreservation of mammalian sperm: What we ask them to survive. J. Androl. 1990, 11, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Dobrinski, I.; Thomas, P.G.; Ball, B.A. Cryopreservation reduces the ability of equine spermatozoa to attach to oviductal epithelial cells and zonae pellucidae in vitro. J. Androl. 1995, 16, 536–542. [Google Scholar] [CrossRef]
- Watson, P.F. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod. Fertil. Dev. 1995, 7, 871–891. [Google Scholar] [CrossRef]
- Bailey, J.L.; Bilodeau, J.F.; Cormier, N. Semen cryopreservation in domestic animals: A damaging and capacitating phenomenon. J. Androl. 2000, 21, 1–7. [Google Scholar] [CrossRef]
- Schmid, S.; Henning, H.; Oldenhof, H.; Wolkers, W.F.; Petrunkina, A.M.; Waberski, D. The specific response to capacitating stimuli is a sensitive indicator of chilling injury in hypothermically stored boar spermatozoa. Andrology 2013, 1, 376–386. [Google Scholar] [CrossRef]
- O’Flaherty, C.; Scarlata, E. Oxidative stress and reproductive function: The protection of mammalian spermatozoa against oxidative stress. Reproduction 2022, 164, F67–F78. [Google Scholar] [CrossRef]
- Reyna-Bolanos, I.; Solis-Garcia, E.P.; Vargas-Vargas, M.A.; Pena-Montes, D.J.; Saavedra-Molina, A.; Cortes-Rojo, C.; Calderon-Cortes, E. Polydatin Prevents Electron Transport Chain Dysfunction and ROS Overproduction Paralleled by an Improvement in Lipid Peroxidation and Cardiolipin Levels in Iron-Overloaded Rat Liver Mitochondria. Int. J. Mol. Sci. 2024, 25, 11104. [Google Scholar] [CrossRef]
- Zhang, W.; Min, L.; Li, Y.; Lang, Y.; Hoque, S.A.M.; Adetunji, A.O.; Zhu, Z. Beneficial Effect of Proline Supplementation on Goat Spermatozoa Quality during Cryopreservation. Animals 2022, 12, 2626. [Google Scholar] [CrossRef] [PubMed]
- Jhamb, D.; Talluri, T.R.; Sharma, S.; Juneja, R.; Nirwan, S.S.; Yadav, D.; Pargi, K.K.; Tanwar, A.; Kumar, P.; Kumar, R.; et al. Freezability and Fertility Rates of Stallion Semen Supplemented With Trehalose in Lactose Extender. J. Equine Vet. Sci. 2023, 126, 104293. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, G.; Schwarz, T.L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013, 20, 31–42. [Google Scholar] [CrossRef]
- Usuga, A.; Tejera, I.; Gomez, J.; Restrepo, O.; Rojano, B.; Restrepo, G. Cryoprotective Effects of Ergothioneine and Isoespintanol on Canine Semen. Animals 2021, 11, 2757. [Google Scholar] [CrossRef]
- Murphy, M.P. Understanding and preventing mitochondrial oxidative damage. Biochem. Soc. Trans. 2016, 44, 1219–1226. [Google Scholar] [CrossRef]
- Aitken, R.J. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol. Reprod. Dev. 2017, 84, 1039–1052. [Google Scholar] [CrossRef]
- Goncalves, F.S.; Barretto, L.S.; Arruda, R.P.; Perri, S.H.; Mingoti, G.Z. Effect of antioxidants during bovine in vitro fertilization procedures on spermatozoa and embryo development. Reprod. Domest. Anim. 2010, 45, 129–135. [Google Scholar] [CrossRef]
- Kujoana, T.C.; Sehlabela, L.D.; Mabelebele, M.; Sebola, N.A. The potential significance of antioxidants in livestock reproduction: Sperm viability and cryopreservation. Anim. Reprod. Sci. 2024, 267, 107512. [Google Scholar] [CrossRef]
- Barranco, I.; Tvarijonaviciute, A.; Perez-Patino, C.; Parrilla, I.; Ceron, J.J.; Martinez, E.A.; Rodriguez-Martinez, H.; Roca, J. High total antioxidant capacity of the porcine seminal plasma (SP-TAC) relates to sperm survival and fertility. Sci. Rep. 2015, 5, 18538. [Google Scholar] [CrossRef]
- Khalaf, A.A.A.; Elhady, M.A.; Ibrahim, M.A.; Hassanen, E.I.; Abdelrahman, R.E.; Noshy, P.A. Quercetin protects the liver of broiler chicken against oxidative stress and apoptosis induced by ochratoxin A. Toxicon 2024, 251, 108160. [Google Scholar] [CrossRef]
- Rather, H.A.; Islam, R.; Malik, A.A.; Lone, F.A. Addition of antioxidants improves quality of ram spermatozoa during preservation at 4 °C. Small Rumin. Res. 2016, 141, 24–28. [Google Scholar] [CrossRef]
- Kocabas, F.K.; Kocabas, M.; Aksu, O.; Cakir Sahilli, Y. Ascorbic acid ameliorated the sperm quality of rainbow trout (Oncorhynchus mykiss) against arsenic toxicity: Impact on oxidative stress, fertility ability and embryo development. J. Environ. Sci. Health C Toxicol. Carcinog. 2022, 40, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Hamagishi, Y.; Murata, S.; Kamei, H.; Oki, T.; Adachi, O.; Ameyama, M. New biological properties of pyrroloquinoline quinone and its related compounds: Inhibition of chemiluminescence, lipid peroxidation and rat paw edema. J. Pharmacol. Exp. Ther. 1990, 255, 980–985. [Google Scholar] [PubMed]
- Xu, F.; Mack, C.P.; Quandt, K.S.; Shlafer, M.; Massey, V.; Hultquist, D.E. Pyrroloquinoline quinone acts with flavin reductase to reduce ferryl myoglobin in vitro and protects isolated heart from re-oxygenation injury. Biochem. Biophys. Res. Commun. 1993, 193, 434–439. [Google Scholar] [CrossRef]
- Murase, K.; Hattori, A.; Kohno, M.; Hayashi, K. Stimulation of nerve growth factor synthesis/secretion in mouse astroglial cells by coenzymes. Biochem. Mol. Biol. Int. 1993, 30, 615–621. [Google Scholar]
- Jensen, F.E.; Gardner, G.J.; Williams, A.P.; Gallop, P.M.; Aizenman, E.; Rosenberg, P.A. The putative essential nutrient pyrroloquinoline quinone is neuroprotective in a rodent model of hypoxic/ischemic brain injury. Neuroscience 1994, 62, 399–406. [Google Scholar] [CrossRef]
- Nishigori, H.; Yasunaga, M.; Mizumura, M.; Lee, J.W.; Iwatsuru, M. Preventive effects of pyrroloquinoline quinone on formation of cataract and decline of lenticular and hepatic glutathione of developing chick embryo after glucocorticoid treatment. Life Sci. 1989, 45, 593–598. [Google Scholar] [CrossRef]
- Jonscher, K.R.; Chowanadisai, W.; Rucker, R.B. Pyrroloquinoline-Quinone Is More Than an Antioxidant: A Vitamin-like Accessory Factor Important in Health and Disease Prevention. Biomolecules 2021, 11, 1441. [Google Scholar] [CrossRef]
- He, K.; Nukada, H.; Urakami, T.; Murphy, M.P. Antioxidant and pro-oxidant properties of pyrroloquinoline quinone (PQQ): Implications for its function in biological systems. Biochem. Pharmacol. 2003, 65, 67–74. [Google Scholar] [CrossRef]
- Tchaparian, E.; Marshal, L.; Cutler, G.; Bauerly, K.; Chowanadisai, W.; Satre, M.; Harris, C.; Rucker, R.B. Identification of transcriptional networks responding to pyrroloquinoline quinone dietary supplementation and their influence on thioredoxin expression, and the JAK/STAT and MAPK pathways. Biochem. J. 2010, 429, 515–526. [Google Scholar] [CrossRef]
- Chowanadisai, W.; Bauerly, K.A.; Tchaparian, E.; Wong, A.; Cortopassi, G.A.; Rucker, R.B. Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J. Biol. Chem. 2010, 285, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Han, G.T.; Cai, W.S.; Zhang, Y.B.; Zhou, S.Q.; He, B.; Li, H.H. Protective Effect of Pyrroloquinoline Quinone on TNF-alpha-induced Mitochondrial Injury in Chondrocytes. Curr. Med. Sci. 2021, 41, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Hoque, S.A.M.; Umehara, T.; Kawai, T.; Shimada, M. Adverse effect of superoxide-induced mitochondrial damage in granulosa cells on follicular development in mouse ovaries. Free Radic. Biol. Med. 2021, 163, 344–355. [Google Scholar] [CrossRef]
- Dai, X.; Yi, X.; Wang, Y.; Xia, W.; Tao, J.; Wu, J.; Miao, D.; Chen, L. PQQ Dietary Supplementation Prevents Alkylating Agent-Induced Ovarian Dysfunction in Mice. Front. Endocrinol. 2022, 13, 781404. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, W.; Yang, Q.; Zhao, H.; Zhang, W.; Adetunji, A.O.; Hoque, S.A.M.; Kou, X.; Min, L. Pyrroloquinoline Quinone Improves Ram Sperm Quality through Its Antioxidative Ability during Storage at 4 degrees C. Antioxidants 2024, 13, 104. [Google Scholar] [CrossRef]
- Wang, H.; Liu, K.; Zeng, W.; Bai, J.; Xiao, L.; Qin, Y.; Liu, Y.; Xu, X. Pyrroroquinoline Quinone (PQQ) Improves the Quality of Holstein Bull Semen during Cryopreservation. Animals 2024, 14, 2940. [Google Scholar] [CrossRef]
- Zhu, Z.; Kawai, T.; Umehara, T.; Hoque, S.A.M.; Zeng, W.; Shimada, M. Negative effects of ROS generated during linear sperm motility on gene expression and ATP generation in boar sperm mitochondria. Free Radic. Biol. Med. 2019, 141, 159–171. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, X.; Liu, S.; Hoque, S.A.M.; Min, L.; Ding, N.; Zhu, Z. Vibration Emissions Reduce Boar Sperm Quality via Disrupting Its Metabolism. Biology 2024, 13, 370. [Google Scholar] [CrossRef]
- Schulze, M.; Ammon, C.; Schaefer, J.; Luther, A.M.; Jung, M.; Waberski, D. Impact of different dilution techniques on boar sperm quality and sperm distribution of the extended ejaculate. Anim. Reprod. Sci. 2017, 182, 138–145. [Google Scholar] [CrossRef]
- Daigneault, B.W.; McNamara, K.A.; Purdy, P.H.; Krisher, R.L.; Knox, R.V.; Rodriguez-Zas, S.L.; Miller, D.J. Enhanced fertility prediction of cryopreserved boar spermatozoa using novel sperm function assessment. Andrology 2015, 3, 558–568. [Google Scholar] [CrossRef]
- Bilodeau, J.F.; Chatterjee, S.; Sirard, M.A.; Gagnon, C. Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Mol. Reprod. Dev. 2000, 55, 282–288. [Google Scholar] [CrossRef]
- Cremades, T.; Roca, J.; Rodriguez-Martinez, H.; Abaigar, T.; Vazquez, J.M.; Martinez, E.A. Kinematic changes during the cryopreservation of boar spermatozoa. J. Androl. 2005, 26, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Dewry, R.K.; Srivastava, R.; Nath, S.; Mohanty, T.K. Targeted antioxidant delivery modulates mitochondrial functions, ameliorates oxidative stress and preserve sperm quality during cryopreservation. Theriogenology 2022, 179, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Mohanty, T.K.; Bhakat, M.; Kumar, N.; Baithalu, R.K.; Nath, S.; Yadav, H.P.; Dewry, R.K. Comparative evidence support better antioxidant efficacy of mitochondrial-targeted (Mitoquinone) than cytosolic (Resveratrol) antioxidant in improving in-vitro sperm functions of cryopreserved buffalo (Bubalus bubalis) semen. Cryobiology 2021, 101, 125–134. [Google Scholar] [CrossRef]
- Oyewole, A.O.; Birch-Machin, M.A. Mitochondria-targeted antioxidants. FASEB J. 2015, 29, 4766–4771. [Google Scholar] [CrossRef]
- Lowes, D.A.; Thottakam, B.M.; Webster, N.R.; Murphy, M.P.; Galley, H.F. The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radic. Biol. Med. 2008, 45, 1559–1565. [Google Scholar] [CrossRef]
- Kumazawa, T.; Seno, H.; Urakami, T.; Matsumoto, T.; Suzuki, O. Trace levels of pyrroloquinoline quinone in human and rat samples detected by gas chromatography/mass spectrometry. Biochim. Biophys. Acta 1992, 1156, 62–66. [Google Scholar] [CrossRef]
- Harris, C.B.; Chowanadisai, W.; Mishchuk, D.O.; Satre, M.A.; Slupsky, C.M.; Rucker, R.B. Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. J. Nutr. Biochem. 2013, 24, 2076–2084. [Google Scholar] [CrossRef]
- Yang, H.; Norris, M.; Winn, R.; Tiersch, T.R. Evaluation of cryoprotectant and cooling rate for sperm cryopreservation in the euryhaline fish medaka Oryzias latipes. Cryobiology 2010, 61, 211–219. [Google Scholar] [CrossRef]
- Fiser, P.S.; Hansen, C.; Underhill, L.; Marcus, G.J. New thermal stress test to assess the viability of cryopreserved boar sperm. Cryobiology 1991, 28, 454–459. [Google Scholar] [CrossRef]
- Henning, H.; Franz, J.; Batz-Schott, J.; Le Thi, X.; Waberski, D. Assessment of Chilling Injury in Boar Spermatozoa by Kinematic Patterns and Competitive Sperm-Oviduct Binding In Vitro. Animals 2022, 12, 712. [Google Scholar] [CrossRef] [PubMed]
- Cerolini, S.; Maldjian, A.; Surai, P.; Noble, R. Viability, susceptibility to peroxidation and fatty acid composition of boar semen during liquid storage. Anim. Reprod. Sci. 2000, 58, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, H.D.; Welch, G.R.; Long, J.A. Mitochondrial function and reactive oxygen species action in relation to boar motility. Theriogenology 2008, 70, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Akhlaghi, A.; Ahangari, Y.J.; Navidshad, B.; Pirsaraei, Z.A.; Zhandi, M.; Deldar, H.; Rezvani, M.R.; Dadpasand, M.; Hashemi, S.R.; Poureslami, R.; et al. Improvements in semen quality, sperm fatty acids, and reproductive performance in aged Cobb 500 breeder roosters fed diets containing dried ginger rhizomes (Zingiber officinale). Poult. Sci. 2014, 93, 1236–1244. [Google Scholar] [CrossRef]
- Rhoads, D.M.; Umbach, A.L.; Subbaiah, C.C.; Siedow, J.N. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 2006, 141, 357–366. [Google Scholar] [CrossRef]
- Amaral, A.; Lourenco, B.; Marques, M.; Ramalho-Santos, J. Mitochondria functionality and sperm quality. Reproduction 2013, 146, R163–R174. [Google Scholar] [CrossRef]
- Joshi, D.C.; Bakowska, J.C. Determination of mitochondrial membrane potential and reactive oxygen species in live rat cortical neurons. J. Vis. Exp. 2011, 51, 2704. [Google Scholar] [CrossRef]
- Moraes, C.R.; Meyers, S. The sperm mitochondrion: Organelle of many functions. Anim. Reprod. Sci. 2018, 194, 71–80. [Google Scholar] [CrossRef]
- Wolken, G.G.; Arriaga, E.A. Simultaneous measurement of individual mitochondrial membrane potential and electrophoretic mobility by capillary electrophoresis. Anal. Chem. 2014, 86, 4217–4226. [Google Scholar] [CrossRef]
- Boguenet, M.; Bouet, P.E.; Spiers, A.; Reynier, P.; May-Panloup, P. Mitochondria: Their role in spermatozoa and in male infertility. Hum. Reprod. Update 2021, 27, 697–719. [Google Scholar] [CrossRef]
- Sanocka, D.; Kurpisz, M. Reactive oxygen species and sperm cells. Reprod. Biol. Endocrinol. 2004, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Papas, M.; Catalan, J.; Barranco, I.; Arroyo, L.; Bassols, A.; Yeste, M.; Miro, J. Total and specific activities of superoxide dismutase (SOD) in seminal plasma are related with the cryotolerance of jackass spermatozoa. Cryobiology 2020, 92, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Otero, Y.; Llavanera, M.; Recuero, S.; Delgado-Bermudez, A.; Barranco, I.; Ribas-Maynou, J.; Yeste, M. Sperm DNA damage compromises embryo development, but not oocyte fertilisation in pigs. Biol. Res. 2022, 55, 15. [Google Scholar] [CrossRef] [PubMed]
- Myromslien, F.D.; Tremoen, N.H.; Andersen-Ranberg, I.; Fransplass, R.; Stenseth, E.B.; Zeremichael, T.T.; van Son, M.; Grindflek, E.; Gaustad, A.H. Sperm DNA integrity in Landrace and Duroc boar semen and its relationship to litter size. Reprod. Domest. Anim. 2019, 54, 160–166. [Google Scholar] [CrossRef]
- Santiso, R.; Tamayo, M.; Gosalvez, J.; Meseguer, M.; Garrido, N.; Fernandez, J.L. Simultaneous determination in situ of DNA fragmentation and 8-oxoguanine in human sperm. Fertil. Steril. 2010, 93, 314–318. [Google Scholar] [CrossRef]
Parameters | 0 nM | 10 nM | 100 nM | 1000 nM | 10,000 nM |
---|---|---|---|---|---|
Total motility (%) | 48.6 ± 5.9 d | 51.1 ± 4.8 d | 68.2 ± 2.2 b | 72.3 ± 2.5 a | 60.9 ± 4.7 c |
Progressive motility (%) | 16.3 ± 3.1 d | 21.7 ± 1.3 c | 31.9 ± 1.7 a | 34.1 ± 1.7 a | 26.2 ± 3.5 b |
VCL (μm/s) | 97.5 ± 2.8 c | 103.4 ± 5.6 b | 115.0 ± 2.4 a | 112.2 ± 2.3 a | 102.9 ± 2.2 b |
VSL (μm/s) | 27.3 ± 1.0 c | 33.0 ± 2.0 b | 36.0 ± 1.4 a | 36.2 ± 1.2 a | 33.2 ± 0.9 b |
VAP (μm/s) | 48.5 ± 1.5 c | 51.8 ± 3.0 b | 57.5 ± 1.4 a | 57.1 ± 1.7 a | 51.8 ± 1.1 b |
STR (%) | 54.8 ± 1.0 c | 61.0 ± 2.2 a | 59.2 ± 1.6 b | 60.3 ± 1.6 ab | 60.5 ± 1.3 ab |
LIN (%) | 28.8 ± 1.0 c | 31.7 ± 2.0 a | 30.3 ± 1.0 b | 31.4 ± 0.9 ab | 31.6 ± 0.9 a |
WOB (%) | 50.9 ± 1.0 | 50.5 ± 1.5 | 49.7 ± 0.9 | 50.5 ± 0.7 | 50.0 ± 0.8 |
ALH (μm) | 8.2 ± 0.3 | 8.7 ± 0.3 | 8.5 ± 0.2 | 8.3 ± 0.3 | 8.6 ± 0.2 |
BCF (Hz) | 34.4 ± 1.8 d | 37.2 ± 1.3 c | 39.6 ± 1.0 b | 39.0 ± 0.8 b | 42.6 ± 1.2 a |
Parameters | Time (h) | 0 nM | 10 nM | 100 nM | 1000 nM | 10,000 nM |
---|---|---|---|---|---|---|
Total motility (%) | 1 | 47.5 ± 3.9 e | 51.7 ± 3.9 d | 66.5 ± 4.6 b | 71.5 ± 3.5 a | 56.0 ± 3.2 c |
2 | 47.7 ± 4.2 d | 51.7 ± 3.7 c | 65.9 ± 2.2 b | 72.0 ± 4.8 a | 52.3 ± 3.4 c | |
3 | 45.3 ± 3.3 d | 46.0 ± 4.5 d | 61.5 ± 4.5 b | 71.2 ± 4.2 a | 52.0 ± 3.4 c | |
4 | 40.6 ± 2.7 d | 45.9 ± 2.7 c | 61.7 ± 4.6 b | 71.1 ± 4.7 a | 47.6 ± 4.1 c | |
5 | 36.7 ± 8.8 d | 44.5 ± 3.9 c | 60.2 ± 5.2 b | 71.3 ± 4.3 a | 38.0 ± 5.2 c d | |
Progressive motility (%) | 1 | 17.0 ± 2.8 d | 22.9 ± 2.4 c | 27.0 ± 3.0 b | 29.8 ± 3.0 a | 21.4 ± 2.8 c |
2 | 15.0 ± 1.9 d | 16.0 ± 3.1 d | 26.5 ± 2.7 b | 30.4 ± 4.2 a | 22.4 ± 2.4 c | |
3 | 13.1 ± 2.6 d | 14.5 ± 3.0 d | 21.7 ± 2.8 b | 31.9 ± 6.4 a | 17.8 ± 1.9 c | |
4 | 12.4 ± 1.3 e | 15.5 ± 1.9 d | 22.2 ± 3.3 b | 26.7 ± 2.1 a | 18.0 ± 2.2 c | |
5 | 11.7 ± 2.7 d | 16.0 ± 2.5 c | 21.5 ± 3.9 b | 26.5 ± 1.4 a | 11.9 ± 2.4 d | |
VCL (μm/s) | 1 | 95.5 ± 6.9 b | 114.1 ± 3.1 a | 111.9 ± 4.2 a | 111.3 ± 5.1 a | 99.3 ± 4.2 b |
2 | 90.5 ± 3.1 b | 106.8 ± 3.6 a | 109.6 ± 5.7 a | 110.9 ± 7.0 a | 94.5 ± 4.2 b | |
3 | 94.1 ± 4.2 c | 107.9 ± 7.0 ab | 105.8 ± 4.7 ab | 111.7 ± 7.1 a | 102.2 ± 1.8 b | |
4 | 92.1 ± 5.8 c | 91.5 ± 3.3 c | 99.2 ± 5.7 b | 112.4 ± 9.8 a | 97.8 ± 3.0 b | |
5 | 91.6 ± 4.3 d | 97.1 ± 4.5 c | 106.4 ± 3.9 b | 116.1 ± 2.6 a | 97.2 ± 6.4 c | |
VSL (μm/s) | 1 | 28.9 ± 2.3 b | 33.6 ± 1.8 a | 32.3 ± 1.0 a | 33.1 ± 1.6 a | 29.8 ± 1.9 b |
2 | 24.9 ± 1.4 c | 31.1 ± 1.6 a | 31.9 ± 2.1 a | 31.7 ± 2.0 a | 27.7 ± 1.4 b | |
3 | 24.8 ± 1.2 c | 29.5 ± 1.7 b | 30.1 ± 1.4 ab | 31.5 ± 2.7 a | 29.0 ± 0.9 b | |
4 | 25.0 ± 1.8 c | 25.5 ± 1.7 bc | 27.2 ± 1.8 b | 32.8 ± 3.1 a | 27.1 ± 1.6 b | |
5 | 25.5 ± 1.4 d | 27.7 ± 1.4 c | 29.9 ± 1.4 b | 32.6 ± 1.2 a | 28.4 ± 1.9 c | |
VAP (μm/s) | 1 | 47.1 ± 2.9 c | 56.6 ± 2.2 a | 55.4 ± 1.8 a | 55.7 ± 2.3 a | 49.1 ± 2.2 b |
2 | 42.0 ± 2.4 c | 52.1 ± 1.9 a | 54.2 ± 3.4 a | 54.1 ± 3.2 a | 46.0 ± 2.0 b | |
3 | 42.1 ± 2.3 c | 51.3 ± 2.5 ab | 52.6 ± 2.3 ab | 54.8 ± 5.5 a | 49.0 ± 1.3 b | |
4 | 41.8 ± 2.9 c | 41.8 ± 2.1 c | 47.1 ± 2.8 b | 55.5 ± 4.9 a | 45.6 ± 1.9 b | |
5 | 43.5 ± 1.9 d | 46.6 ± 2.2 c | 50.9 ± 2.3 b | 55.1 ± 1.9 a | 46.9 ± 2.8 c | |
STR (%) | 1 | 59.3 ± 3.1 a | 57.5 ± 2.2 ab | 55.3 ± 1.5 c | 57.2 ± 1.3 b | 57.8 ± 1.9 ab |
2 | 57.9 ± 2.0 ab | 57.8 ± 1.5 ab | 56.7 ± 1.8 bc | 56.0 ± 1.8 c | 58.8 ± 1.7 a | |
3 | 56.4 ± 1.9 ab | 55.1 ± 1.2 b | 56.5 ± 1.8 ab | 57.4 ± 1.6 a | 57.2 ± 1.8 ab | |
4 | 58.3 ± 1.6 a | 58.6 ± 2 a | 55.2 ± 1.7 c | 56.9 ± 0.9 b | 56.9 ± 1.2 b | |
5 | 56.6 ± 2.5 b | 56.5 ± 2.1 b | 56 ± 1.4 b | 57.5 ± 1.1 b | 59.7 ± 1.9 a | |
LIN (%) | 1 | 30.2 ± 1.8 a | 29.2 ± 1.4 ab | 28.1 ± 1.1 b | 29.3 ± 0.6 ab | 29.4 ± 1.3 ab |
2 | 27.5 ± 1.1 c | 28.3 ± 0.9 bc | 28.4 ± 1.0 b | 28.0 ± 1.2 bc | 29.5 ± 1.1 a | |
3 | 26.5 ± 1.2 b | 26.9 ± 0.6 b | 29.2 ± 2.0 a | 28.7 ± 1.2 a | 28.1 ± 1.1 ab | |
4 | 26.9 ± 1.2 b | 27.2 ± 1.1 b | 27.0 ± 1.1 b | 28.5 ± 0.6 a | 27.2 ± 0.9 b | |
5 | 28.4 ± 2.2 b | 28.3 ± 1.3 b | 27.3 ± 0.6 b | 27.9 ± 0.8 b | 29.8 ± 1.6 a | |
WOB (%) | 1 | 49.2 ± 1.4 | 49.0 ± 1.0 | 48.9 ± 0.5 | 49.5 ± 0.4 | 49.1 ± 1.3 |
2 | 46.5 ± 1.4 c | 47.7 ± 0.5 b | 48.7 ± 0.8 a | 48.5 ± 1.2 ab | 48.7 ± 1.1 a | |
3 | 44.9 ± 1.3 b | 47.3 ± 1.3 a | 49.4 ± 2.7 a | 48.6 ± 1.9 a | 47.6 ± 0.8 a | |
4 | 45.1 ± 1.0 d | 45.1 ± 1.2 d | 47.3 ± 0.9 b | 48.6 ± 0.5 a | 46.3 ± 0.8 c | |
5 | 48.2 ± 1.8 ab | 48.0 ± 1.0 ab | 47.4 ± 0.6 ab | 47.1 ± 0.7 b | 48.4 ± 1.2 a | |
ALH (μm) | 1 | 7.1 ± 0.4 bc | 6.8 ± 0.2 c | 7.8 ± 0.2 a | 7.6 ± 0.3 a | 7.1 ± 0.3 b |
2 | 6.5 ± 0.4 d | 6.6 ± 0.2 d | 7.5 ± 0.2 b | 7.9 ± 0.4 a | 7.1 ± 0.3 c | |
3 | 5.7 ± 0.4 d | 6.3 ± 0.4 c | 7.4 ± 0.4 a | 7.5 ± 0.4 a | 6.8 ± 0.3 b | |
4 | 6.6 ± 0.4 c | 6.3 ± 0.3 d | 7.4 ± 0.3 a | 7.6 ± 0.3 a | 7.1 ± 0.3 b | |
5 | 7.1 ± 0.3 c d | 7.3 ± 0.2 bc | 7.5 ± 0.3 ab | 7.6 ± 0.3 a | 6.9 ± 0.3 d | |
BCF (Hz) | 1 | 43.0 ± 2.2 a | 43.1 ± 1.5 a | 42.3 ± 1.6 a | 40.5 ± 1.2 b | 42.0 ± 2.2 ab |
2 | 39.5 ± 3.5 | 37.8 ± 1.9 | 39.4 ± 1.6 | 38.3 ± 2.1 | 38.2 ± 2.1 | |
3 | 43.6 ± 1.5 a | 38.2 ± 1.5 b | 39.8 ± 5.2 b | 38.1 ± 3.7 b | 37.6 ± 1.3 b | |
4 | 42.0 ± 1.8 a | 38.4 ± 2.6 b | 38.5 ± 1.9 b | 38.4 ± 1.9 b | 37.8 ± 3.1 b | |
5 | 41.6 ± 2.7 a | 39.4 ± 2.3 b | 38.6 ± 1.3 b | 38.0 ± 0.8 b | 38.4 ± 2.0 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, Q.; Min, L.; Cao, H.; Adetunji, A.O.; Zhou, K.; Zhu, Z. Pyrroloquinoline Quinone Improved Boar Sperm Quality via Maintaining Mitochondrial Function During Cryopreservation. Antioxidants 2025, 14, 102. https://doi.org/10.3390/antiox14010102
Wang S, Wang Q, Min L, Cao H, Adetunji AO, Zhou K, Zhu Z. Pyrroloquinoline Quinone Improved Boar Sperm Quality via Maintaining Mitochondrial Function During Cryopreservation. Antioxidants. 2025; 14(1):102. https://doi.org/10.3390/antiox14010102
Chicago/Turabian StyleWang, Shanpeng, Qi Wang, Lingjiang Min, Hailiang Cao, Adedeji O. Adetunji, Kaifeng Zhou, and Zhendong Zhu. 2025. "Pyrroloquinoline Quinone Improved Boar Sperm Quality via Maintaining Mitochondrial Function During Cryopreservation" Antioxidants 14, no. 1: 102. https://doi.org/10.3390/antiox14010102
APA StyleWang, S., Wang, Q., Min, L., Cao, H., Adetunji, A. O., Zhou, K., & Zhu, Z. (2025). Pyrroloquinoline Quinone Improved Boar Sperm Quality via Maintaining Mitochondrial Function During Cryopreservation. Antioxidants, 14(1), 102. https://doi.org/10.3390/antiox14010102