Chemical Profiling and Biological Properties of Extracts from Different Parts of Colchicum Szovitsii Subsp. Szovitsii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Preparation of Extracts
2.2. Chemicals
2.3. Spectrophotometric Analyses
2.4. Untargeted Profiling of Polyphenols and Alkaloids by Untargeted Metabolomics
2.5. Determination of Antioxidant and Enzyme Inhibitory Effects
2.6. Statistical Analysis
3. Results and Discussion
3.1. Phytochemical Composition and Discrimination of the Different Extraction Methods
3.2. In Vitro Antioxidant Activity
3.3. Enzyme Inhibitory Activity
3.4. Correlations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dabe, N.E.; Kefale, A.T. Antidiabetic effects of artemisia species: A systematic review. Anc. Sci. Life 2017, 36, 175. [Google Scholar] [PubMed]
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, S. Herbal drug discovery: Challenges and perspectives. Curr. Pharm. Pers. Med. (Former. Curr. Pharm.) 2018, 16, 63–68. [Google Scholar] [CrossRef]
- Toplan, G.G.; Gürer, Ç.; Mat, A. Importance of Colchicum species in modern therapy and its significance in Turkey. İstanb. Üniv. Eczacı. Fak. Derg. 2016, 46, 129–144. [Google Scholar]
- Akram, M.; Alam, O.; Usmanghani, K.; Akhter, N.; Asif, H. Colchicum autumnale: A review. J. Med. Plants Res. 2012, 6, 1489–1491. [Google Scholar] [CrossRef]
- Becer, E.; Hanoğlu, D.Y.; Kabadayı, H.; Hanoğlu, A.; Vatansever, S.; Yavuz, D.Ö.; Meriçli, F.; Meriçli, A.H. The effect of Colchicum pusillum in human colon cancer cells via Wnt/β-catenin pathway. Gene 2019, 686, 213–219. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Medicinal importance of Colchicum candidum-A review. Pharm. Chem. J. 2016, 3, 111–117. [Google Scholar]
- Ahmad, B.; Khan, H.; Bashir, S.; Ali, M. Antimicrobial bioassay of Colchicum luteum Baker. J. Enzym. Inhib. Med. Chem. 2006, 21, 765–769. [Google Scholar] [CrossRef]
- Mammadov, R.; Duuml, O.; Uysal, D.; Kouml, E. Antioxidant and antimicrobial activities of extracts from tubers and leaves of Colchicum balansae Planchon. J. Med. Plants Res. 2009, 3, 767–770. [Google Scholar]
- Suica-Bunghez, I.-R.; Ion, R.-M.; Teodorescu, S.; Sorescu, A.-A.; Stirbescu, R.-M.; Stirbescu, N.-M. Fitochemical and antioxidant characterization of Autumn Crocus (Colchicum autumnale) flowers and roots plant extracts. J. Sci. Arts 2017, 17, 539–546. [Google Scholar]
- Sevim, D.; Senol, F.S.; Budakoglu, E.; Orhan, I.E.; Sener, B.; Kaya, E. Studies on anticholinesterase and antioxidant effects of samples from Colchicum L. genus of Turkish origin. FABAD J. Pharm. Sci. 2010, 35, 195–201. [Google Scholar]
- Nair, V.; Kumar, R.; Singh, S.; Gupta, Y. Investigation into the anti-inflammatory and antigranuloma activity of Colchicum luteum Baker in experimental models. Inflammation 2012, 35, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Singh, S.; Gupta, Y. Evaluation of the disease modifying activity of Colchicum luteum Baker in experimental arthritis. J. Ethnopharmacol. 2011, 133, 303–307. [Google Scholar] [CrossRef]
- Sutlupinar, N.; Kilincli, T.; Mericli, A.H. Colchicinoids from the Seeds of Colchicum umbrosum. Chem. Nat. Compd. 2015, 51, 512–514. [Google Scholar] [CrossRef]
- Mairapetyan, S.K.; Galstyan, H. Phytochemical investigation of wild colchicum Szovitsii Fisch. growing in Armenia. Biol. J. Armen. 2011, 63, 95–98. [Google Scholar]
- Tojo, E.; Önür, M.A.; Freyer, A.J.; Shamma, M. Two trioxygenated phenethylisoquinoline alkaloids from Colchicum szovitsii. J. Nat. Prod. 1990, 53, 634–637. [Google Scholar] [CrossRef]
- Yusupov, M.; Aslanov, K.A. Alkaloids of Colchicum szovitsii. III. Chem. Nat. Compd. 1975, 11, 448. [Google Scholar] [CrossRef] [Green Version]
- Orlando, G.; Ferrante, C.; Zengin, G.; Sinan, K.I.; Bene, K.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Di Simone, S.; Recinella, L. Qualitative Chemical Characterization and Multidirectional Biological Investigation of Leaves and Bark Extracts of Anogeissus leiocarpus (DC.) Guill. & Perr. (Combretaceae). Antioxidants 2019, 8, 343. [Google Scholar]
- Sinan, K.I.; Saftić, L.; Peršurić, Ž.; Pavelić, S.K.; Etienne, O.K.; Picot-Allain, M.C.N.; Mahomoodally, M.F.; Zengin, G. A comparative study of the chemical composition, biological and multivariate analysis of Crotalaria retusa L. stem barks, fruits, and flowers obtained via different extraction protocols. S. Afr. J. Bot. 2020, 128, 101–108. [Google Scholar] [CrossRef]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Vladimir-Knežević, S.; Blažeković, B.; Bival Štefan, M.; Alegro, A.; Kőszegi, T.; Petrik, J. Antioxidant activities and polyphenolic contents of three selected Micromeria species from Croatia. Molecules 2011, 16, 1454–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, M.B.; Rocchetti, G.; Montesano, D.; Ali, S.B.; Guasmi, F.; Grati-Kamoun, N.; Lucini, L. Discrimination of Tunisian and Italian extra-virgin olive oils according to their phenolic and sterolic fingerprints. Food Res. Int. 2018, 106, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Lucini, L.; Chiodelli, G.; Giuberti, G.; Montesano, D.; Masoero, F.; Trevisan, M. Impact of boiling on free and bound phenolic profile and antioxidant activity of commercial gluten-free pasta. Food Res. Int. 2017, 100, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Lucini, L.; Rodriguez, J.M.L.; Barba, F.J.; Giuberti, G. Gluten-free flours from cereals, pseudocereals and legumes: Phenolic fingerprints and in vitro antioxidant properties. Food Chem. 2019, 271, 157–164. [Google Scholar] [CrossRef]
- Sadeer, N.B.; Rocchetti, G.; Senizza, B.; Montesano, D.; Zengin, G.; Uysal, A.; Jeewon, R.; Lucini, L.; Mahomoodally, M.F. Untargeted Metabolomic Profiling, Multivariate Analysis and Biological Evaluation of the True Mangrove (Rhizophora mucronata Lam.). Antioxidants 2019, 8, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.I.; Hayat, M.Q.; Tahir, M.; Mansoor, Q.; Ismail, M.; Keck, K.; Bates, R.B. Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complementary Altern. Med. 2016, 16, 460. [Google Scholar] [CrossRef] [Green Version]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Putnik, P.; Barba, F.J.; Lucini, L.; Rocchetti, G.; Montesano, D. Conventional, non-conventional extraction techniques and new strategies for the recovery of bioactive compounds from plant material for human nutrition. Food Res. Int. (Ott. Ont.) 2019, 123, 516. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, S.; He, J.; Thirumdas, R.; Montesano, D.; Barba, F.J. Enzyme-assisted extraction of polyphenol from edible lotus (Nelumbo nucifera) rhizome knot: Ultra-filtration performance and HPLC-MS2 profile. Food Res. Int. 2018, 111, 291–298. [Google Scholar] [CrossRef]
- Qasim, M.; Abideen, Z.; Adnan, M.; Gulzar, S.; Gul, B.; Rasheed, M.; Khan, M. Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. S. Afr. J. Bot. 2017, 110, 240–250. [Google Scholar] [CrossRef]
- Sánchez, C. Reactive oxygen species and antioxidant properties from mushrooms. Synth. Syst. Biotechnol. 2017, 2, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Huyut, Z.; Beydemir, Ş.; Gülçin, İ. Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochem. Res. Int. 2017, 2017, 7616791. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol. Med. Rep. 2019, 20, 1479–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://cosmetics.specialchem.com/news/industry-news/skin-lightening-products-market-to-reach-usd23-bn-by-2020-global-industry-analysts (accessed on 19 November 2019).
- Muddathir, A.; Yamauchi, K.; Batubara, I.; Mohieldin, E.; Mitsunaga, T. Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. S. Afr. J. Bot. 2017, 109, 9–15. [Google Scholar] [CrossRef]
- Dall’Acqua, S. Plant-derived acetylcholinesterase inhibitory alkaloids for the treatment of Alzheimer’s disease. Bot. Targets Ther. 2013, 3, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, T.C.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; de Andrade Paes, A.M. Naturally occurring acetylcholinesterase inhibitors and their potential use for Alzheimer’s disease therapy. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Sultankhodzhaev, M.N.; Hassan Khan, M.T.; Moin, M.; Choudhary, M.I.; Atta-Ur-Rahman. Tyrosinase inhibition studies of diterpenoid alkaloids and their derivatives: Structure–activity relationships. Nat. Prod. Res. 2005, 19, 517–522. [Google Scholar] [CrossRef]
- Zaidi, K.U.; Ali, S.A.; Ali, A.; Naaz, I. Natural Tyrosinase Inhibitors: Role of Herbals in the Treatment of Hyperpigmentary Disorders. Mini Rev. Med. Chem. 2019, 19, 796–808. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Mokrani, A.; Cluzet, S.; Madani, K.; Pakina, E.; Gadzhikurbanov, A.; Mesnil, M.; Monvoisin, A.; Richard, T. HPLC-DAD-MS/MS profiling of phenolics from different varieties of peach leaves and evaluation of their antioxidant activity: A comparative study. Int. J. Mass Spectrom. 2019, 445, 116192. [Google Scholar] [CrossRef]
- Khan, H.; Amin, S.; Kamal, M.A.; Patel, S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed. Pharmacother. 2018, 101, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Sarian, M.N.; Ahmed, Q.U.; So’ad, M.; Zaiton, S.; Alhassan, A.M.; Murugesu, S.; Perumal, V.; Mohamad, S.; Akilah, S.N.; Khatib, A. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship based study. Biomed Res. Int. 2017, 2017, 8386065. [Google Scholar] [CrossRef] [PubMed]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, H.; Pandey, M.; Hua, C.K.; Mun, C.S.; Jing, J.K.; Kong, L.; Ern, L.Y.; Ashraf, N.A.; Kit, S.W.; Yee, T.S. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J. Tradit. Complementary Med. 2018, 8, 361–376. [Google Scholar] [CrossRef]
- Gowd, V.; Jia, Z.; Chen, W. Anthocyanins as promising molecules and dietary bioactive components against diabetes–a review of recent advances. Trends Food Sci. Technol. 2017, 68, 1–13. [Google Scholar] [CrossRef]
- Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant properties of catechins: Comparison with other antioxidants. Food Chem. 2018, 241, 480–492. [Google Scholar] [CrossRef]
- Butkutė, B.; Dagilytė, A.; Benetis, R.; Padarauskas, A.; Cesevičienė, J.; Olšauskaitė, V.; Lemežienė, N. Mineral and phytochemical profiles and antioxidant activity of herbal material from two temperate Astragalus species. Biomed Res. Int. 2018, 2018, 6318630. [Google Scholar] [CrossRef] [Green Version]
- Zengin, G.; Uysal, S.; Ceylan, R.; Aktumsek, A. Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phytochemical study. Ind. Crop. Prod. 2015, 70, 1–6. [Google Scholar] [CrossRef]
Parts | Methods | Total Alkaloids | Anthocyanins | Flavanols | Flavones | Flavonols | Phenolic acids | Lignans | Tyrosols | Stilbenes |
---|---|---|---|---|---|---|---|---|---|---|
Flowers | Infusion | 0.79 ± 0.03 a,b | 0.42 ± 0.01 c | 0.05 ± 0.00 d | 0.73 ± 0.01 b,c | 6.10 ± 0.03 c | 2.28 ± 0.17 b | 0.80 ± 0.03 c | 1.35 ± 0.50 b,c | 0.04 ± 0.01 b,c |
Maceration-MeOH | 0.84 ± 0.01 b | 0.60 ± 0.00 h | 0.09 ± 0.00 g | 1.19 ± 0.01 e | 9.89 ± 0.06 d,e | 3.27 ± 0.07 e,f | 0.04 ± 0.02 a | 1.08 ± 0.30 b | 0.01 ± 0.00 a | |
Maceration-Water | 0.68 ± 0.05 a | 0.50 ± 0.05 e | 0.49 ± 0.00 h | 0.64 ± 0.01 b | 10.82 ± 1.30 e | 3.08 ± 0.04 d,e | 0.72 ± 0.11 b,c | 1.23 ± 0.02 b,c | 0.05 ± 0.00 c,d | |
Soxhlet-MeOH | 0.85 ± 0.00 b | 0.58 ± 0.01 g | 0.08 ± 0.00 f | 0.81 ± 0.02 b,c,d | 9.25 ± 0.07 d | 2.90 ± 0.07 d | 0.02 ± 0.01 a | 0.69 ± 0.03 a | 0.03 ± 0.02 a,b | |
Roots | Infusion | 1.55 ± 0.02 d | 0.01 ± 0.00 a | <0.01 a | 0.24 ± 0.00 a | 0.81 ± 0.00 a | 5.19 ± 0.06 i | 0.22 ± 0.12 a | 1.96 ± 0.05 d | 0.03 ± 0.00 a,b |
Maceration-MeOH | 1.82 ± 0.37 e | 0.01 ± 0.00 a | nd | 0.27 ± 0.01 a | 0.66 ± 0.02 a | 4.74 ± 0.05 h | 0.24 ± 0.05 a | 4.15 ± 0.03 g | 0.07 ± 0.01 d,e | |
Maceration-Water | 1.39 ± 0.01 c | 0.01 ± 0.00 a | <0.01 a | 0.15 ± 0.00 a | 2.10 ± 0.59 b | 2.55 ± 0.07 b,c | 0.18 ± 0.13 a | 1.05 ± 0.04 b | 0.06 ± 0.01 c,d | |
Soxhlet-MeOH | 1.82 ± 0.01 e | 0.02 ± 0.00 a | nd | 0.81 ± 0.01 b,c,d | 1.58 ± 0.02 a,b | 4.05 ± 0.50 g | 0.31 ± 0.03 a | 3.94 ± 0.06 f g | 0.08 ± 0.01 e,f | |
Leaves | Infusion | 2.43 ± 0.25 f | 0.48±0.01 d | 0.04 ± 0.00 c | 1.14±0.01 d,e | 19.73 ± 0.21 f | 3.52 ± 0.13 f | 1.54 ± 0.02 d | 3.68 ± 0.08 e,f | 0.10 ± 0.00 f |
Maceration-MeOH | 2.45 ± 0.11 f | 0.58 ± 0.02 g | 0.06 ± 0.00 e | 1.03 ± 0.38 c,d,e | 21.65 ± 0.45 g | 2.83 ± 0.01 c,d | 0.39 ± 0.03 a,b | 3.41 ± 0.13 e | 0.09 ± 0.00 f | |
Maceration-Water | 2.65 ± 0.02 g | 0.03 ± 0.01 b | 0.03 ± 0.00 b | 0.21 ± 0.01 a | 0.69 ± 0.09 a | 1.31 ± 0.03 a | 0.25 ± 0.03 a | 1.54 ± 0.09 c | 0.05 ± 0.00 c,d | |
Soxhlet-MeOH | 2.46 ± 0.06 f | 0.56 ± 0.02 f | 0.06 ± 0.00 e | 1.71 ± 0.57 f | 21.92 ± 0.88 g | 2.56 ± 0.03 b,c | 1.07 ± 0.67 c | 3.65 ± 0.04 e,f | 0.10 ± 0.00 f |
Parts | Methods | Phosphomolybdenum (mmolTE/g) | DPPH (mgTE/g) | ABTS (mgTE/g) | CUPRAC (mgTE/g) | FRAP (mgTE/g) | Metal Chelating (mgEDTAE/g) |
---|---|---|---|---|---|---|---|
Flowers | Infusion | 0.77 ± 0.02 e | 53.20 ± 0.33 g | 40.98 ± 0.38 g | 57.92 ± 1.37 e | 56.47 ± 0.27 g | 17.56 ± 0.52 g |
Maceration-MeOH | 0.67 ± 0.10 c,d | 43.47 ± 0.43 e | 29.39 ± 0.17 d | 64.19 ± 0.34 f | 53.71 ± 0.41 f | 7.72 ± 0.74 d | |
Maceration-Water | 1.44 ± 0.03 f | 52.76 ± 1.54 g | 66.07 ± 0.90 i | 105.87 ± 0.63 h | 95.22 ± 0.58 h | 10.33 ± 0.95 e | |
Soxhlet-MeOH | 0.62 ± 0.07 c,d | 47.73 ± 0.96 f | 33.56 ± 0.73 e | 62.20 ± 0.59 f | 55.50 ± 0.26 g | 5.53 ± 0.17 c,d | |
Roots | Infusion | 0.34 ± 0.02 a | 25.92 ± 0.06 a | 17.64 ± 0.62 b | 23.62 ± 0.41 a | 21.24 ± 0.16 a | 28.27 ± 0.74 i |
Maceration-MeOH | 0.50 ± 0.07 b | 30.57 ± 0.22 b | 24.71 ± 0.86 c | 31.92 ± 0.81 b | 27.15 ± 0.17 b | 6.01 ± 0.10 c,d | |
Maceration-Water | 0.62 ± 0.01 c,d | 29.71 ± 0.16 b | 13.03 ± 0.64 a | 29.28 ± 0.12 b | 33.76 ± 1.00 d | 2.93 ± 0.30 a,b | |
Soxhlet-MeOH | 0.69 ± 0.02 d,e | 33.04 ± 0.60 c | 28.28 ± 0.78 d | 40.23 ± 0.84 c | 31.58 ± 0.34 c | 4.94 ± 0.24 b,c | |
Leaves | Infusion | 0.63 ± 0.01 c,d | 84.59 ± 0.59 h | 66.63 ± 0.69 i | 92.29 ± 3.15 g | 96.00 ± 2.38 h | 35.45 ± 4.25 j |
Maceration-MeOH | 0.67 ± 0.06 c,d | 91.59 ± 0.33j | 57.93 ± 1.77 h | 132.14 ± 5.51 i | 108.23 ± 1.69 i | 21.07 ± 0.31 h | |
Maceration-Water | 0.62 ± 0.04 c,d | 36.52 ± 0.64 d | 38.55 ± 1.23 f | 46.30 ± 0.17 d | 43.50 ± 0.51 e | 2.15 ± 0.11 a | |
Soxhlet-MeOH | 0.58 ± 0.02 c | 90.37 ± 0.21 i | 58.81 ± 1.06 h | 131.03 ± 0.59 i | 110.82 ± 0.16 i | 12.70 ± 0.34 f |
Parts | Methods | AChE Inhibition (mg GALAE/g) | BChE Inhibition (mgGALAE/g) | Tyrosinase Inhibition (mg KAE/g) | Amylase Inhibition (mmol ACAE/g) | Glucosidase Inhibition (mmol ACAE/g) |
---|---|---|---|---|---|---|
Flowers | Infusion | na a | na a | na a | 0.13 ± 0.01 b | na a |
Maceration-MeOH | 4.22 ± 0.30 g | na a | 99.94 ± 1.20 b | 0.61 ± 0.01 f | 2.65 ± 0.08 c | |
Maceration-Water | na a | na a | 2.46 ± 0.19 a | 0.33 ± 0.02 d | na a | |
Soxhlet-MeOH | 3.82 ± 0.17 f | na a | 103.19 ± 2.78 c | 0.50 ± 0.01 e | 2.65 ± 0.06 c | |
Roots | Infusion | 0.23 ± 0.06 b | na a | na a | 0.11 ± 0.01 a,b | na a |
Maceration-MeOH | 4.21 ± 0.22 g | 6.72 ± 0.23 c | 113.00 ± 1.24 d,e | 0.49 ± 0.01 e | 2.79 ± 0.01 d | |
Maceration-Water | 0.60 ± 0.04 c | na a | na a | 0.13 ± 0.01 b | na a | |
Soxhlet-MeOH | 4.48 ± 0.05 h | 3.11 ± 0.04 b | 112.63 ± 4.31 d | 0.49 ± 0.01 e | na | |
Leaves | Infusion | 0.29 ± 0.06 b | na a | na a | 0.17 ± 0.01 c | na a |
Maceration-MeOH | 3.43 ± 0.08 e | na a | 116.92 ± 1.28 f | 0.59 ± 0.04 f | 2.49 ± 0.10 b | |
Maceration-Water | 0.93 ± 0.03 d | na a | na a | 0.10 ± 0.01 a | na a | |
Soxhlet-MeOH | 3.88 ± 0.10 f | na a | 115.61 ± 1.03 e,f | 0.61 ± 0.03 f | 2.54 ± 0.01 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocchetti, G.; Senizza, B.; Zengin, G.; Okur, M.A.; Montesano, D.; Yildiztugay, E.; Lobine, D.; Mahomoodally, M.F.; Lucini, L. Chemical Profiling and Biological Properties of Extracts from Different Parts of Colchicum Szovitsii Subsp. Szovitsii. Antioxidants 2019, 8, 632. https://doi.org/10.3390/antiox8120632
Rocchetti G, Senizza B, Zengin G, Okur MA, Montesano D, Yildiztugay E, Lobine D, Mahomoodally MF, Lucini L. Chemical Profiling and Biological Properties of Extracts from Different Parts of Colchicum Szovitsii Subsp. Szovitsii. Antioxidants. 2019; 8(12):632. https://doi.org/10.3390/antiox8120632
Chicago/Turabian StyleRocchetti, Gabriele, Biancamaria Senizza, Gokhan Zengin, Murat Ali Okur, Domenico Montesano, Evren Yildiztugay, Devina Lobine, Mohamad Fawzi Mahomoodally, and Luigi Lucini. 2019. "Chemical Profiling and Biological Properties of Extracts from Different Parts of Colchicum Szovitsii Subsp. Szovitsii" Antioxidants 8, no. 12: 632. https://doi.org/10.3390/antiox8120632
APA StyleRocchetti, G., Senizza, B., Zengin, G., Okur, M. A., Montesano, D., Yildiztugay, E., Lobine, D., Mahomoodally, M. F., & Lucini, L. (2019). Chemical Profiling and Biological Properties of Extracts from Different Parts of Colchicum Szovitsii Subsp. Szovitsii. Antioxidants, 8(12), 632. https://doi.org/10.3390/antiox8120632