Redox Regulation in Animal Reproduction

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Health Outcomes of Antioxidants and Oxidative Stress".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 6882

Special Issue Editor


E-Mail Website
Guest Editor
College of Animal Science and Technology, Northwest A&F University, Xinong Road, No. 22, Yangling 712100, China
Interests: oocyte maturation; sperm preservation; environments and animal reproduction animal biotechnology

Special Issue Information

Dear Colleagues,

Animal reproduction is a process that generates offspring in order to maintain breeds and is essential in increasing the number of animals, with the following processes involved: spermatogenesis; follicular development and oocyte maturation; fertilization; embryonic development and maternal recognition; and the process of parturition. Owing to the development of science and technology, it has been established that each process in animal reproduction is regulated by many factors, including endocrinology, cytokines, chemokines, epigenetic factors, etc., most of which are related to oxidative stress. Oxidative stress is considered to be an important factor that affects animal reproduction and causes infertility. The development of follicles is accompanied by the significant production of reactive oxygen species, which induce damage to follicular granulosa cells and oocytes; in turn, this induces follicular atresia. Furthermore, oxidative stress can cause the DNA fragmentation of spermatogonia and the lipid peroxidation of spermatozoa, leading to spermatogenesis disorders and a decline in the motility of sperm, ultimately causing male infertility. This Special Issue aims to highlight advances in the research on redox regulation, to increase knowledge regarding animal reproduction, and also develop novel methods or technologies that promote animal production.

Prof. Dr. Zhongliang Jiang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • spermatogenesis
  • follicular atresia
  • oocyte maturation
  • granulosa cells
  • hormone regulation
  • autophagy
  • apoptosis
  • oxidative stress
  • signaling regulation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 3682 KiB  
Article
Pyrroloquinoline Quinone Improved Boar Sperm Quality via Maintaining Mitochondrial Function During Cryopreservation
by Shanpeng Wang, Qi Wang, Lingjiang Min, Hailiang Cao, Adedeji O. Adetunji, Kaifeng Zhou and Zhendong Zhu
Antioxidants 2025, 14(1), 102; https://doi.org/10.3390/antiox14010102 - 16 Jan 2025
Viewed by 578
Abstract
Due to oxidative damage and mitochondrial dysfunction, boar semen cryopreservation remains a significant challenge. This study investigates the effects of pyrroloquinoline quinone (PQQ), a mitochondrial-targeted antioxidant, on the post-thaw boar sperm quality during cryopreservation. Boar semen was diluted in a freezing extender containing [...] Read more.
Due to oxidative damage and mitochondrial dysfunction, boar semen cryopreservation remains a significant challenge. This study investigates the effects of pyrroloquinoline quinone (PQQ), a mitochondrial-targeted antioxidant, on the post-thaw boar sperm quality during cryopreservation. Boar semen was diluted in a freezing extender containing different concentrations of PQQ (0, 10, 100, 1000, 10,000 nM). After freezing–thawing, the sperm motility, viability, acrosome integrity, mitochondrial activity, adenosine triphosphate (ATP) levels, DNA integrity, malondialdehyde (MDA) levels, reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, mitochondrial transcription proteins levels, and fertilization capacity were assessed. The results show that 1000 nM PQQ supplementation to the freezing extender significantly enhanced post-thaw sperm motility, viability, and acrosome integrity compared to the control (p < 0.05). Additionally, 1000 nM PQQ increased mitochondrial membrane potential (MMP) and ATP levels, while decreasing MDA and mitochondrial ROS levels, and reducing DNA damage (p < 0.05). Furthermore, the levels of mitochondrial-encoded proteins were significantly elevated in the 1000 nM PQQ group compared to the control (p < 0.05). Interestingly, sperm in the 1000 nM PQQ group showed a higher binding rate to oviductal epithelial cells and the zona pellucida (ZP), indicating higher fertilization potential. These findings suggest that the use of mitochondria-target antioxidant, PQQ, can improve post-thaw boar sperm quality and fertilization via its capacity to reduce oxidative stress and protect mitochondrial function. Full article
(This article belongs to the Special Issue Redox Regulation in Animal Reproduction)
Show Figures

Figure 1

16 pages, 4213 KiB  
Article
ZnO NPs Impair the Viability and Function of Porcine Granulosa Cells Through Autophagy Regulated by ROS Production
by Yifan Wang, Jing Lv, Guangyu Liu, Qichun Yao, Ziqi Wang, Ning Liu, Yutao He, Dmitry Il, Jakupov Isatay Tusupovich and Zhongliang Jiang
Antioxidants 2024, 13(11), 1295; https://doi.org/10.3390/antiox13111295 - 25 Oct 2024
Viewed by 4456
Abstract
The zinc oxide nanoparticles (ZnO NPs) is one of the most extensively utilized metal oxide nanoparticles in biomedicine, human food, cosmetics and livestock farming. However, growing evidence suggests that there is a potential risk for humans and animals because of the accumulation of [...] Read more.
The zinc oxide nanoparticles (ZnO NPs) is one of the most extensively utilized metal oxide nanoparticles in biomedicine, human food, cosmetics and livestock farming. However, growing evidence suggests that there is a potential risk for humans and animals because of the accumulation of ZnO NPs in cells, which leads to cell death through several different pathways. Nevertheless, the effects of ZnO NPs on porcine granulosa cells (PGCs) and how ZnO NPs regulate the follicular cells are unknown. In this study, we aimed to elucidate the role of ZnO NPs in the porcine ovary by using PGCs. Firstly, we identified the characterization of ZnO NPs used in this study and the results showed that the size of ZnO NPs was 29.0 nm. The results also demonstrated that ZnO NPs impaired cell viability and decreased steroid hormone secretion in PGCs. In addition, ZnO NPs induced reactive oxygen species (ROS) production, leading to oxidative stress of PGCs. Meanwhile, ZnO NPs also triggered autophagy in PGCs by increasing the ratio of LC3-II/LC3-I, along with the expression of SQSTM1 and ATG7. Finally, the results from N-acetylcysteine (NAC) addition suggested that ZnO NPs promoted autophagy through the enhancement of ROS production. In summary, this study demonstrates that ZnO NPs impair the viability and function of PGCs through autophagy, which is regulated by ROS production. Full article
(This article belongs to the Special Issue Redox Regulation in Animal Reproduction)
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 3085 KiB  
Review
Oxidative Stress and Autophagy: Unraveling the Hidden Threat to Boars’ Fertility
by Ruizhi Hu, Xizi Yang, Jianhua He and Shusong Wu
Antioxidants 2025, 14(1), 2; https://doi.org/10.3390/antiox14010002 - 24 Dec 2024
Viewed by 381
Abstract
This review systematically examines the influence of oxidative stress on the reproductive function of male livestock, with a particular focus on the modulation of autophagy. Spermatogenesis, a highly precise biological process, is vulnerable to a range of internal and external factors, among which [...] Read more.
This review systematically examines the influence of oxidative stress on the reproductive function of male livestock, with a particular focus on the modulation of autophagy. Spermatogenesis, a highly precise biological process, is vulnerable to a range of internal and external factors, among which oxidative stress notably disrupts autophagic processes within the testes. This disruption results in diminished sperm quality, impaired testosterone synthesis, and compromised integrity of the blood–testis barrier. Furthermore, this review elucidates the molecular mechanisms by which oxidative stress-induced autophagy dysfunction impairs spermatogenesis and mitochondrial function, consequently reducing sperm motility. These findings aim to provide a theoretical foundation and serve as a reference for improving reproductive performance and sperm quality in livestock. Full article
(This article belongs to the Special Issue Redox Regulation in Animal Reproduction)
Show Figures

Figure 1

14 pages, 1213 KiB  
Review
The Role of Melatonin on Caprine (Capra hircus) Sperm Freezability: A Review
by Alberto Jorge Cardenas-Padilla, Francisco Jimenez-Trejo, Marco Cerbon and Alfredo Medrano
Antioxidants 2024, 13(12), 1466; https://doi.org/10.3390/antiox13121466 - 28 Nov 2024
Viewed by 774
Abstract
In mammals, the pineal hormone melatonin is the most powerful pacemaker of the master circadian clock and is responsible for reproduction in seasonal breeders. It is also well known that melatonin and its metabolites play antioxidant roles in many tissues, including reproductive cells. [...] Read more.
In mammals, the pineal hormone melatonin is the most powerful pacemaker of the master circadian clock and is responsible for reproduction in seasonal breeders. It is also well known that melatonin and its metabolites play antioxidant roles in many tissues, including reproductive cells. Melatonin synthesis and secretion from the pineal gland occurs during scotophase (the dark phase during a day–night cycle), while its inhibition is observed during photophase (period of light during a day–night cycle). Short-day breeders, such as goats, are stimulated to breed in a manner dependent on high endogenous levels of melatonin. This hormone can be synthesized in various extra-pineal tissues, such as retina, gastrointestinal tract, ovaries, and testis, with its main function being as a local antioxidant, given that melatonin and its metabolites are potent scavengers of reactive oxygen and nitrogen species. Moreover, it has been reported that some functions of melatonin can be exerted through plasma membrane and intracellular receptors expressed in the male reproductive system, including germ cells, immature and mature spermatozoa. It has been shown that melatonin may enhance gamete cryosurvival mainly by its addition into the media and/or in exogenous melatonin treatments in several species. In the present review, the physiological effects of endogenous melatonin in mammals are described, with a deeper focus on caprine reproduction. Additionally, results from recent investigations on the roles of exogenous melatonin aimed at improving the reproductive efficiency of goat bucks are discussed. There are contradictory findings and a limited amount of research available in the field of goat sperm cryopreservation associated with the use of melatonin. Understanding and improving goat reproduction and production is essential for many marginalized human populations around the world who directly depend on goats to maintain and improve their lifestyle. Full article
(This article belongs to the Special Issue Redox Regulation in Animal Reproduction)
Show Figures

Figure 1

Back to TopTop