Phenolic Profiling and Antioxidant Capacity in Plants

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Natural and Synthetic Antioxidants".

Deadline for manuscript submissions: closed (31 January 2020) | Viewed by 386752

Special Issue Editors

Special Issue Information

Dear Colleagues,

The interest in foods of plant origin as a source of polyphenols originated in the 1990s and, to date, continue to receive a great deal of attention. The recent advances in analytical approaches, -omic sciences and biotechnology are offering new and interesting insights into the characterization, comprehensive profiling and biological activity of phenolics. In parallel, the recent knowledge on existing in vitro antioxidant assays suggest that further research is still necessary, to move towards measures representative of in vivo conditions.

Contributions to this Special Issue may cover all research aspects related to the characterization of phenolic compounds and their antioxidant capacity, including (but not limited to) methods for their extraction, purification, characterization and quantification; the elucidation of their mechanisms of action with focus on antioxidant capacity; improved methods for assessing antioxidant capacity (cell-based assays are encouraged); and the effect of both pre- and post-harvest factors on phenolic profiles in plants.

Prof. Dr. Luigi Lucini
Dr. Andrei Mocan
Dr. Gabriele Rocchetti
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Polyphenols
  • Free and bound phenolics
  • Flavonoids
  • Hydroxycinnamics
  • Lignans
  • Antioxidant capacity
  • Radical scavenging

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issues

Published Papers (55 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 912 KiB  
Article
Polyphenols and Sesquiterpene Lactones from Artichoke Heads: Modulation of Starch Digestion, Gut Bioaccessibility, and Bioavailability following In Vitro Digestion and Large Intestine Fermentation
by Gabriele Rocchetti, Gianluca Giuberti, Franco Lucchini and Luigi Lucini
Antioxidants 2020, 9(4), 306; https://doi.org/10.3390/antiox9040306 - 10 Apr 2020
Cited by 17 | Viewed by 4102
Abstract
Artichoke is a relevant source of health-promoting compounds such as polyphenols and sesquiterpene lactones. In this study, the bioaccessibility and gut bioavailability of artichoke constituents were evaluated by combining in vitro digestion and large intestine fermentation, metabolomics, and Caco-2 human intestinal cells model. [...] Read more.
Artichoke is a relevant source of health-promoting compounds such as polyphenols and sesquiterpene lactones. In this study, the bioaccessibility and gut bioavailability of artichoke constituents were evaluated by combining in vitro digestion and large intestine fermentation, metabolomics, and Caco-2 human intestinal cells model. Moreover, the ability of artichoke polyphenols to modulate the in vitro starch digestibility was also explored. An untargeted metabolomic approach based on liquid chromatography quadrupole-time-of-flight (UHPLC/QTOF) mass spectrometry coupled with multivariate statistics was used to comprehensively screen the phytochemical composition of raw, digested, and fermented artichoke. Overall, a large abundance of phenolic acids and sesquiterpene lactones was detected, being 13.77 and 11.99 mg·g−1, respectively. After 20 h of in vitro large intestine fermentation, a decrease in polyphenols and sesquiterpene lactones content was observed. The most abundant compounds characterizing the raw material (i.e., chlorogenic acid and cynaropicrin equivalents) showed an average % bioaccessibility of 1.6%. The highest % bioaccessibility values were recorded for flavonoids such as anthocyanin and flavone equivalents (on average, 13.6%). However, the relatively high bioavailability values recorded for flavonols, phenolic acids, and sesquiterpene lactones (from 71.6% up to 82.4%) demonstrated that these compounds are able to be transported through the Caco-2 monolayer. The phenolic compounds having the highest permeation rates through the Caco-2 model included low molecular weight phenolics such as tyrosol and 4-ethylcatechol; the isoflavonoids 3′-O-methylviolanone, equol 4′-O-glucuronide, and hydroxyisoflavone; together with the methyl and acetyl derivatives of glycosylated anthocyanins. Therefore, although human in vivo confirmatory trials are deemed possible, current findings provide insights into the mechanistic effects underlying artichoke polyphenols and sesquiterpenoids bioavailability following gastrointestinal and large intestine processes. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

20 pages, 1181 KiB  
Article
Variation in Macronutrient Content, Phytochemical Constitution and In Vitro Antioxidant Capacity of Green and Red Butterhead Lettuce Dictated by Different Developmental Stages of Harvest Maturity
by Christophe El-Nakhel, Antonio Pannico, Giulia Graziani, Marios C. Kyriacou, Maria Giordano, Alberto Ritieni, Stefania De Pascale and Youssef Rouphael
Antioxidants 2020, 9(4), 300; https://doi.org/10.3390/antiox9040300 - 3 Apr 2020
Cited by 57 | Viewed by 4566
Abstract
Rising life expectancy and the demanding modern lifestyle drive the growing appeal of healthy and balanced diets centered on vegetable and fruit consumption. Functional, phytonutrient-packed and principally raw food is in high demand. Microgreens constitute such a novel functional food that combines a [...] Read more.
Rising life expectancy and the demanding modern lifestyle drive the growing appeal of healthy and balanced diets centered on vegetable and fruit consumption. Functional, phytonutrient-packed and principally raw food is in high demand. Microgreens constitute such a novel functional food that combines a high sensory and bioactive value, which invites comparison to their mature-leaf counterparts. For this purpose, a controlled environment chamber experiment was carried out to compare the mineral, phytochemical and antioxidant capacity attributes of two-pigmented Lactuca sativa L. var. capitata cultivars (green and red Salanova®) harvested at the microgreens and the mature-leaf stage. Macronutrients were assessed through ion chromatography, while carotenoids and polyphenols were assessed and quantified through HPLC-DAD and UHPLC-Q-Orbitrap HRMS, respectively. Calcium and magnesium were higher in microgreens irrespective of the cultivar; conversely, phosphorous, potassium and nitrate where higher in mature leaves. All pigments including chlorophyll, lutein and β-carotene augmented at advanced maturity stage and were more concentrated in the red pigmented cultivar at both stages. Total polyphenols accumulated more densely in red Salanova, particularly in the microgreens stage; whereas, in green Salanova, the accumulation was significant but less pronounced in the mcirogreens stage. Chlorogenic acid, quercetin malonyl glucoside, rutin and coumaroyl quinic acid were the most concentrated phenolic acids in microgreens, while feruloyl tartaric acid was predominant in mature leaves. Finally, when a high carotenoids content is sought, mature lettuce leaves should be the prime culinary choice, whereas high polyphenolic content is dictated by both the cultivar and the harvest stage, with red Salanova microgreens being the most nutrient-packed choice. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

21 pages, 1743 KiB  
Article
Selenium Biofortification Impacts the Nutritive Value, Polyphenolic Content, and Bioactive Constitution of Variable Microgreens Genotypes
by Antonio Pannico, Christophe El-Nakhel, Giulia Graziani, Marios C. Kyriacou, Maria Giordano, Georgios A. Soteriou, Armando Zarrelli, Alberto Ritieni, Stefania De Pascale and Youssef Rouphael
Antioxidants 2020, 9(4), 272; https://doi.org/10.3390/antiox9040272 - 25 Mar 2020
Cited by 68 | Viewed by 5972
Abstract
Selenium (Se) is considered essential for human nutrition as it is involved in the metabolic pathway of selenoproteins and relevant biological functions. Microgreens, defined as tender immature greens, constitute an emerging functional food characterized by overall higher levels of phytonutrients than their mature [...] Read more.
Selenium (Se) is considered essential for human nutrition as it is involved in the metabolic pathway of selenoproteins and relevant biological functions. Microgreens, defined as tender immature greens, constitute an emerging functional food characterized by overall higher levels of phytonutrients than their mature counterparts. The nutraceutical value of microgreens can be further improved through Se biofortification, delivering Se-enriched foods and potentially an enhanced content of bioactive compounds. The current study defined the effect of sodium selenate applications at three concentrations (0, 8, and 16 μM Se) on the bioactive compounds and mineral content of coriander, green basil, purple basil, and tatsoi microgreens grown in soilless cultivation. Analytical emphasis was dedicated to the identification and quantification of polyphenols by UHPLC-Q-Orbitrap-HRMS, major carotenoids by HPLC-DAD, and macro micro-minerals by ICP-OES. Twenty-seven phenolic compounds were quantified, of which the most abundant were: Chlorogenic acid and rutin in coriander, caffeic acid hexoside and kaempferol-3-O(caffeoyl) sophoroside-7-O-glucoside in tatsoi, and cichoric acid and rosmarinic acid in both green and purple basil. In coriander and tatsoi microgreens, the application of 16 μM Se increased the total phenols content by 21% and 95%, respectively; moreover, it improved the yield by 44% and 18%, respectively. At the same Se dose, the bioactive value of coriander and tatsoi was enhanced by a significant increase in rutin (33%) and kaempferol-3-O(feruloyl)sophoroside-7-O-glucoside (157%), respectively, compared to the control. In green and purple basil microgreens, the 8 μM Se application enhanced the lutein concentration by 7% and 19%, respectively. The same application rate also increased the overall macroelements content by 35% and total polyphenols concentration by 32% but only in the green cultivar. The latter actually had a tripled chicoric acid content compared to the untreated control. All microgreen genotypes exhibited an increase in the Se content in response to the biofortification treatments, thereby satisfying the recommended daily allowance for Se (RDA-Se) from 20% to 133%. The optimal Se dose that guarantees the effectiveness of Se biofortification and improves the content of bioactive compounds was 16 μM in coriander and tatsoi, and 8 μM in green and purple basil. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

23 pages, 694 KiB  
Article
Phenolic Constitution, Phytochemical and Macronutrient Content in Three Species of Microgreens as Modulated by Natural Fiber and Synthetic Substrates
by Marios C. Kyriacou, Christophe El-Nakhel, Antonio Pannico, Giulia Graziani, Georgios A. Soteriou, Maria Giordano, Mario Palladino, Alberto Ritieni, Stefania De Pascale and Youssef Rouphael
Antioxidants 2020, 9(3), 252; https://doi.org/10.3390/antiox9030252 - 20 Mar 2020
Cited by 66 | Viewed by 6100
Abstract
The present study examined the modulatory effects of natural fiber substrates (agave fiber, coconut fiber and peat moss) and synthetic alternatives (capillary mat and cellulose sponge) on the nutritive and phytochemical composition of select microgreens species (coriander, kohlrabi and pak choi) grown in [...] Read more.
The present study examined the modulatory effects of natural fiber substrates (agave fiber, coconut fiber and peat moss) and synthetic alternatives (capillary mat and cellulose sponge) on the nutritive and phytochemical composition of select microgreens species (coriander, kohlrabi and pak choi) grown in a controlled environment. Polyphenols were analyzed by UHPLC-Q-Orbitrap-HRMS, major carotenoids by HPLC-DAD, and macro-minerals by ion chromatography. Microgreens grown on peat moss had outstanding fresh and dry yield but low dry matter content. Natural fiber substrates increased nitrate and overall macro-mineral concentrations in microgreens compared to synthetic substrates. The concentrations of chlorophylls, carotenoids and ascorbate were influenced primarily by species. On the contrary, variability in polyphenols content was wider between substrates than species. Out of twenty phenolic compounds identified, chlorogenic acid and quercetin-3-O-rutinoside were most abundant. Hydroxycinnamic acids and their derivatives accounted for 49.8% of mean phenolic content across species, flavonol glycosides for 48.4% and flavone glycosides for 1.8%. Peat moss provided optimal physicochemical conditions that enhanced microgreens growth rate and biomass production at the expense of phenolic content. In this respect, the application of controlled stress (eustress) on microgreens growing on peat moss warrants investigation as a means of enhancing phytochemical composition without substantial compromise in crop performance and production turnover. Finally, nitrate deprivation practices should be considered for microgreens grown on natural fiber substrates in order to minimize consumer exposure to nitrate. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

12 pages, 1382 KiB  
Article
Phytochemicals and Antioxidant Activity of Korean Black Soybean (Glycine max L.) Landraces
by Kyung Jun Lee, Da-Young Baek, Gi-An Lee, Gyu-Taek Cho, Yoon-Sup So, Jung-Ro Lee, Kyung-Ho Ma, Jong-Wook Chung and Do Yoon Hyun
Antioxidants 2020, 9(3), 213; https://doi.org/10.3390/antiox9030213 - 5 Mar 2020
Cited by 33 | Viewed by 5727
Abstract
Black soybean (Glycine max L.) has been used as a traditional medicine because its seed coat contains various natural phenolic compounds such as anthocyanins. The objective of this study was to reveal the genetic variation in the agricultural traits, phytochemicals, and antioxidant [...] Read more.
Black soybean (Glycine max L.) has been used as a traditional medicine because its seed coat contains various natural phenolic compounds such as anthocyanins. The objective of this study was to reveal the genetic variation in the agricultural traits, phytochemicals, and antioxidant activity of 172 Korean black soybean landraces (KBSLs) and establish a relationship among them. The evaluation of three agricultural traits (days to 50% flowering, maturity, and 100-seed weight), six phytochemicals (delphinidin-3-glucoside, cyaniding-3-glucoside, petunidin-3-glucoside, daidzin, glycitin, and genestin), and four antioxidant activities (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS), ferric-reducing antioxidant power (FRAP), and the total polyphenol content (TPC) of 172 KBSLs were analyzed in 2012 and 2015. The agricultural traits, phytochemicals, and antioxidant activities of the 172 KBSLs showed wide variation among the accessions and years. In correlation analysis, the agricultural traits and phytochemicals showed positive and negative correlations with phytochemicals and antioxidant activity, respectively. The principal component analyses result indicated that phytochemicals accounted for most of the variability in the KBSLs. In clustering analysis, the 172 KBSLs were classified into four clusters. These results could lead to expanding the knowledge of the agricultural traits, phytochemicals, and antioxidant activity of the KBSLs, which are valuable materials for the development of new soybean varieties. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

22 pages, 1885 KiB  
Article
Influence of a Selenium Biofortification on Antioxidant Properties and Phenolic Compounds of Apples (Malus domestica)
by Sabrina Groth, Christoph Budke, Susanne Neugart, Sofia Ackermann, Fenja-Sarah Kappenstein, Diemo Daum and Sascha Rohn
Antioxidants 2020, 9(2), 187; https://doi.org/10.3390/antiox9020187 - 24 Feb 2020
Cited by 41 | Viewed by 6313
Abstract
Biofortified apples seem to be a suitable produce. In this study, different selenium forms and application levels were applied to the two apple varieties ‘Golden Delicious’ and ‘Jonagold’, grown in the years 2017 and 2018 in order to increase the selenium uptake within [...] Read more.
Biofortified apples seem to be a suitable produce. In this study, different selenium forms and application levels were applied to the two apple varieties ‘Golden Delicious’ and ‘Jonagold’, grown in the years 2017 and 2018 in order to increase the selenium uptake within a typical Western diet. It was shown that the biofortification, which was performed as a foliar application implemented in usual calcium fertilization, led to significantly increased selenium contents in the fruits. Furthermore, biofortification affected the total phenolic content (TPC), the polyphenol oxidase activity (PPO), as well as the antioxidant activity (AOA), the latter measured with the two well-known assays Trolox Equivalent Antioxidant Capacity Assay (TEAC) and Oxygen Radical Absorbance Capacity Assays (ORAC). The varying selenium forms and application levels showed a differing influence on the parameters mentioned before. Higher fertilizer levels resulted in higher selenium accumulation. It was found that PPO activity fluctuates less in biofortified apples. With regard to TPC, selenate led to higher amounts when compared to the untreated controls and selenite resulted in lower TPC. AOA analysis showed no clear tendencies as a result of the selenium biofortification. In the case of ‘Jonagold’, a higher AOA was generally measured when being biofortified, whereas, in the case of ‘Golden Delicious’, only one form of application led to higher AOA. Additionally, differences in the amount of major phenolic compounds, measured with High Performance Liquid Chromatography Mass Spectrometry (HPLC-DAD-ESI-MSn), were observed, depending on the conditions of the biofortification and the variety. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

31 pages, 8428 KiB  
Article
Antioxidant, Antiproliferative and Apoptosis-Inducing Efficacy of Fractions from Cassia fistula L. Leaves
by Sandeep Kaur, Ajay Kumar, Sharad Thakur, Kapil Kumar, Ritika Sharma, Anket Sharma, Prabhpreet Singh, Upendra Sharma, Subodh Kumar, Marco Landi, Marián Brestič and Satwinderjeet Kaur
Antioxidants 2020, 9(2), 173; https://doi.org/10.3390/antiox9020173 - 20 Feb 2020
Cited by 28 | Viewed by 5612
Abstract
Cassia fistula L. is a highly admirable traditional medicinal plant used for the treatment of various diseases and disorders. The present study was performed to divulge the antioxidant, antiproliferative, and apoptosis-inducing efficacy of fractions from C. fistula leaves. The hexane (CaLH fraction), chloroform [...] Read more.
Cassia fistula L. is a highly admirable traditional medicinal plant used for the treatment of various diseases and disorders. The present study was performed to divulge the antioxidant, antiproliferative, and apoptosis-inducing efficacy of fractions from C. fistula leaves. The hexane (CaLH fraction), chloroform (CaLC fraction), ethyl acetate (CaLE fraction), n-butanol (CaLB fraction), and aqueous (CaLA fraction) were sequentially fractionated from 80% methanolic (CaLM extract) of C. fistula leaves. The CaLE fraction was fractionated using column chromatography to yield a pure compound, which was characterized as Epiafzelechin (CFL1) based on 1H, 13C, and DEPT135 NMR. Among these fractions, CaLE and isolated CFL1 fractions exhibited an effective antioxidant potential in Ferric ion reducing power, (2,2’-azino-bis (3-ethylbenzothiazoline -6-sulfonic acid)) cation radical scavenging, and nitric oxide radical scavenging assays. Epiafzelechin was investigated for its antiproliferative effects against MG-63 (osteosarcoma), IMR-32 (neuroblastoma), and PC-3 (prostate adenocarcinoma), and was found to inhibit cell proliferation with a GI50 value of 8.73, 9.15, and 11.8 μM respectively. MG-63 cells underwent apoptotic cell death on treatment with Epiafzelechin as the cells showed the formation of apoptotic bodies, enhanced reactive oxygen species (ROS) generation, mitochondrial membrane depolarization along with an increase in early apoptotic cell population analyzed using Annexin V-FITC/PI double staining assay. Cells showed cell cycle arrest at the G0/G1 phase accompanied by a downregulation in the expression levels of p-Akt (Protein kinase B), p-GSK-3β (Glycogen synthase kinase-3 beta), and Bcl-xl (B-cell lymphoma-extra large) proteins. RT-PCR (Real time-polymerase chain reaction) analysis revealed downregulation in the gene expression level of β-catenin and CDK2 (cyclin-dependent kinases-2) while it upregulated the expression level of caspase-8 and p53 genes in MG-63 cells. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

29 pages, 2893 KiB  
Article
Cytotoxic, Antimicrobial, Antioxidant Properties and Effects on Cell Migration of Phenolic Compounds of Selected Transylvanian Medicinal Plants
by Rita Csepregi, Viktória Temesfői, Sourav Das, Ágnes Alberti, Csenge Anna Tóth, Róbert Herczeg, Nóra Papp and Tamás Kőszegi
Antioxidants 2020, 9(2), 166; https://doi.org/10.3390/antiox9020166 - 18 Feb 2020
Cited by 44 | Viewed by 6350
Abstract
Medicinal plants are widely used in folk medicine but quite often their composition and biological effects are hardly known. Our study aimed to analyze the composition, cytotoxicity, antimicrobial, antioxidant activity and cellular migration effects of Anthyllis vulneraria, Fuchsia magellanica, Fuchsia triphylla [...] Read more.
Medicinal plants are widely used in folk medicine but quite often their composition and biological effects are hardly known. Our study aimed to analyze the composition, cytotoxicity, antimicrobial, antioxidant activity and cellular migration effects of Anthyllis vulneraria, Fuchsia magellanica, Fuchsia triphylla and Lysimachia nummularia used in the Romanian ethnomedicine for wounds. Liquid chromatography with mass spectrometry (LC-MS/MS) was used to analyze 50% (v/v) ethanolic and aqueous extracts of the plants’ leaves. Antimicrobial activities were estimated with a standard microdilution method. The antioxidant properties were evaluated by validated chemical cell-free and biological cell-based assays. Cytotoxic effects were performed on mouse fibroblasts and human keratinocytes with a plate reader-based method assessing intracellular adenosine triphosphate (ATP), nucleic acid and protein contents and also by a flow cytometer-based assay detecting apoptotic–necrotic cell populations. Cell migration to cover cell-free areas was visualized by time-lapse phase-contrast microscopy using standard culture inserts. Fuchsia species showed the strongest cytotoxicity and the highest antioxidant and antimicrobial activity. However, their ethanolic extracts facilitated cell migration, most probably due to their various phenolic acid, flavonoid and anthocyanin derivatives. Our data might serve as a basis for further animal experiments to explore the complex action of Fuchsia species in wound healing assays. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

21 pages, 1360 KiB  
Article
The Implication of Chemotypic Variation on the Anti-Oxidant and Anti-Cancer Activities of Sutherlandia frutescens (L.) R.Br. (Fabaceae) from Different Geographic Locations
by Samkele Zonyane, Olaniyi A. Fawole, Chris la Grange, Maria A. Stander, Umezuruike L. Opara and Nokwanda P. Makunga
Antioxidants 2020, 9(2), 152; https://doi.org/10.3390/antiox9020152 - 13 Feb 2020
Cited by 18 | Viewed by 4953
Abstract
Extracts of Sutherlandia frutescens (cancer bush) exhibit considerable qualitative and quantitative chemical variability depending on their natural wild origins. The purpose of this study was thus to determine bioactivity of extracts from different regions using in vitro antioxidant and anti-cancer assays. Extracts of [...] Read more.
Extracts of Sutherlandia frutescens (cancer bush) exhibit considerable qualitative and quantitative chemical variability depending on their natural wild origins. The purpose of this study was thus to determine bioactivity of extracts from different regions using in vitro antioxidant and anti-cancer assays. Extracts of the species are complex and are predominantly composed of a species-specific set of triterpene saponins (cycloartanol glycosides), the sutherlandiosides, and flavonoids (quercetin and kaempferol glycosides), the sutherlandins. For the Folin-Ciocalteu phenolics test values of 93.311 to 125.330 mg GAE/g DE were obtained. The flavonoids ranged from 54.831 to 66.073 mg CE/g DE using the aluminum chloride assay. Extracts from different sites were also assayed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method and ferric reducing anti-oxidant power (FRAP) methods. This was followed by an in vitro Cell Titer-Glo viability assay of various ecotypes using the DLD-1 colon cancer cell line. All test extracts displayed anti-oxidant activity through the DPPH radical scavenging mechanism, with IC50 values ranging from 3.171 to 7.707 µg·mL−1. However, the degree of anti-oxidant effects differed on a chemotypic basis with coastal plants from Gansbaai and Pearly Beach (Western Cape) exhibiting superior activity whereas the Victoria West inland group from the Northern Cape, consistently showed the weakest anti-oxidant activity for both the DPPH and FRAP methods. All extracts showed cytotoxicity on DLD-1 colon cancer cells at the test concentration of 200 µg·mL−1 but Sutherlandia plants from Colesburg (Northern Cape) exhibited the highest anti-cancer activity. These findings confirm that S. frutescens specimens display variability in their bioactive capacities based on their natural location, illustrating the importance of choosing relevant ecotypes for medicinal purposes. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

17 pages, 1683 KiB  
Article
UHPLC-HESI-OT-MS-MS Biomolecules Profiling, Antioxidant and Antibacterial Activity of the “Orange-Yellow Resin” from Zuccagnia punctata Cav.
by Jessica Gómez, Mario J. Simirgiotis, Sofía Manrique, Beatriz Lima, Jorge Bórquez, Gabriela E. Feresin and Alejandro Tapia
Antioxidants 2020, 9(2), 123; https://doi.org/10.3390/antiox9020123 - 1 Feb 2020
Cited by 9 | Viewed by 2947
Abstract
This research was designed to investigate the metabolite profiling, phenolics, and flavonoids content as well as the potential antioxidant and antibacterial, properties of orange-yellow resin from Zuccagnia punctata Cav (ZpRe). Metabolite profiling was obtained by a ultrahigh resolution liquid chromatography orbitrap MS analysis [...] Read more.
This research was designed to investigate the metabolite profiling, phenolics, and flavonoids content as well as the potential antioxidant and antibacterial, properties of orange-yellow resin from Zuccagnia punctata Cav (ZpRe). Metabolite profiling was obtained by a ultrahigh resolution liquid chromatography orbitrap MS analysis (UHPLC-ESI-OT-MS-MS). The antioxidant properties were screened by four methods: 2,2-diphenyl-1-picrylhydrazyl assay (DPPH), trolox equivalent antioxidant activity assay (TEAC), ferric-reducing antioxidant power assay (FRAP), and lipid peroxidation in erythrocytes (LP)). The antibacterial activity was evaluated according to the Clinical and Laboratory Standards Institute (CLSI) rules. The resin displayed a strong DPPH scavenging activity (IC50 = 25.72 µg/mL) and showed a percentage of inhibition of LP close to that of the reference compound catechin (70% at 100 µg ZpRe/mL), while a moderated effect was observed in the FRAP and TEAC assays. The resin showed a content of phenolic and flavonoid compounds of 391 mg GAE/g and 313 mg EQ/g respectively. Fifty phenolics compounds were identified by ultrahigh resolution liquid chromatography orbitrap MS analysis (UHPLC-PDA-OT-MS) analysis. Thirty-one compounds are reported for the first time, updating the knowledge on the chemical profile of this species. The importance of the biomolecules identified support traditional use of this endemic plant. Furthermore, additional pharmacological data is presented that increase the potential interest of this plant for industrial sustainable applications. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

12 pages, 673 KiB  
Article
Pechiche (Vitex cymosa Berteo ex Speng), a Nontraditional Fruit from Ecuador, is a Dietary Source of Phenolic Acids and Nutrient Minerals, in Addition to Efficiently Counteracting the Oxidative-Induced Damage in Human Dermal Fibroblasts
by Mabel Guevara, Luis A. Valdés-Silverio, María G. Granda-Albuja, Gabriel Iturralde, Tatiana Jaramillo-Vivanco, Francesca Giampieri, Celestino Santos-Buelga, Ana M. González-Paramás, Maurizio Battino and José M. Álvarez-Suarez
Antioxidants 2020, 9(2), 109; https://doi.org/10.3390/antiox9020109 - 27 Jan 2020
Cited by 3 | Viewed by 4457
Abstract
Pechiche fruits (Vitex cymosa Berteo ex Speng) from Ecuador were studied to determine their phenolic acid profile, nutrient minerals and capacity to protect primary human dermal fibroblasts (HDFa) against oxidative-induced damage. Up to five phenolic acids were identified, with homovanillic acid as [...] Read more.
Pechiche fruits (Vitex cymosa Berteo ex Speng) from Ecuador were studied to determine their phenolic acid profile, nutrient minerals and capacity to protect primary human dermal fibroblasts (HDFa) against oxidative-induced damage. Up to five phenolic acids were identified, with homovanillic acid as the main one. Vitamin C, β-carotene and lutein were also determined. Phosphorus and potassium were the main macrominerals, while iron was the principal micromineral. HDFa were preincubated with a crude pechiche extract (PCext) and then subjected to oxidative stress. The activity of five antioxidant enzymes, intracellular reactive oxygen species (ROS) and ATP levels and lipid peroxidation and protein oxidation were used as markers of oxidative damage. Preincubation with PCext for 24 h allowed for the significant reduction of intracellular ROS levels, improved the intracellular ATP levels and protected lipids and proteins against oxidative damage (p < 0.05). Additionally, preincubation with PCext was also able to significantly (p < 0.05) improve the activity of the antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase and glutathione transferase, compared to the stressed group without pretreatment. The results obtained in this study suggest the potential of pechiche as a source of bioactive compounds, as well as its beneficial effect against oxidative stress. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

18 pages, 704 KiB  
Article
Phytochemical Profile and Antioxidant Capacity of Coffee Plant Organs Compared to Green and Roasted Coffee Beans
by Robert Acidri, Yumiko Sawai, Yuko Sugimoto, Takuo Handa, Daisuke Sasagawa, Tsugiyaki Masunaga, Sadahiro Yamamoto and Eiji Nishihara
Antioxidants 2020, 9(2), 93; https://doi.org/10.3390/antiox9020093 - 22 Jan 2020
Cited by 72 | Viewed by 8291
Abstract
The current study investigates the phytochemical composition of coffee plant organs and their corresponding antioxidant capacities compared to green and roasted coffee beans. HPLC analysis indicated that the investigated compounds were present in all organs except mangiferin, which was absent in roots, stems [...] Read more.
The current study investigates the phytochemical composition of coffee plant organs and their corresponding antioxidant capacities compared to green and roasted coffee beans. HPLC analysis indicated that the investigated compounds were present in all organs except mangiferin, which was absent in roots, stems and seeds, and caffeine, which was absent in stems and roots. Total phytochemicals were highest in the green beans (GB) at 9.70 mg g−1 dry weight (DW), while roasting caused a 66% decline in the roasted beans (RB). This decline resulted more from 5–CQA and sucrose decomposition by 68% and 97%, respectively, while caffeine and trigonelline were not significantly thermally affected. Roasting increased the total phenolic content (TPC) by 20.8% which was associated with an increase of 68.8%, 47.5% and 13.4% in the antioxidant capacity (TEAC) determined by 2,2–diphenyl–1–picryl hydrazyl radical (DPPH), 2,2–azino bis (3–ethyl benzothiazoline–6–sulphonic acid) radical (ABTS) and Ferric ion reducing antioxidant power (FRAP) assays, respectively. Amongst the leaves, the youngest (L1) contained the highest content at 8.23 mg g−1 DW, which gradually reduced with leaf age to 5.57 mg g−1 DW in the oldest (L6). Leaves also contained the highest TPC (over 60 mg g−1 GAE) and exhibited high TEAC, the latter being highest in L1 at 328.0, 345.7 and 1097.4, and least in L6 at 304.6, 294.5 and 755.1 µmol Trolox g−1 sample for the respective assays. Phytochemical accumulation, TPC and TEAC were least in woody stem (WS) at 1.42 mg g−1 DW; 8.7 mg g−1 GAE; 21.9, 24.9 and 110.0 µmol Trolox g−1 sample; while herbaceous stem (HS) contained up to 4.37 mg g−1 DW; 27.8 mg g−1 GAE; 110.9, 124.8 and 469.7 µmol Trolox g−1 sample, respectively. Roots contained up to 1.85 mg g−1 DW, 15.8 mg−1 GAE and TEAC of 36.8, 41.5 and 156.7 µmol Trolox g−1 sample. Amongst the organs, therefore, coffee leaves possessed higher values than roasted beans on the basis of phytochemicals, TPC and TEAC. Leaves also contain carotenoids and chlorophylls pigments with potent health benefits. With appropriate processing methods, a beverage prepared from leaves (coffee leaf tea) could be a rich source of phytochemicals and antioxidants with therapeutic and pharmacological values for human health. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

15 pages, 691 KiB  
Article
Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used
by Natividad Chaves, Antonio Santiago and Juan Carlos Alías
Antioxidants 2020, 9(1), 76; https://doi.org/10.3390/antiox9010076 - 15 Jan 2020
Cited by 223 | Viewed by 33211
Abstract
Plants have a large number of bioactive compounds with high antioxidant activity. Studies for the determination of the antioxidant activity of different plant species could contribute to revealing the value of these species as a source of new antioxidant compounds. There is a [...] Read more.
Plants have a large number of bioactive compounds with high antioxidant activity. Studies for the determination of the antioxidant activity of different plant species could contribute to revealing the value of these species as a source of new antioxidant compounds. There is a large variety of in vitro methods to quantify antioxidant activity, and it is important to select the proper method to determine which species have the highest antioxidant activity. The aim of this work was to verify whether different methods show the same sensitivity and/or capacity to discriminate the antioxidant activity of the extract of different plant species. To that end, we selected 12 species with different content of phenolic compounds. Their extracts were analyzed using the following methods: 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, ferric reducing (FRAP) assay, Trolox equivalent antioxidant capacity (ABTS) assay, and reducing power (RP) assay. The four methods selected could quantify the antioxidant capacity of the 12 study species, although there were differences between them. The antioxidant activity values quantified through DPPH and RP were higher than the ones obtained by ABTS and FRAP, and these values varied among species. Thus, the hierarchization or categorization of these species was different depending on the method used. Another difference established between these methods was the sensitivity obtained with each of them. A cluster revealed that RP established the largest number of groups at the shortest distance from the root. Therefore, as it showed the best discrimination of differences and/or similarities between species, RP is considered in this study as the one with the highest sensitivity among the four studied methods. On the other hand, ABTS showed the lowest sensitivity. These results show the importance of selecting the proper antioxidant activity quantification method for establishing a ranking of species based on this parameter. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

16 pages, 1250 KiB  
Article
Phenolic Profile, Antioxidant Capacities and Enzymatic Inhibitory Activities of Propolis from Different Geographical Areas: Needs for Analytical Harmonization
by Sandra M. Osés, Patricia Marcos, Patricia Azofra, Ana de Pablo, Miguel Ángel Fernández-Muíño and M. Teresa Sancho
Antioxidants 2020, 9(1), 75; https://doi.org/10.3390/antiox9010075 - 15 Jan 2020
Cited by 88 | Viewed by 6794
Abstract
Propolis is a resinous vegetal exudate modified by bees, and is interesting as a preservative and potentially functional product. This work dealt with studying the common phenolic profiles and antioxidant capacities of 13 bee propolis from different geographical areas. Both hyaluronidase and angiotensin [...] Read more.
Propolis is a resinous vegetal exudate modified by bees, and is interesting as a preservative and potentially functional product. This work dealt with studying the common phenolic profiles and antioxidant capacities of 13 bee propolis from different geographical areas. Both hyaluronidase and angiotensin converting enzyme (ACE) inhibitory activities were also assessed and related when possible with particular phenolic compounds. High performance liquid chromatography-ultraviolet detection (HPLC-UV) analysis showed that every propolis contained p-coumaric acid (1.2–12.2 mg/g) and ferulic acid (0.3–11.0 mg/g). Pinocembrin, catechin, and caffeic acid phenethyl ester (CAPE) plus galangin were the main flavonoids. Antioxidant activities were higher than 280 µmol trolox/g for trolox equivalent antioxidant capacity (TEAC), 0.099 mmol uric acid/g for radical-scavenging effect on hydroxyl radicals, and 0.19 mg/mL for half maximal inhibitory concentration (IC50) of antioxidant activity against superoxide anion radical. Working with solutions of 10 mg/mL propolis, hyaluronidase inhibitory activity ranged between 0% and 68.20%, being correlated to ferulic acid content. ACE inhibitory effect determined by HPLC was higher than 78%, being correlated with catechin and p-coumaric acid. Therefore, propolis could be useful for food, pharmaceutical, and cosmetic companies, also helping to reduce risk factors for diseases related to oxidative damage, inflammatory processes, and hypertension. This research also highlights the necessity for harmonized analysis methods and the expression of results for propolis. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

20 pages, 1795 KiB  
Article
Contribution of Individual Polyphenols to Antioxidant Activity of Cotoneaster bullatus and Cotoneaster zabelii Leaves—Structural Relationships, Synergy Effects and Application for Quality Control
by Agnieszka Kicel, Aleksandra Owczarek, Paulina Kapusta, Joanna Kolodziejczyk-Czepas and Monika A. Olszewska
Antioxidants 2020, 9(1), 69; https://doi.org/10.3390/antiox9010069 - 12 Jan 2020
Cited by 15 | Viewed by 4504
Abstract
Cotoneaster plants are sources of traditional medicines and dietary products, with health benefits resulting from their phenolic contents and antioxidant activity. In this work, active markers of the leaves of C. bullatus and C. zabelii were characterized and evaluated in an integrated phytochemical [...] Read more.
Cotoneaster plants are sources of traditional medicines and dietary products, with health benefits resulting from their phenolic contents and antioxidant activity. In this work, active markers of the leaves of C. bullatus and C. zabelii were characterized and evaluated in an integrated phytochemical and biological activity study. Based on UHPLC-PDA-ESI-MS3 analysis, twelve analytes were preselected from the constituents of the hydromethanolic leaf extracts, and two of them—caffeoylmalic acid and quercetin 3--O-β-d-(2″--O-β-d-xylopyranosyl)galactopyranoside (QPH)—were isolated for full identification (NMR spectroscopy: 1H, 13C, COSY, HMBC, HMQC). All selected phenolics contributed to the antioxidant activity of the extracts, which was demonstrated in chemical in vitro tests (DPPH, FRAP, and TBARS) and in a biological model of human plasma exposed to oxidative/nitrative stress induced by peroxynitrite. This contribution was partly due to the synergy between individual polyphenols, evidenced by an isobolographic analysis of the interactions of (–)-epicatechin, chlorogenic acid, and QPH as representatives of three classes of Cotoneaster polyphenols. All twelve markers, including also neochlorogenic acid, cryptochlorogenic acid, procyanidin B2, procyanidin C1, rutin, hyperoside, isoquercitrin, and quercitrin, were thus applied as calibration standards, and a fast, accurate, reproducible, and fully validated RP-HPLC-PDA method for quality control and standardization of the target extracts was proposed. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

19 pages, 543 KiB  
Article
Antioxidant Activity and Phenolic Profile of Selected Organic and Conventional Honeys from Poland
by Michał Halagarda, Sabrina Groth, Stanisław Popek, Sascha Rohn and Vasilisa Pedan
Antioxidants 2020, 9(1), 44; https://doi.org/10.3390/antiox9010044 - 4 Jan 2020
Cited by 48 | Viewed by 5131
Abstract
Honey is a natural food product hypothesized to have significant health-beneficial value. The results of recent studies indicate that the biological activity of honey can also be ascribed to phenolic compounds and their antioxidant activity. The aims of this study were: To determine [...] Read more.
Honey is a natural food product hypothesized to have significant health-beneficial value. The results of recent studies indicate that the biological activity of honey can also be ascribed to phenolic compounds and their antioxidant activity. The aims of this study were: To determine the phenolic profiles of several varieties of Polish honey and their correlation with various factors influencing the quality of honey, plus to verify the impact of production method (organic/conventional) and the pollen content on these profiles. In total, 11 organic and 11 conventional honey samples from Poland were investigated. The botanical origin of the samples was identified through melissopalynological analysis, whereas individual phenolic compounds were determined by the LC/MS analysis. The Folin–Ciocalteau assay was used for the determination of the total phenolic content (TPC). Moreover, the CIE L*a*b* color values were measured and matched with the above-mentioned parameters. The results of the study contribute to the discussion on the health benefits of organic farming. It was found that chrysin may act as a potential indicator compound. The study confirms the existence of the link between TPC and color, and it shows that there is a correlation between pinocembrin and galangin, two compounds that are reported to ameliorate insulin resistance. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

17 pages, 1259 KiB  
Article
Characterization of Polyphenolic Compounds Extracted from Different Varieties of Almond Hulls (Prunus dulcis L.)
by Maher Kahlaoui, Stefania Borotto Dalla Vecchia, Francesco Giovine, Hayet Ben Haj Kbaier, Nabiha Bouzouita, Letricia Barbosa Pereira and Giuseppe Zeppa
Antioxidants 2019, 8(12), 647; https://doi.org/10.3390/antiox8120647 - 16 Dec 2019
Cited by 48 | Viewed by 4967
Abstract
Ultrasound-assisted extraction (UAE) was applied as a pretreatment technique to improve the recovery of polyphenols from the almond hulls of four Tunisian and three Italian almond varieties, followed by the characterization with HPLC-DAD. The operating parameters (solid/liquid ratio, extraction time, and ethanol concentrations) [...] Read more.
Ultrasound-assisted extraction (UAE) was applied as a pretreatment technique to improve the recovery of polyphenols from the almond hulls of four Tunisian and three Italian almond varieties, followed by the characterization with HPLC-DAD. The operating parameters (solid/liquid ratio, extraction time, and ethanol concentrations) were optimized using a Response Surface Methodology. A polynomial equation was calculated to describe the relationship between the operating parameters and dependent variables as total polyphenolic content (TPC) and antioxidant activity (RSA). A desirability function approach was used to determine the optimum conditions for operating parameters: a solid:solvent ratio of 2 g/100 mL, an extraction time of 13 min, and an ethanol concentration of 51.2%. Among the almond varieties, Pizzuta and Fakhfekh showed the highest polyphenol content and antioxidant activity. HPLC-DAD analysis of almond hull extracts confirmed that chlorogenic acid, catechin, and protocatechuic acid were the most important polyphenols in almond hull. The results highlighted that UAE could be an effective technique for the recovery of phenolic compounds from almond hull, thereby making this byproduct a promising source of compounds with potential applications in food and healthcare sectors. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

16 pages, 567 KiB  
Article
Chemical Profiling and Biological Properties of Extracts from Different Parts of Colchicum Szovitsii Subsp. Szovitsii
by Gabriele Rocchetti, Biancamaria Senizza, Gokhan Zengin, Murat Ali Okur, Domenico Montesano, Evren Yildiztugay, Devina Lobine, Mohamad Fawzi Mahomoodally and Luigi Lucini
Antioxidants 2019, 8(12), 632; https://doi.org/10.3390/antiox8120632 - 11 Dec 2019
Cited by 13 | Viewed by 4215
Abstract
Like other members of the Colchicum genus, C. szovitsii subsp. szovitsii is also of medicinal importance in Turkish traditional medicine. However, its biological properties have not been fully investigated. Herein, we focused on the evaluation of the in vitro antioxidant and enzyme [...] Read more.
Like other members of the Colchicum genus, C. szovitsii subsp. szovitsii is also of medicinal importance in Turkish traditional medicine. However, its biological properties have not been fully investigated. Herein, we focused on the evaluation of the in vitro antioxidant and enzyme inhibitory effects of flower, root and leaf extracts, obtained using different extraction methods. In addition, a comprehensive (poly)-phenolic and alkaloid profiling of the different extracts was undertaken. In this regard, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) allowed us to putatively annotate 195 polyphenols and 87 alkaloids. The most abundant polyphenols were flavonoids (83 compounds), whilst colchicine and 2-demethylcolchicine were some of the most widespread alkaloids in each extract analyzed. However, our findings showed that C. szovitsii leaf extracts were a superior source of both total polyphenols and total alkaloids (being, on average 24.00 and 2.50 mg/g, respectively). Overall, methanolic leaf extracts showed the highest (p < 0.05) ferric reducing antioxidant power (FRAP) reducing power (on average 109.52 mgTE/g) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging (on average 90.98 mgTE/g). Interestingly, each C. szovitsii methanolic extract was more active than the water extracts when considering enzymatic inhibition such as against tyrosinase, glucosidase, and acetylcholinesterase (AChE). Strong correlations (p < 0.01) were also observed between polyphenols/alkaloids and the biological activities determined. Multivariate statistics based on supervised orthogonal projections to latent structures discriminant analysis (OPLS-DA) allowed for the detection of those compounds most affected by the different extraction methods. Therefore, this is the first detailed evidence showing that C. szovitsii subsp. szovitsii might provide beneficial effects against oxidative stress and the associated chronic diseases. Nevertheless, the detailed mechanisms of action need to be further investigated. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

15 pages, 2414 KiB  
Article
Hydroponically Grown Sanguisorba minor Scop.: Effects of Cut and Storage on Fresh-Cut Produce
by Costanza Ceccanti, Marco Landi, Gabriele Rocchetti, Maria Begoña Miras Moreno, Luigi Lucini, Luca Incrocci, Alberto Pardossi and Lucia Guidi
Antioxidants 2019, 8(12), 631; https://doi.org/10.3390/antiox8120631 - 9 Dec 2019
Cited by 18 | Viewed by 3632
Abstract
Wild edible plants have been used in cooking since ancient times. Recently, their value has improved as a result of the scientific evidence for their nutraceutical properties. Sanguisorba minor Scop. (salad burnet) plants were hydroponically grown and two consecutive cuts took place at [...] Read more.
Wild edible plants have been used in cooking since ancient times. Recently, their value has improved as a result of the scientific evidence for their nutraceutical properties. Sanguisorba minor Scop. (salad burnet) plants were hydroponically grown and two consecutive cuts took place at 15 (C1) and 30 (C2) days after sowing. An untargeted metabolomics approach was utilized to fingerprint phenolics and other health-related compounds in this species; this approach revealed the different effects of the two cuts on the plant. S. minor showed a different and complex secondary metabolite profile, which was influenced by the cut. In fact, flavonoids increased in leaves obtained from C2, especially flavones. However, other secondary metabolites were downregulated in leaves from C2 compared to those detected in leaves from C1, as evidenced by the combination of the variable important in projections (VIP score > 1.3) and the fold-change (FC > 2). The storage of S. minor leaves for 15 days as fresh-cut products did not induce significant changes in the phenolic content and antioxidant capacity, which indicates that the nutraceutical value was maintained. The only difference evidenced during storage was that leaves obtained from C2 showed a lower constitutive content of nutraceutical compounds than leaves obtained from C1; except for chlorophylls and carotenoids. In conclusion, the cut was the main influence on the modulation of secondary metabolites in leaves, and the effects were independent of storage. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

15 pages, 948 KiB  
Article
Potential of Smoke-Water and One of Its Active Compounds (karrikinolide, KAR1) on the Phytochemical and Antioxidant Activity of Eucomis autumnalis
by Adeyemi Oladapo Aremu, Nqobile Andile Masondo, Jiri Gruz, Karel Doležal and Johannes Van Staden
Antioxidants 2019, 8(12), 611; https://doi.org/10.3390/antiox8120611 - 3 Dec 2019
Cited by 4 | Viewed by 3457
Abstract
Eucomis autumnalis (Mill.) Chitt. subspecies autumnalis is a popular African plant that is susceptible to population decline because the bulbs are widely utilized for diverse medicinal purposes. As a result, approaches to ensure the sustainability of the plants are essential. In the current [...] Read more.
Eucomis autumnalis (Mill.) Chitt. subspecies autumnalis is a popular African plant that is susceptible to population decline because the bulbs are widely utilized for diverse medicinal purposes. As a result, approaches to ensure the sustainability of the plants are essential. In the current study, the influence of smoke-water (SW) and karrikinolide (KAR1 isolated from SW extract) on the phytochemicals and antioxidant activity of in vitro and greenhouse-acclimatized Eucomis autumnalis subspecies autumnalis were evaluated. Leaf explants were cultured on Murashige and Skoog (MS) media supplemented with SW (1:500, 1:1000 and 1:1500 v/v dilutions) or KAR1 (10−7, 10−8 and 10−9 M) and grown for ten weeks. In vitro regenerants were subsequently acclimatized in the greenhouse for four months. Bioactive phytochemicals in different treatments were analyzed using ultra-high performance liquid chromatography (UHPLC-MS/MS), while antioxidant potential was evaluated using two chemical tests namely: DPPH and the β-carotene model. Smoke-water and KAR1 generally influenced the quantity and types of phytochemicals in in vitro regenerants and acclimatized plants. In addition to eucomic acid, 15 phenolic acids and flavonoids were quantified; however, some were specific to either the in vitro regenerants or greenhouse-acclimatized plants. The majority of the phenolic acids and flavonoids were generally higher in in vitro regenerants than in acclimatized plants. Evidence from the chemical tests indicated an increase in antioxidant activity of SW and KAR1-treated regenerants and acclimatized plants. Overall, these findings unravel the value of SW and KAR1 as potential elicitors for bioactive phytochemicals with therapeutic activity in plants facilitated via in vitro culture systems. In addition, it affords an efficient means to ensure the sustainability of the investigated plant. Nevertheless, further studies focusing on the use of other types of antioxidant test systems (including in vivo model) and the carry-over effect of the application of SW and KAR1 for a longer duration will be pertinent. In addition, the safety of the resultant plant extracts and their pharmacological efficacy in clinical relevance systems is required. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

16 pages, 2099 KiB  
Article
Free and Bound Phenolics of Buckwheat Varieties: HPLC Characterization, Antioxidant Activity, and Inhibitory Potency towards α-Glucosidase with Molecular Docking Analysis
by Huilan Zhu, Sixin Liu, Linling Yao, Lu Wang and Congfa Li
Antioxidants 2019, 8(12), 606; https://doi.org/10.3390/antiox8120606 - 29 Nov 2019
Cited by 47 | Viewed by 4078
Abstract
Free and bound phenolic fractions from six buckwheat varieties were investigated for their compositions, antioxidant activities, and inhibitory effects on α-glucosidase. The results showed that different buckwheat varieties have significant differences in phenolic/flavonoid contents, and these contents were found in higher quantities in [...] Read more.
Free and bound phenolic fractions from six buckwheat varieties were investigated for their compositions, antioxidant activities, and inhibitory effects on α-glucosidase. The results showed that different buckwheat varieties have significant differences in phenolic/flavonoid contents, and these contents were found in higher quantities in free form than in bound form. HPLC results revealed that rutin, quercetin, and kaempferol-3-O-rutinoside were the most abundant components in free and bound forms, whereas dihydromyricetin was found only in the bound form. Free phenolics showed higher antioxidant activities of DPPH, ABTS+, OH•, and FRAP than those of bound phenolics. Strong inhibitory effects against α-glucosidase by the free/bound phenolic fractions were found in all buckwheat varieties, and free phenolics showed stronger α-glucosidase inhibition than that of the corresponding bound phenolics. More importantly, the main phenolic compounds observed in the buckwheat varieties were subjected to molecular docking analysis to provide insight into their interactions with α-glucosidase. The contributions by individual phenolics to the observed variation was analysed by Pearson correlation coefficient analysis and principal component analysis. The present study provides a comprehensive comparison for the phenolic fractions of buckwheat varieties and identify the main contributors to antioxidant and α-glucosidase inhibitory activity. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

16 pages, 851 KiB  
Article
UHPLC–Q/Orbitrap/MS/MS Fingerprinting, Free Radical Scavenging, and Antimicrobial Activity of Tessaria absinthiodes (Hook. & Arn.) DC. (Asteraceae) Lyophilized Decoction from Argentina and Chile
by Jessica Gómez, Mario J. Simirgiotis, Beatriz Lima, Carlos Gamarra-Luques, Jorge Bórquez, Duilio Caballero, Gabriela Egly Feresin and Alejandro Tapia
Antioxidants 2019, 8(12), 593; https://doi.org/10.3390/antiox8120593 - 28 Nov 2019
Cited by 14 | Viewed by 3278
Abstract
The decoction of Tessaria absinthioides is used in traditional medicine of South America as hypocholesterolemic, balsamic, and expectorant; but it is also useful for the prevention of hepatitis, renal insufficiency, and diabetes, and is used as digestive. A lyophilized decoction from the aerial [...] Read more.
The decoction of Tessaria absinthioides is used in traditional medicine of South America as hypocholesterolemic, balsamic, and expectorant; but it is also useful for the prevention of hepatitis, renal insufficiency, and diabetes, and is used as digestive. A lyophilized decoction from the aerial parts of this plant (TLD) collected in San Juan (TLDSJ) and Mendoza (TLDM) provinces (Argentina) and one collection from Antofagasta, Chile (TLDCH) were characterized regarding antioxidant and antibacterial activities, phenolics and flavonoids content, and ultrahigh resolution liquid chromatography Orbitrap MS analysis UHPLC–PDA–OT-MS/MS metabolite profiling. The antioxidant properties were carried out "in vitro" using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and trolox equivalent antioxidant activity (TEAC) methods, ferric-reducing antioxidant power (FRAP), and lipoperoxidation in erythrocytes (LP). The antibacterial activity was evaluated following the Clinical and Laboratory Standards Institute (CLSI) rules. TLDSJ, TLDM, and TLDCH displayed a strong DPPH scavenging activity (EC50 = 42, 41.6, and 43 µg/mL, respectively) and inhibition of lipoperoxidation in erythrocytes (86–88% at 250 µg TLD/mL), while a less effect in the FRAP and TEACantioxidant assays was found. Additionally, the decoctions showed a content of phenolics compounds of 94 mg gallic acid equivalents (GAE)/g, 185 GAE/g, and 64 GAE/g, for TLDSJ, TLDM, and TLDCH samples, respectively. Regarding the flavonoid content, the Chilean sample was highlighted with 19 mg quercetin equivalents (QE)/g. In this work, several phenolic compounds, including sesquiterpenes, flavonoids, and phenolic acids, were rapidly identified in TLDSJ, TLDM, and TLDCH extracts by means UHPLC–PDA–OT-MS/MS for the first time, which gave a first scientific support to consider this medicinal decoction from both countries as a valuable source of metabolites with antioxidant effects, some with outstanding potential to improve human health. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

19 pages, 3502 KiB  
Article
Polyphenolic Composition and Hypotensive Effects of Parastrephia quadrangularis (Meyen) Cabrera in Rat
by Fredi Cifuentes, Javier Palacios, Chukwuemeka R. Nwokocha, Jorge Bórquez, Mario J. Simirgiotis, Ignacio Norambuena, Mario Chiong and Adrián Paredes
Antioxidants 2019, 8(12), 591; https://doi.org/10.3390/antiox8120591 - 27 Nov 2019
Cited by 8 | Viewed by 3296
Abstract
Parastrephia quadrangularis (Pq), commonly called “Tola”, is widely used in folk medicine in the Andes, including for altitude sickness. In this study, polyphenolic composition was determined, and hypotensive effects were measured; the ethnopharmacological use as hypotensive was related to the presence of phenolic [...] Read more.
Parastrephia quadrangularis (Pq), commonly called “Tola”, is widely used in folk medicine in the Andes, including for altitude sickness. In this study, polyphenolic composition was determined, and hypotensive effects were measured; the ethnopharmacological use as hypotensive was related to the presence of phenolic compounds. For this purpose, male Sprague-Dawley rats (6 to 8 weeks of age, 160 to 190 g) were fed Pq extract (10 to 40 mg/kg) for 10 days through gavage. Blood pressures and heart rate were significantly (p < 0.01) reduced in normotensive rats receiving Pq extract (40 mg/kg body weight). Pq extract induced a negative inotropic effect, and endothelium-dependent vasodilation mediated by nitric oxide (NO). Furthermore, preincubation with Pq extract significantly decreased the cytosolic calcium on vascular smooth muscle cells A7r5 in response to L-phenylephrine (PE). Seven metabolites were isolated from the Pq extract, but three flavonoids (10−4 M) showed similar vasodilation to the extract in intact rat aorta as follows: 5,3′,4′-trihydroxy-7-methoxyflavanone (2); 3,5,4′-trihydroxy-7,8,3′-trimethoxyflavone (6); and 5,4′-dihydroxy-3,7,8,3′-tetramethoxyflavone (7). The Pq extract and compounds 2 and 7 significantly (p < 0.05) reduced the contraction to Bay K8644 (10 nM, an agonist of CaV1.2 channels). Administration of Pq decreased cardiac contractility and increased endothelium-dependent and -independent vasodilation. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

19 pages, 1852 KiB  
Article
The Influence of In Vitro Gastrointestinal Digestion on the Chemical Composition and Antioxidant and Enzyme Inhibitory Capacities of Carob Liqueurs Obtained with Different Elaboration Techniques
by Raquel Rodríguez-Solana, Natacha Coelho, Antonio Santos-Rufo, Sandra Gonçalves, Efrén Pérez-Santín and Anabela Romano
Antioxidants 2019, 8(11), 563; https://doi.org/10.3390/antiox8110563 - 16 Nov 2019
Cited by 26 | Viewed by 4249
Abstract
Carob liqueur is a traditional Mediterranean alcoholic beverage obtained via a wide range of production techniques contributing to the different organoleptic attributes of the final product. The aim of this research was to evaluate the stability of the chemical composition and biological capacities [...] Read more.
Carob liqueur is a traditional Mediterranean alcoholic beverage obtained via a wide range of production techniques contributing to the different organoleptic attributes of the final product. The aim of this research was to evaluate the stability of the chemical composition and biological capacities (antioxidant and enzyme inhibition) under in vitro simulated gastrointestinal digestion of liqueurs prepared by flavouring the fig spirit with carob pulp by maceration, distillation, percolation, or aqueous and hydro-alcoholic infusions. For this purpose, the phenolic and furanic compositions, the total phenolic (TPC) and flavonoid (TFC) contents, antioxidant capacity (AC), and enzyme inhibitory potential against acethylcholinesterase, tyrosinase, α-glucosidase and α-amylase enzymes were evaluated. The content of gallic acid decreased after gastrointestinal digestion, while TPC, TFC, and AC significantly increased after each digestion phase. Overall, no significantly different enzyme inhibitions (p < 0.05) were observed among digested liqueurs, with moderate inhibition against acethylcholinesterase and tyrosinase (enzymes related with neurodegenerative diseases), and potent and low inhibitory capacities for α-glucosidase and α-amylase, respectively (ideal conditions employed in antidiabetic therapy). The study indicates that hydro-alcoholic infusion and maceration were the most appropriate methods to obtain liqueurs with higher values of the aforementioned parameters and safe levels of toxic furanics. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

20 pages, 1850 KiB  
Article
From the Field to the Pot: Phytochemical and Functional Analyses of Calendula officinalis L. Flower for Incorporation in an Organic Yogurt
by Graziela Bragueto Escher, Lorena do Carmo Cardoso Borges, Jânio Sousa Santos, Thiago Mendanha Cruz, Mariza Boscacci Marques, Mariana Araújo Vieira do Carmo, Luciana Azevedo, Marianna M. Furtado, Anderson S. Sant’Ana, Mingchun Wen, Liang Zhang and Daniel Granato
Antioxidants 2019, 8(11), 559; https://doi.org/10.3390/antiox8110559 - 15 Nov 2019
Cited by 37 | Viewed by 4887
Abstract
Edible flowers have been used as ingredients because of their biological activities, taste, and overall appearance. This research was aimed to characterize the chemical composition and in vitro antioxidant activity of the marigold flower (Calendula officinalis L.) extracted with different proportions of [...] Read more.
Edible flowers have been used as ingredients because of their biological activities, taste, and overall appearance. This research was aimed to characterize the chemical composition and in vitro antioxidant activity of the marigold flower (Calendula officinalis L.) extracted with different proportions of water and ethyl alcohol, and the lyophilized extract with higher content of antioxidant compounds was incorporated into an organic yogurt. Results showed that the hydroalcoholic extract (50:50 v/v) presented the highest total phenolic content (TPC), flavonoids, and antioxidant activity (ferric reducing antioxidant power (FRAP), total reducing capacity (TRC), and Cu2+/Fe2+ chelating ability). Phenolic acids and flavonoids were quantified in the extract by LC-DAD, while 19 compounds were tentatively identified by ESI-MS/MS. The lyophilized marigold extract (LME) also inhibited 12% of Wistar rat’s brain lipid oxidation in vitro, inhibited α-amylase, and α-glucosidase activities, but showed no cytotoxicity towards cancerous cells (HCT8 and A549). However, marigold flower extract protected human erythrocytes against mechanical stress. When added into an organic yogurt model (0 to 1.5%), LME increased TPC and antioxidant activity (2,2-diphenyl-1-picrylhydrazyl (DPPH) and TRC), and the sensory analysis showed that the organic yogurt had an acceptance of 80.4%. Our results show that the use of LME may be a technological strategy to increase the content of bioactive compounds in yogurts. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

16 pages, 1314 KiB  
Article
Influence of Cooking and Ingredients on the Antioxidant Activity, Phenolic Content and Volatile Profile of Different Variants of the Mediterranean Typical Tomato Sofrito
by Ana Beltrán Sanahuja, Saray López De Pablo Gallego, Salvador E. Maestre Pérez, Arantzazu Valdés García and María Soledad Prats Moya
Antioxidants 2019, 8(11), 551; https://doi.org/10.3390/antiox8110551 - 14 Nov 2019
Cited by 14 | Viewed by 5005
Abstract
In this study, six different sofrito formulations were compared with the raw recipe for total phenolic content (TPC), antioxidant activity tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP) and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) methods. The volatile profile was also obtained by [...] Read more.
In this study, six different sofrito formulations were compared with the raw recipe for total phenolic content (TPC), antioxidant activity tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP) and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) methods. The volatile profile was also obtained by the headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC–MS) procedure. The cooking process and the addition of herbs, and garlic improved the final content of antioxidant compounds compared to the basic recipe and the raw ingredients. The total volatile content was higher in the samples that contained rosemary and thymus. Some of the volatiles had proven antioxidant properties and for that reason the sofrito with rosemary with the higher volatile content was also the one with the higher antioxidant capacity and TPC. In conclusion, as well as the processing technique, the addition of selected typical Mediterranean herbs apart from given flavour can contribute to improving the nutritional antioxidant profile of dishes and be used as a natural method to increase the shelf-life of preparation. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

15 pages, 1007 KiB  
Article
Phytochemical Characterization of Commercial Processed Blueberry, Blackberry, Blackcurrant, Cranberry, and Raspberry and Their Antioxidant Activity
by Zoriţa Diaconeasa, Cristian I. Iuhas, Huseyin Ayvaz, Dumitriţa Rugină, Andreea Stanilă, Francisc Dulf, Andrea Bunea, Sonia Ancuța Socaci, Carmen Socaciu and Adela Pintea
Antioxidants 2019, 8(11), 540; https://doi.org/10.3390/antiox8110540 - 10 Nov 2019
Cited by 42 | Viewed by 7018
Abstract
Being delicious and containing strong disease-fighting agents, berries represent an increasing proportion of fruits consumed nowadays in our diet. However, berries are highly perishable as fresh and, therefore, they are usually processed into various products to extend their shelf-life and availability throughout the [...] Read more.
Being delicious and containing strong disease-fighting agents, berries represent an increasing proportion of fruits consumed nowadays in our diet. However, berries are highly perishable as fresh and, therefore, they are usually processed into various products to extend their shelf-life and availability throughout the year. Among the fruit-containing products, jam is one of the most common due to its nourishing properties, its low production costs, and its accessibility for a lengthy period. Rather than home preparation, consumers nowadays increasingly prefer to purchase commercial jams from markets due to its convenience. Although fresh berries have been extensively studied for their phenolic compounds, a limited number of studies investigating commercially manufactured jams have been conducted so far. Considering this, the objective of this study was to assess the total phenolic, flavonoid, and anthocyanin content and the antioxidant activity of five commonly consumed commercial berry jams (blueberry (Vaccinium myrtillus), blackberry (Rubus fruticosus) and blackcurrant (Ribes nigrun) mixture, blackcurrant (Ribes nigrun), cranberry (Vaccinium macrocarpon) and raspberry (Rubus idaeus)) collected from the market. Even though a possible loss of phenolics, anthocyanins, and a decrease of radical scavenging activity may occur during jam processing and subsequent storage, our data indicated that the selected commercial jams remained good sources of nutritive molecules with antioxidant properties based on the high levels of total phenolics, flavonoids, anthocyanins, and elevated antioxidant activities determined in this study. Additionally, the samples were characterized by GC-MS for their volatile profiles, and terpenes were found to be the dominating class covering more than 74% of volatile compounds in the jams. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

14 pages, 274 KiB  
Article
The Profile and Content of Polyphenols and Carotenoids in Local and Commercial Sweet Cherry Fruits (Prunus avium L.) and Their Antioxidant Activity In Vitro
by Dominika Średnicka-Tober, Alicja Ponder, Ewelina Hallmann, Agnieszka Głowacka and Elżbieta Rozpara
Antioxidants 2019, 8(11), 534; https://doi.org/10.3390/antiox8110534 - 8 Nov 2019
Cited by 42 | Viewed by 4684
Abstract
The aim of this study was to evaluate and compare the content of a number of bioactive compounds and antioxidant activity of fruits of selected local and commercial sweet cherry (Prunus avium L.) cultivars. The experiment showed that the selected cultivars of [...] Read more.
The aim of this study was to evaluate and compare the content of a number of bioactive compounds and antioxidant activity of fruits of selected local and commercial sweet cherry (Prunus avium L.) cultivars. The experiment showed that the selected cultivars of sweet cherries differ significantly in the content of polyphenolic compounds and carotenoids. The fruits of commercial sweet cherry cultivars were, on average, richer in polyphenols (the sum of phenolic compounds determined chromatographically), flavonoids, as well as anthocyanins and were characterized by higher antioxidant activity when compared to the local, traditional cultivars. In the group of the traditional sweet cherry cultivars, particular attention could be paid to Black Late cv., showing the highest antioxidant activity of fruits. In the group of commercial sweet cherry cultivars, Cordia and Sylvia fruits could be recognized as being rich in bioactive compounds with high antioxidant activity. Yellow skin cultivars were characterized by the highest concentrations of carotenoids. Strong positive correlations between the identified bioactive compounds and antioxidant activity of fruits were also found. Although different cultivars of sweet cherries show a high variability in phenolics and carotenoids profiles as well as in the antioxidant activity of fruits, they all should be, similarly to other types of cherries, recognized as a rich source of bioactive compounds with an antioxidant potential. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
18 pages, 925 KiB  
Article
Differentiation of Phenolic Composition Among Tunisian Thymus algeriensis Boiss. et Reut. (Lamiaceae) Populations: Correlation to Bioactive Activities
by Rym Jaouadi, Artur M. S. Silva, Mohamed Boussaid, Imen B. H. Yahia, Susana M. Cardoso and Yosr Zaouali
Antioxidants 2019, 8(11), 515; https://doi.org/10.3390/antiox8110515 - 28 Oct 2019
Cited by 19 | Viewed by 2956
Abstract
Twelve Tunisian Thymus algeriensis populations growing wild in different bioclimatic zones, extending from the subhumid to the upper-arid bioclimates, were compared regarding their phenolic composition and their ability to serve as antioxidant, anti-acetylcholinesterase, and antibacterial agents. A significant variation of phenol profile was [...] Read more.
Twelve Tunisian Thymus algeriensis populations growing wild in different bioclimatic zones, extending from the subhumid to the upper-arid bioclimates, were compared regarding their phenolic composition and their ability to serve as antioxidant, anti-acetylcholinesterase, and antibacterial agents. A significant variation of phenol profile was observed between the analyzed populations, as assessed by ultra-high-performance liquid chromatography coupled with a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI/MSn) technique. Rosmarinic acid was the main phenolic compound in most populations (383.8–1157.8 µg/mL extract), but still, those from the upper-arid bioclimatic zone were distinguished by the presence of carvacrol (1374.7 and 2221.6 µg/mL extract), which was absent in the remaining ones. T. algeriensis methanolic extracts were found to possess a substantial antioxidant and anti-acetylcholinesterase activities, with significant variation observed between populations, which were correlated to their phenolic contents. The antibacterial activity of the extracts tested against seven bacteria was revealed only by populations collected from upper-arid bioclimate and mainly associated with the presence of carvacrol. Extracts revealed a bacteriostatic effect against all bacteria (MIC = 1.4 mg/mL). Yet, the bactericidal activity (MBC = 1.4mg/mL) was restricted to the gram-negative bacteria Escherchia coli. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

19 pages, 1860 KiB  
Article
Impact of Cold versus Hot Brewing on the Phenolic Profile and Antioxidant Capacity of Rooibos (Aspalathus linearis) Herbal Tea
by Elisabetta Damiani, Patricia Carloni, Gabriele Rocchetti, Biancamaria Senizza, Luca Tiano, Elizabeth Joubert, Dalene de Beer and Luigi Lucini
Antioxidants 2019, 8(10), 499; https://doi.org/10.3390/antiox8100499 - 21 Oct 2019
Cited by 35 | Viewed by 8561
Abstract
Consumption of rooibos (Aspalathus linearis) as herbal tea is growing in popularity worldwide and its health-promoting attributes are mainly ascribed to its phenolic composition, which may be affected by the brewing conditions used. An aspect so far overlooked is the impact [...] Read more.
Consumption of rooibos (Aspalathus linearis) as herbal tea is growing in popularity worldwide and its health-promoting attributes are mainly ascribed to its phenolic composition, which may be affected by the brewing conditions used. An aspect so far overlooked is the impact of cold brewing vs regular brewing and microwave boiling on the (poly) phenolic profile and in vitro antioxidant capacity of infusions prepared from red (‘fermented’, oxidized) and green (‘unfermented’, unoxidized) rooibos, the purpose of the present study. By using an untargeted metabolomics-based approach (UHPLC-QTOF mass spectrometry), 187 phenolic compounds were putatively annotated in both rooibos types, with flavonoids, tyrosols, and phenolic acids the most represented type of phenolic classes. Multivariate statistics (OPLS-DA) highlighted the phenolic classes most affected by the brewing conditions. Similar antioxidant capacities (ORAC and ABTS assays) were observed between cold- and regular-brewed green rooibos and boiled-brewed red rooibos. However, boiling green and red rooibos delivered infusions with the highest antioxidant capacities and total polyphenol content. The polyphenol content strongly correlated with the in vitro antioxidant capacities, especially for flavonoids and phenolic acids. These results contribute to a better understanding of the impact of the preparation method on the potential health benefits of rooibos tea. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

19 pages, 3378 KiB  
Article
Isolation of Phytochemicals from Bauhinia variegata L. Bark and Their In Vitro Antioxidant and Cytotoxic Potential
by Neha Sharma, Anket Sharma, Gaurav Bhatia, Marco Landi, Marian Brestic, Bikram Singh, Jatinder Singh, Satwinderjeet Kaur and Renu Bhardwaj
Antioxidants 2019, 8(10), 492; https://doi.org/10.3390/antiox8100492 - 17 Oct 2019
Cited by 30 | Viewed by 7576
Abstract
Plants have been the basis of traditional medicine since the dawn of civilizations. Different plant parts possess various phytochemicals, playing important roles in preventing and curing diseases. Scientists, through extensive experimental studies, are playing an important part in establishing the use of phytochemicals [...] Read more.
Plants have been the basis of traditional medicine since the dawn of civilizations. Different plant parts possess various phytochemicals, playing important roles in preventing and curing diseases. Scientists, through extensive experimental studies, are playing an important part in establishing the use of phytochemicals in medicine. However, there are still a large number of medicinal plants which need to be studied for their phytochemical profile. In this study, the objective was to isolate phytochemicals from bark of Bauhinia variegata L. and to study them for their antioxidant and cytotoxic activities. The bark was extracted with methanol, followed by column chromatography and thus isolating kaempferol, stigmasterol, protocatechuic acid-methyl ester (PCA-ME) and protocatechuic acid (PCA). 2,2-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) and 2, 2’-diphenyl-1-picrylhydrazyl radical (DPPH) radical scavenging assays were utilized for assessment of antioxidant activity, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) dye reduction assay was used to determine cytotoxic activity against C-6 glioma rat brain, MCF-7 breast cancer, and HCT-15 colon cancer cell lines. The compounds were found to have significant antioxidant and cytotoxic activity. Since there is a considerable increase in characterizing novel chemical compounds from plant parts, the present study might be helpful for chemotaxonomic determinations, for understanding of medicinal properties as well as for the quality assessment of herbal supplements containing B. variegata bark, thus establishing its use in traditional medicine. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

20 pages, 1812 KiB  
Article
Untargeted Metabolomic Profiling, Multivariate Analysis and Biological Evaluation of the True Mangrove (Rhizophora mucronata Lam.)
by Nabeelah Bibi Sadeer, Gabriele Rocchetti, Biancamaria Senizza, Domenico Montesano, Gokhan Zengin, Ahmet Uysal, Rajesh Jeewon, Luigi Lucini and Mohamad Fawzi Mahomoodally
Antioxidants 2019, 8(10), 489; https://doi.org/10.3390/antiox8100489 - 16 Oct 2019
Cited by 29 | Viewed by 5625
Abstract
Currently, there is a renewed interest towards the development of plant-based pharmacophores. In this work, 16 extracts prepared from the leaves, twigs, roots and fruits of a hydro-halophyte, Rhizophora mucronata Lam. (Family: Rhizophoraceae), were studied for possible antioxidant activity and the phenolic profiles [...] Read more.
Currently, there is a renewed interest towards the development of plant-based pharmacophores. In this work, 16 extracts prepared from the leaves, twigs, roots and fruits of a hydro-halophyte, Rhizophora mucronata Lam. (Family: Rhizophoraceae), were studied for possible antioxidant activity and the phenolic profiles established. Thereafter, enzymatic inhibitory activities (α-amylase, α-glucosidase, tyrosinase, acetyl- (AChE), butyrylcholinesterase (BChE), lipase, and elastase) were assessed. The total phenolic, flavonoid, phenolic acid, tannin, flavanol and triterpenoid content were estimated using standard assays. An untargeted metabolomics-based approach, based on ultra-high-pressure liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS) followed by multivariate statistics, was then used to comprehensively profile and describe the phenolics present. UHPLC-QTOF-MS allowed for putatively annotating 104 phenolic acids, 103 flavonols, 94 flavones, 71 anthocyanins, 66 tyrosols, 29 lignans, 15 alkylphenols and 10 stilbenes in the extracts. Nine strains (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Methicillin-resistant Staphylococcus aureus (MRSA), Salmonella enteritidis, Sarcina lutea, Proteus mirabilis, Bacillus cereus and Candida albicans) were then used to investigate the antimicrobial properties. The methanolic twig extract exhibited significant reducing potential towards Cu (II)/Cu (I) and Fe (III)/Fe (II) (1336.88 ± 15.70 and 710.18 ± 21.04 mg TE/g, respectively) and was the most potent DPPH radical scavenger (807.07 ± 6.83 mg TE/g). Additionally, the methanolic twig extract showed significant inhibition against most targeted enzymes. Anti-microbial results showed that all extracts were active against MRSA. Multivariate analysis demonstrated that the phenolic profile of ethyl acetate extracts and leaves were the two most discriminative parameters in terms of solvents and organs, respectively. The present findings indicated that R. mucronata may be further explored for the management/prevention of oxidative stress, neurodegenerative complications and hyperpigmentation. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

20 pages, 343 KiB  
Article
LC-ESI-QTOF/MS Characterization of Phenolic Compounds in Palm Fruits (Jelly and Fishtail Palm) and Their Potential Antioxidant Activities
by Chao Ma, Frank R. Dunshea and Hafiz A. R. Suleria
Antioxidants 2019, 8(10), 483; https://doi.org/10.3390/antiox8100483 - 14 Oct 2019
Cited by 44 | Viewed by 6082
Abstract
Palm fruits have gained growing attention for their nutrition values and health promotion perspectives. They have a diverse range of bioactive compounds including carotenoids, vitamins, dietary fibres and especially polyphenolic compounds. These polyphenolic compounds contribute to the putative health benefits of palm fruits. [...] Read more.
Palm fruits have gained growing attention for their nutrition values and health promotion perspectives. They have a diverse range of bioactive compounds including carotenoids, vitamins, dietary fibres and especially polyphenolic compounds. These polyphenolic compounds contribute to the putative health benefits of palm fruits. Nevertheless, the detailed information about these polyphenols in palm fruits is limited. The present work was conducted to comprehensively characterize polyphenols in two palm fruits, jelly palm (Butia ordorata) and fishtail palm (Caryota uren), using liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF/MS) and assess their antioxidant potential. The total phenolic content (TPC), total tannins content (TTC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant assay and 2,2′-azinobis-(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS) scavenging abilities and ferric reducing antioxidant power (FRAP) were higher in the jelly palm fruit while total flavonoid contents (TFC) were higher in the fishtail palm. The LC-ESI-QTOF/MS tentatively identified a total of 86 phenolic compounds in both jelly and fishtail palm fruits. Although both palm fruits exhibited different phenolic profiles, hydroxycinnamic acids and flavonols were the most common in both. In high performance liquid chromatography photodiode array (HPLC-PDA) quantification, 4-hydroxybenzoic acid (317.46 ± 4.68 µg/g) and catechin (4724.00 ± 32.39 µg/g) were the most abundant phenolic acid and flavonoid quantified in the jelly palm fruit, respectively. Quercetin (557.28 ± 7.81 µg/g) and kaempferol 3-O-glucoside (220.99 ± 2.06 µg/g) were the most abundant flavonoids quantified in the fishtail palm. Our study indicates that palm fruit is a good source of polyphenols and has strong antioxidant potential for health promotion. Furthermore, this study provides the scientific basis for an exploitation of jelly and fishtail palm fruits in the food, pharmaceutical and nutraceutical industries. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

19 pages, 366 KiB  
Article
Phytochemical Constituents and Antioxidant Activity of Oudneya Africana L. Leaves Extracts: Evaluation Effects on Fatty Acids and Proteins Oxidation of Beef Burger during Refrigerated Storage
by Hafedh Hajlaoui, Soumaya Arraouadi, Hedi Mighri, Mouna Chaaibia, Néji Gharsallah, Gaspar Ros, Gema Nieto and Adel Kadri
Antioxidants 2019, 8(10), 442; https://doi.org/10.3390/antiox8100442 - 1 Oct 2019
Cited by 14 | Viewed by 4160
Abstract
Five Oudneya Africana (OA) leaves extracts were screened for their total phenolic (TPC), total flavonoid (TFC), condensed tannins (CTC) content, as well as their antioxidant capacity. The highest amount of TPC (661.66 ± 0.08 mg GAE/g), TFC (344.68 ± 0.44 mg QE/g) and [...] Read more.
Five Oudneya Africana (OA) leaves extracts were screened for their total phenolic (TPC), total flavonoid (TFC), condensed tannins (CTC) content, as well as their antioxidant capacity. The highest amount of TPC (661.66 ± 0.08 mg GAE/g), TFC (344.68 ± 0.44 mg QE/g) and TCT (90.18 ± 0.49 mg CE/g) was recorded to ethanol, acetone, and dichloromethane extracts, respectively. For 2,2-diphenyl-1-picrylhydrazyl (DPPH) (22.00 ± 0.03 µg/mL) and Reducing Power Assay (FRAP) (269.00 ± 0.01µg/mL) assays, ethanol extract showed the potent activity, while with ABTS test, acetone extract was the most active (761.15 ± 0.09 µg/mL). HPLC-MS analysis of acetonic and ethanolic extracts reveals the predominance of quinic acid, chlorogenic acid, 4-O-caffeoylquinic acid, and rutin compounds. The addition effect evaluation of OA extracts in beef burger preservation demonstrates the powerful effect (p < 0.05) of acetonic and ethanolic ones (0.03%) to inhibit lipids oxidation during storage for 10 days, given by the lowest increase in Thiobarbituric Acid-reactive Substances (TBARS) values as compared to the (−) control with a significant difference between free thiols values. In addition, these two extracts appear to be effective (p < 0.05) for pH stability, color, and sensory parameters as compared to (+) and (−) controls and aqueous extract. Hamburger odour was considered as a dependent variable in multiple linear regression analysis, where the models results showed that physicochemical parameters determine more burger odour than sensorial ones. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
11 pages, 518 KiB  
Article
Phenolic Compounds and Antioxidant Activities of Potato Cultivars with White, Yellow, Red and Purple Flesh
by Weidong Ru, Yuehan Pang, Yuanruo Gan, Qin Liu and Jinsong Bao
Antioxidants 2019, 8(10), 419; https://doi.org/10.3390/antiox8100419 - 20 Sep 2019
Cited by 49 | Viewed by 5736
Abstract
The contents of total phenolics (TPC), individual phenolic acid and antioxidant activities in the free and bound fractions of potato with different flesh colors were systematically investigated. The TPC and antioxidant capacity in the bound fraction was significantly lower than that in the [...] Read more.
The contents of total phenolics (TPC), individual phenolic acid and antioxidant activities in the free and bound fractions of potato with different flesh colors were systematically investigated. The TPC and antioxidant capacity in the bound fraction was significantly lower than that in the free fraction. Chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, caffeic acid, p-coumaric acid and ferulic acid were detected in the free fraction with chlorogenic acid being the most predominant, accounting for 35.21–81.78% of the total content. Caffeic acid, p-coumaric acid and ferulic acid were detected in the bound fraction in the colored potato with caffeic acid being the major one. In the free fraction, the content of each individual phenolic acid had positive correlation with antioxidant activity. In the bound fraction, caffeic acid and p-coumaric acid showed positive correlation with antioxidant activity. This study promotes further understanding of the correlations among TPC, phenolic acids and antioxidant activity. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

14 pages, 2237 KiB  
Communication
Effects of Tannase and Ultrasound Treatment on the Bioactive Compounds and Antioxidant Activity of Green Tea Extract
by Xiao-Yu Xu, Jin-Ming Meng, Qian-Qian Mao, Ao Shang, Bang-Yan Li, Cai-Ning Zhao, Guo-Yi Tang, Shi-Yu Cao, Xin-Lin Wei, Ren-You Gan, Harold Corke and Hua-Bin Li
Antioxidants 2019, 8(9), 362; https://doi.org/10.3390/antiox8090362 - 1 Sep 2019
Cited by 37 | Viewed by 5413
Abstract
The present study investigated the effects of tannase and ultrasound treatment on the bioactive compounds and antioxidant activity of green tea extract. The single-factor experiments and the response surface methodology were conducted to study the effects of parameters on antioxidant activity of green [...] Read more.
The present study investigated the effects of tannase and ultrasound treatment on the bioactive compounds and antioxidant activity of green tea extract. The single-factor experiments and the response surface methodology were conducted to study the effects of parameters on antioxidant activity of green tea extract. The highest antioxidant activity was found under the optimal condition with the buffer solution pH value of 4.62, ultrasonic temperature of 44.12 °C, ultrasonic time of 12.17 min, tannase concentration of 1 mg/mL, and ultrasonic power of 360 W. Furthermore, phenolic profiles of the extracts were identified and quantified by high-performance liquid chromatography. Overall, it was found that tannase led to an increase in gallic acid and a decrease in epigallocatechin gallate, and ultrasounds could also enhance the efficiency of enzymatic reaction. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

25 pages, 3857 KiB  
Article
Comparison of Chemical Compositions, Antioxidant, and Anti-Photoaging Activities of Paeonia suffruticosa Flowers at Different Flowering Stages
by Jingyu He, Yaqian Dong, Xiaoyan Liu, Yiling Wan, Tanwei Gu, Xuefeng Zhou and Menghua Liu
Antioxidants 2019, 8(9), 345; https://doi.org/10.3390/antiox8090345 - 1 Sep 2019
Cited by 31 | Viewed by 5011
Abstract
Paeonia suffruticosa is an ornamental, edible, and medicinal plant. The ethanolic extracts of P. suffruticosa bud and flower were examined for their antioxidant, anti-photoaging, and phytochemical properties prior to chemometric analysis. The results showed that the bud ethanolic extract (BEE) and the [...] Read more.
Paeonia suffruticosa is an ornamental, edible, and medicinal plant. The ethanolic extracts of P. suffruticosa bud and flower were examined for their antioxidant, anti-photoaging, and phytochemical properties prior to chemometric analysis. The results showed that the bud ethanolic extract (BEE) and the flower (the early flowering stage) ethanolic extract (FEE) had better antioxidant activities, and significantly increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and reduced the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the skin tissues. In total, 68 compounds, including 20 flavonoids, 15 phenolic derivatives, 12 terpenoids, 9 fatty acids, and 12 others were identified or tentatively identified by ultra-fast liquid chromatography quadrupole time-of-flight mass spectrometry (UFLC-Q-TOF-MS). Gallic acid, 1,2,3,4,6-O-pentagalloyl glucose, paeoniflorin, and oxypaeoniflorin were predominant compounds in the extracts. Taken together, P. suffruticosa flowers are a candidate for functional material in food and health related industries, and their optimal time to harvest is before the early flowering stage. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

20 pages, 1673 KiB  
Article
Polyphenolic Composition and Antioxidant Activity of Uncaria tomentosa Commercial Bark Products
by Mirtha Navarro, Elizabeth Arnaez, Ileana Moreira, Alonso Hurtado, Daniela Monge and Maria Monagas
Antioxidants 2019, 8(9), 339; https://doi.org/10.3390/antiox8090339 - 23 Aug 2019
Cited by 32 | Viewed by 4963
Abstract
Uncaria tomentosa, which is widely commercialized as an herbal medicine, constitutes an important source of secondary metabolites with diverse biological activities. For instance, we have previously reported, for the first time, of a polyphenolic profile rich in proanthocyanidins from extracts of U. [...] Read more.
Uncaria tomentosa, which is widely commercialized as an herbal medicine, constitutes an important source of secondary metabolites with diverse biological activities. For instance, we have previously reported, for the first time, of a polyphenolic profile rich in proanthocyanidins from extracts of U. tomentosa plants, as well as their antioxidant capacity, antimicrobial activity on aerial bacteria, and cytotoxicity on cancer cell lines. These promising results prompted this research to evaluate the polyphenolic contents of U. tomentosa commercial products. We report a detailed study on the polyphenolic composition of extracts from U. tomentosa bark products (n = 18) commercialized in Costa Rica and Spain. Using HPLC-DAD/TQ-ESI-MS, a total of 25 polyphenolic compounds were identified, including hydroxybenzoic and hydroxycinnamic acids, flavan-3-ol monomers, procyanidin dimers, procyanidin trimers, as well as propelargonidin dimers. Our findings on the polyphenolic profile for all commercial samples show analogous composition to previous reports on U. tomentosa bark material, for instance a 41–49% content of procyanidin dimers and the presence of propelargonidin dimers (8–15%). However, most of the 18 commercial samples exhibit low proanthocyanidin contents (254.8–602.8 µg/g), more similar to previous U. tomentosa inner bark reports, while some exhibit better results, with one sample (SP-2) showing the highest contents (2386.5 µg/g) representing twice the average value of all 18 commercial products. This sample also exhibits the highest total phenolics (TP) and total proanthocyanidins (PRO) contents, as well as the highest Oxygen Radical Absorbance Capacity (ORAC) value (1.31 µg TE/g). One-way Analysis of Variance (ANOVA) with a Tukey post hoc test indicated significant difference (p < 0.05) between products from Costa Rica and Spain for TP and PRO findings, with samples from Spain exhibiting a higher average value. In addition, Pearson correlation analysis results showed a positive correlation (p < 0.05) between TP, PRO, and ORAC results, and an especially important correlation between ORAC antioxidant values and procyanidin dimers (r = 0.843, p < 0.05), procyanidin trimers (r = 0.847, p < 0.05), and propelargonidin dimers (r = 0.851, p < 0.05) contents. Finally, Principal Component Analysis (PCA) results indicated some variability in the composition regardless of their origin. However, only one sample (SP-2) stands out significatively, showing the highest PC1 because of its particularly high proanthocyanidins contents, which could be attributed to the 15% bark polyphenolic extract labeled in this commercial product, which differentiate this sample from all other 17 commercial samples. Therefore, our findings confirmed previous results on the value of extracts in the elaboration of potential commercial products from U. tomentosa, rich in proanthocyanidins and exhibiting high antioxidant activity. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

23 pages, 2141 KiB  
Article
Caffeoylquinic Acids and Flavonoids of Fringed Sagewort (Artemisia frigida Willd.): HPLC-DAD-ESI-QQQ-MS Profile, HPLC-DAD Quantification, in Vitro Digestion Stability, and Antioxidant Capacity
by Daniil N. Olennikov, Nina I. Kashchenko, Nadezhda K. Chirikova, Aina G. Vasil’eva, Aydan I. Gadimli, Javanshir I. Isaev and Cecile Vennos
Antioxidants 2019, 8(8), 307; https://doi.org/10.3390/antiox8080307 - 14 Aug 2019
Cited by 40 | Viewed by 5929
Abstract
Fringed sagewort (Artemisia frigida Willd., Compositae family) is a well-known medicinal plant in Asian medical systems. Fifty-nine hydroxycinnamates and flavonoids have been found in A. frigida herbs of Siberian origin by high-performance liquid chromatography with diode array and electrospray triple quadrupole mass [...] Read more.
Fringed sagewort (Artemisia frigida Willd., Compositae family) is a well-known medicinal plant in Asian medical systems. Fifty-nine hydroxycinnamates and flavonoids have been found in A. frigida herbs of Siberian origin by high-performance liquid chromatography with diode array and electrospray triple quadrupole mass detection (HPLC-DAD-ESI-QQQ-MS). Their structures were determined after mass fragmentation analysis as caffeoylquinic acids, flavone O-/C-glycosides, flavones, and flavonol aglycones. Most of the discovered components were described in A. frigida for the first time. It was shown that flavonoids with different types of substitution have chemotaxonomic significance for species of Artemisia subsection Frigidae (section Absinthium). After HPLC-DAD quantification of 16 major phenolics in 21 Siberian populations of A. frigida and subsequent principal component analysis, we found substantial variation in the selected compounds, suggesting the existence of two geographical groups of A. frigida. The antioxidant activity of A. frigida herbal tea was determined using 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) and hydrophilic/lipophilic oxygen radical absorbance capacity (ORAC) assays and DPPH-HPLC profiling, revealing it to be high. The effect of digestive media on the phenolic profile and antioxidant capacity of A. frigida herbal tea was assessed under simulated gastrointestinal digestion. We found a minor reduction in caffeoylquinic acid content and ORAC values, but remaining levels were satisfactory for antioxidant protection. These results suggest that A. frigida and its food derivate herbal tea could be recommended as new plant antioxidants rich in phenolics. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

19 pages, 1859 KiB  
Article
A Green Ultrasound-Assisted Extraction Optimization of the Natural Antioxidant and Anti-Aging Flavonolignans from Milk Thistle Silybum marianum (L.) Gaertn. Fruits for Cosmetic Applications
by Samantha Drouet, Emilie A. Leclerc, Laurine Garros, Duangjai Tungmunnithum, Atul Kabra, Bilal Haider Abbasi, Éric Lainé and Christophe Hano
Antioxidants 2019, 8(8), 304; https://doi.org/10.3390/antiox8080304 - 14 Aug 2019
Cited by 35 | Viewed by 6350
Abstract
Silybum marianum (L.) Gaertn. (aka milk thistle) constitutes the source of silymarin (SILM), a mixture of different flavonolignans and represents a unique model for their extraction. Here we report on the development and validation of an ultrasound-assisted extraction (UAE) method of S. marianum [...] Read more.
Silybum marianum (L.) Gaertn. (aka milk thistle) constitutes the source of silymarin (SILM), a mixture of different flavonolignans and represents a unique model for their extraction. Here we report on the development and validation of an ultrasound-assisted extraction (UAE) method of S. marianum flavonolignans follow by their quantification using LC system. The optimal conditions of this UAE method were: aqueous EtOH 54.5% (v/v) as extraction solvent, with application of an ultrasound (US) frequency of 36.6 kHz during 60 min at 45 °C with a liquid to solid ratio of 25:1 mL/g dry weight (DW). Following its optimization using a full factorial design, the extraction method was validated according to international standards of the association of analytical communities (AOAC) to ensure precision and accuracy in the quantitation of each component of the SILM mixture. The efficiency of this UAE was compared with maceration protocol. Here, the optimized and validated conditions of the UAE allowed the highest extraction yields of SILM and its constituents in comparison to maceration. During UAE, the antioxidant capacity of the extracts was retained, as confirmed by the in vitro assays CUPRAC (cupric ion reducing antioxidant capacity) and inhibition of AGEs (advanced glycation end products). The skin anti-aging potential of the extract obtained by UAE was also confirmed by the strong in vitro cell-free inhibition capacity of both collagenase and elastase. To summarize, the UAE procedure presented here is a green and efficient method for the extraction and quantification of SILM and its constituents from the fruits of S. marianum, making it possible to generate extracts with attractive antioxidant and anti-aging activities for future cosmetic applications. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

12 pages, 1201 KiB  
Article
Antioxidant and Anti-Inflammatory Activities of the Crude Extracts of Moringa oleifera from Kenya and Their Correlations with Flavonoids
by Yong-Bing Xu, Gui-Lin Chen and Ming-Quan Guo
Antioxidants 2019, 8(8), 296; https://doi.org/10.3390/antiox8080296 - 9 Aug 2019
Cited by 132 | Viewed by 9390
Abstract
Moringa oleifera Lam. (M. oleifera) is commonly distributed and utilized in tropical and sub-tropical areas. There has been a large number of reports on the antioxidant and anti-inflammatory activity of its leaves, but only a few about its seeds and roots. [...] Read more.
Moringa oleifera Lam. (M. oleifera) is commonly distributed and utilized in tropical and sub-tropical areas. There has been a large number of reports on the antioxidant and anti-inflammatory activity of its leaves, but only a few about its seeds and roots. Hence, in this work we aimed to systematically compare the antioxidant and anti-inflammatory activities of the ethanol crude extracts of leaves, seeds, and roots of M. oleifera from Kenya, and further correlate the differential activities with the chemical constituents from these three parts. The antioxidant activities were measured by using three different assays (DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) and FRAP (Ferric-Reducing Antioxidant Power), respectively). Results showed that the leaf extracts displayed the highest DPPH radical scavenging and FRAP total reducing power activities with IC50 values of 1.02 ± 0.13 mg/mL and 0.99 ± 0.06 mM Fe2+/g, respectively; the leaf and root extracts exhibited potential ABTS radical scavenging activities with the IC50 values of 1.36 ± 0.02 and 1.24 ± 0.03 mg/mL. Meanwhile, the leaf and seed extracts (11.1–100 µg/mL) also exerted obvious anti-inflammatory activities, as indicated by the inhibition of NO production. To further reveal correlations between these differential activities with the chemical constituents in the three organs, the total flavonoids content (TFC) of the three different extracts were evaluated, and the TFC of leaves, seeds and roots were found to be 192.36 ± 2.96, 5.89 ± 0.65 and 106.79 ± 2.12 mg rutin equivalent (RE)/g, respectively. These findings indicated the important impacts of the total flavonoid contents on antioxidant and anti-inflammatory activities. Additionally, we further determined the phytochemical profiles of M. oleifera by HPLC-UV/ESI-MS/MS, and identified most of the chemical constituents of leaves as flavonoids. In summary, the leaves of M. oleifera are a better potential natural source of antioxidants and anti-inflammatory agents, and very promising for development into the health promoting dietary supplements. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

13 pages, 784 KiB  
Article
Hepatoprotection of Mentha aquatica L., Lavandula dentata L. and Leonurus cardiaca L.
by Olívia R. Pereira, Rocio I. R. Macias, Maria R. M. Domingues, Jose J. G. Marin and Susana M. Cardoso
Antioxidants 2019, 8(8), 267; https://doi.org/10.3390/antiox8080267 - 2 Aug 2019
Cited by 25 | Viewed by 4577
Abstract
The phenolic composition of hydroethanolic extracts of Mentha aquatica L., Lavandula dentata L. and Leonurus cardiaca L., obtained from plants grown under organic cultivation, was determined and their hepatoprotective effects were investigated in vitro. L. cardiaca extract was rich in phenylethenoid glycosides, especially [...] Read more.
The phenolic composition of hydroethanolic extracts of Mentha aquatica L., Lavandula dentata L. and Leonurus cardiaca L., obtained from plants grown under organic cultivation, was determined and their hepatoprotective effects were investigated in vitro. L. cardiaca extract was rich in phenylethenoid glycosides, especially lavandolifolioside (254 ± 36 μg/mg), whereas rosmarinic acid and eriodictyol-O-rutinoside were the major phenolic compounds of L. dentata and M. aquatica extracts, accounting for 68 ± 7 μg/mg and 145 ± 22 μg/mg, respectively. These differential phenolic components presumably account for their dissimilar antioxidant properties. While L. cardiaca extract showed moderate biological effects, M. aquatica extract displayed high antioxidant activity in chemical models, and that of L. dentata was effective in counteracting potassium dichromate-induced ROS generation in human hepatocarcinoma cells. Moreover, M. aquatica extract (50 μg/mL) and its mixture (50%/50%) with L. dentata extract displayed an effective cytoprotective effect. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

15 pages, 1956 KiB  
Article
Comparative Examination of Antioxidant Capacity and Fingerprinting of Unfractionated Extracts from Different Plant Parts of Quinoa (Chenopodium quinoa) Grown under Greenhouse Conditions
by Dayana Buitrago, Ivon Buitrago-Villanueva, Ricardo Barbosa-Cornelio and Ericsson Coy-Barrera
Antioxidants 2019, 8(8), 238; https://doi.org/10.3390/antiox8080238 - 24 Jul 2019
Cited by 26 | Viewed by 4235
Abstract
Integrated surveys of metabolic profiles and antioxidant capacity from Chenopodium quinoa have been limited and have particularly focused on an examination of seeds and leaves. According to this, the main aim of the present study was to address an evaluation of the antioxidant [...] Read more.
Integrated surveys of metabolic profiles and antioxidant capacity from Chenopodium quinoa have been limited and have particularly focused on an examination of seeds and leaves. According to this, the main aim of the present study was to address an evaluation of the antioxidant activity of crude ethanolic extracts from different plant parts (leaves, stems, roots, flowers, and seeds) harvested at different times during growth and processed by two distinct drying methods: Air-drying and freeze-drying. In order to characterize the resulting extracts, the total content of phenolics (TPC) and flavonoids (TFC) was then measured through the Folin–Ciocalteu method, while antioxidant capacity was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and ferric-reducing antioxidant power (FRAP) methods. Parallel to this evaluation, extracts were profiled by LC-DAD-ESI-MS. Data analysis was supported by statistics. Most of the extracts obtained from freeze-dried samples showed higher TPC values ranging from 6.02 to 43.47 milligram of gallic acid equivalents per gram of plant material and a TFC between 1.30 and 12.26 milligram of quercetin equivalents per gram of plant material. After statistical analysis, a low correlation between TPC and TFC values was observed regarding antioxidant capacity from DPPH and FRAP measurements of both drying methods. A multivariate analysis showed that antioxidant components and antioxidant capacity in C. quinoa changed during growth and between plant parts and drying methods. These changes need to be taken into consideration when comparing the production/accumulation of beneficial bioactive compounds in this pseudocereal. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

14 pages, 1503 KiB  
Article
Phenolic Profiles and Antioxidant Activities of 30 Tea Infusions from Green, Black, Oolong, White, Yellow and Dark Teas
by Cai-Ning Zhao, Guo-Yi Tang, Shi-Yu Cao, Xiao-Yu Xu, Ren-You Gan, Qing Liu, Qian-Qian Mao, Ao Shang and Hua-Bin Li
Antioxidants 2019, 8(7), 215; https://doi.org/10.3390/antiox8070215 - 10 Jul 2019
Cited by 203 | Viewed by 18815
Abstract
Tea is among the most consumed drink worldwide, and its strong antioxidant activity is considered as the main contributor to several health benefits, such as cardiovascular protection and anticancer effect. In this study, the antioxidant activities of 30 tea infusions, which were obtained [...] Read more.
Tea is among the most consumed drink worldwide, and its strong antioxidant activity is considered as the main contributor to several health benefits, such as cardiovascular protection and anticancer effect. In this study, the antioxidant activities of 30 tea infusions, which were obtained by the mimic of drinking tea of the public, from green, black, oolong, white, yellow and dark teas, were evaluated using ferric-reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) assays, ranging from 504.80 ± 17.44 to 4647.47 ± 57.87 µmol Fe2+/g dry weight (DW) and 166.29 ± 24.48 to 2532.41 ± 50.18 µmol Trolox/g DW, respectively. Moreover, their total phenolic contents (TPC) were detected by Folin-Ciocalteu assay and were in the range of 24.77 ± 2.02 to 252.65 ± 4.74 mg gallic acid equivalent (GAE)/g DW. Generally, Dianqing Tea, Lushan Yunwu Tea, and Xihu Longjing Tea showed the strongest antioxidant activities among 30 teas. Furthermore, the phenolic compounds in tea infusions were identified and quantified, with catechins most commonly detected, especially in green tea infusions, which were main contributors to their antioxidant activities. Besides tea polyphenols, considerable content of caffeine also presented in 30 tea infusions. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

14 pages, 2683 KiB  
Article
Polyphenolic Profile and Antioxidant Capacity of Extracts from Gordonia axillaris Fruits
by Ya Li, Shi-Yu Cao, Sheng-Jun Lin, Jia-Rong Zhang, Ren-You Gan and Hua-Bin Li
Antioxidants 2019, 8(6), 150; https://doi.org/10.3390/antiox8060150 - 29 May 2019
Cited by 20 | Viewed by 3894
Abstract
An ultrasonic-assisted extraction (UAE) method was adopted to extract natural antioxidants from edible Gordonia axillaris fruit. Single-factor experiments and response surface methodology were conducted to investigate the influences of five different parameters on antioxidant capacity. The optimal conditions of the UAE were 39.78% [...] Read more.
An ultrasonic-assisted extraction (UAE) method was adopted to extract natural antioxidants from edible Gordonia axillaris fruit. Single-factor experiments and response surface methodology were conducted to investigate the influences of five different parameters on antioxidant capacity. The optimal conditions of the UAE were 39.78% ethanol, 30.94 mL/g solvent/material ratio, 59.47 min extraction time, 40 °C temperature, and 400 W ultrasonication power. The antioxidant capacity was 525.05 ± 14.34 µmol Trolox/g DW under the optimal conditions, which was in agreement with the predicted one (531.71 µmol Trolox/g DW). Additionally, in comparison with two traditional methods (maceration and Soxhlet extraction), the established UAE method greatly improved the yield of antioxidants and significantly reduced the extraction time. Besides, nine phenolic compounds were identified and quantified in the extract of Gordonia axillaris fruits by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), including rutin, gallic acid, protocatechuic acid, epicatechin, 2-hydrocinnamic acid, p-coumaric acid, quercetin, epicatechin gallate, and ferulic acid. The richness of phenolic compounds in the Gordonia axillaris fruits indicated its potential health benefits, and its extract rich in antioxidants could be developed into functional food or nutraceuticals with the potential to prevent certain diseases induced by oxidative stress, such as cardiovascular diseases and cancers. This study also provided a way to enhance the economic values of Gordonia axillaris fruits compared to raw fruits. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

19 pages, 2199 KiB  
Article
The Influence of Vinification Methods and Cultivars on the Volatile and Phenolic Profiles of Fermented Alcoholic Beverages from Cranberry
by Jingying Zhang, Donglin Chen, Xiao Chen, Paul Kilmartin and Siew Young Quek
Antioxidants 2019, 8(5), 144; https://doi.org/10.3390/antiox8050144 - 23 May 2019
Cited by 12 | Viewed by 4836
Abstract
This study investigated the effects of vinification techniques and cultivars (Stevens, Pilgrim and Bergman) on cranberry wine quality. Three winemaking technologies were conducted to prepare cranberry musts before fermentation, including traditional red and white vinifications (Red and White), and thermovinification (Thermo). In wine [...] Read more.
This study investigated the effects of vinification techniques and cultivars (Stevens, Pilgrim and Bergman) on cranberry wine quality. Three winemaking technologies were conducted to prepare cranberry musts before fermentation, including traditional red and white vinifications (Red and White), and thermovinification (Thermo). In wine products, proanthocyanins (PACs) and anthocyanins (ANCs) are dominant in phenolics, while esters and alcohols are prevalent in volatiles, with phenylethyl alcohol, β-damascenone, benzyl alcohol, etc. as the main contributors to the aroma. The phenolic compositions of wines were in the same pattern with cultivars: the Stevens and Bergman wines contained the highest amount of ANCs and PACs, respectively, while the Pilgrim wines had the lowest total phenolic contents (TPC), and antioxidant capacities (AOC). Nevertheless, products from Pilgrim cultivar had a distinctive pattern of volatiles compared to Stevens and Bergman, especially for aromatic compounds. Considering vinification methods, Thermo demonstrated advantages on correlations with both phenolic and volatile (polymeric and monomeric) compositions. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

17 pages, 904 KiB  
Article
Extraction Optimization, Antioxidant Capacity and Phenolic Profiling of Extracts from Flesh, Peel and Whole Fruit of New Zealand Grown Feijoa Cultivars
by Yaoyao Peng, Karen Suzanne Bishop and Siew Young Quek
Antioxidants 2019, 8(5), 141; https://doi.org/10.3390/antiox8050141 - 21 May 2019
Cited by 17 | Viewed by 5448
Abstract
Feijoa fruit is becoming increasingly popular, yet limited studies have focused on the antioxidant capacity and phenolic profiling of its extracts. In this research, optimization of phenolic extraction from feijoa flesh, peel, and whole fruit from four New Zealand grown cultivars was conducted [...] Read more.
Feijoa fruit is becoming increasingly popular, yet limited studies have focused on the antioxidant capacity and phenolic profiling of its extracts. In this research, optimization of phenolic extraction from feijoa flesh, peel, and whole fruit from four New Zealand grown cultivars was conducted using orthogonal design. Antioxidant activities of the extracts were assessed, followed by phenolic profiling by a validated liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method. For feijoa flesh and whole fruit, the extraction was optimized using 70% ethanol, material to solvent ratio of 1:30, at extraction temperature of 50 °C for 30 min. For feijoa peel, extraction at 50 °C for 60 min using 50% ethanol with a material to solvent ratio of 1:30 were the optimized conditions. Results showed feijoa peel had higher total phenolic content (TPC) and antioxidant activities than the flesh and whole fruit. Overall, the Unique cultivar had a relatively higher TPC and antioxidant activity than the other cultivars tested. A total of 15 phenolic compounds were identified, and seven of them were reported for the first time in feijoa fruit. This is the first systematic investigation on the extraction method, phenolic content, antioxidant activity and phenolic profile of feijoa emphasis on comparison of sample types and cultivars. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

12 pages, 2608 KiB  
Article
Investigation of In-Vitro Antioxidant and Electrochemical Activities of Isolated Compounds from Salvia chamelaeagnea P.J.Bergius Extract
by Ninon G.E.R. Etsassala, Adewale O. Adeloye, Ali El-Halawany, Ahmed A. Hussein and Emmanuel I. Iwuoha
Antioxidants 2019, 8(4), 98; https://doi.org/10.3390/antiox8040098 - 12 Apr 2019
Cited by 20 | Viewed by 4621
Abstract
We have investigated the in-vitro antioxidant activity and electrochemical redox properties of a number of natural compounds (carnosol, carnosic acid, 7-ethoxyrosmanol, ursolic acid, rosmanol and ladanein) isolated from the methanolic extract of Salvia chamelaeagnea collected from the Cape floristic region, South Africa. The [...] Read more.
We have investigated the in-vitro antioxidant activity and electrochemical redox properties of a number of natural compounds (carnosol, carnosic acid, 7-ethoxyrosmanol, ursolic acid, rosmanol and ladanein) isolated from the methanolic extract of Salvia chamelaeagnea collected from the Cape floristic region, South Africa. The results from trolox equivalent antioxidant capacity (TEAC), ferric-ion reducing antioxidant parameter (FRAP) oxygen radical absorbance capacity (ORAC), as well as the inhibition of Fe2+-induced lipid peroxidation showed strong antioxidant capacities for carnosol and rosmanol. A structural analysis of the compounds suggests that multiple OH substitution, conjugation and lactone ring in carnosol and rosmanol are important determinants of the free radical scavenging activity and electrochemical behavior. Pharmacophore generated demonstrates H-donor/acceptor capabilities of the most active compounds. Rosmanol, when compared to other compounds, exhibits the lowest oxidation potential value with an anodic peak potential (Epa) value of 0.11 V, indicating that rosmanol has the highest antioxidant power, which is in good agreement with ORAC and lipid peroxidation experiments. The lipophilic nature of carnosol, carnosic acid and rosmanol enhanced their absorption and activity against oxidative stress related to the treatment of age-related diseases. These results confirm the first report on the in-vitro antioxidant and electrochemical activities of S. chamelaeagnea constituents and underline the medicinal uses of this plant as natural preservatives for skin ageing or in pharmaceutical applications. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

12 pages, 3069 KiB  
Article
In Vitro Antioxidant and Antimicrobial Properties of Flower, Leaf, and Stem Extracts of Korean Mint
by Chang Ha Park, Hyeon Ji Yeo, Thanislas Bastin Baskar, Ye Eun Park, Jong Seok Park, Sook Young Lee and Sang Un Park
Antioxidants 2019, 8(3), 75; https://doi.org/10.3390/antiox8030075 - 26 Mar 2019
Cited by 60 | Viewed by 7511
Abstract
Traditionally, Agastache rugosa (Korean mint) has been widely used to treat various infectious diseases. The aims of this study were to: (i) determine the phenylpropanoid content of the plant using high-performance liquid chromatography; (ii) undertake total anthocyanin, flavonoid, and phenolic assays; (iii) and [...] Read more.
Traditionally, Agastache rugosa (Korean mint) has been widely used to treat various infectious diseases. The aims of this study were to: (i) determine the phenylpropanoid content of the plant using high-performance liquid chromatography; (ii) undertake total anthocyanin, flavonoid, and phenolic assays; (iii) and evaluate the antioxidant and antibacterial properties of the methanol extracts from the stem, leaves, and flowers of Korean mint. The total anthocyanin, flavonoid, and phenolic content assays showed that the flowers had higher phenolic levels than the stem and leaves. The reducing power, the 2,2-diphenyl-1-picrylhydrazyl superoxide radical scavenging abilities, and the hydrogen peroxide radical scavenging activities were also evaluated so that the antioxidant activities of the extracts from the different plant parts could be evaluated. The flower extracts revealed higher antioxidant properties than the other parts. The antibacterial properties of the methanol extracts from A. rugosa were analyzed by the disc diffusion method, and the flower extracts had higher antibacterial activities against the six bacterial strains used in the study than the other parts. This study provides information on the synergistic antioxidant and antibacterial properties of phenolics derived from the different parts of Korean mint. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

12 pages, 1583 KiB  
Article
Comparison of the Phenolic Profiles of Soaked and Germinated Peanut Cultivars via UPLC-QTOF-MS
by Qiong-Qiong Yang, Lin Cheng, Zhi-Yuan Long, Hua-Bin Li, Anil Gunaratne, Ren-You Gan and Harold Corke
Antioxidants 2019, 8(2), 47; https://doi.org/10.3390/antiox8020047 - 20 Feb 2019
Cited by 22 | Viewed by 6071
Abstract
Diverse peanut varieties are widely cultivated in China. However, few studies have investigated the effects of germination on the phenolic profiles and antioxidant activities of specific Chinese peanut cultivars. Therefore, this study was conducted to evaluate the effects of germination on total phenolic [...] Read more.
Diverse peanut varieties are widely cultivated in China. However, few studies have investigated the effects of germination on the phenolic profiles and antioxidant activities of specific Chinese peanut cultivars. Therefore, this study was conducted to evaluate the effects of germination on total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity, and phenolic profiles of seven peanut cultivars in China. The TPC, TFC, and antioxidant activities were determined by spectrophotometry, while phenolic profiles were analyzed by using ultra-high performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-QTOF-MS). The results found that germination significantly increased TPC, TFC, and antioxidant activity. Antioxidant activity was found to be closely related to TPC in germinated peanut extracts, which indicates that phenolics are the main contributors of antioxidants in germinated peanuts. In addition, germination induced significant changes in polyphenolic profiles. In the analyzed samples, 36 phenolic compounds were identified in which most were flavonoids. Overall, these findings highlight that germinated peanuts can be a good natural source of natural antioxidants for human consumption and functional food development. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Figure 1

Review

Jump to: Research

28 pages, 478 KiB  
Review
Recent Advances on the Anti-Inflammatory and Antioxidant Properties of Red Grape Polyphenols: In Vitro and In Vivo Studies
by Thea Magrone, Manrico Magrone, Matteo Antonio Russo and Emilio Jirillo
Antioxidants 2020, 9(1), 35; https://doi.org/10.3390/antiox9010035 - 31 Dec 2019
Cited by 103 | Viewed by 8282
Abstract
In this review, special emphasis will be placed on red grape polyphenols for their antioxidant and anti-inflammatory activities. Therefore, their capacity to inhibit major pathways responsible for activation of oxidative systems and expression and release of proinflammatory cytokines and chemokines will be discussed. [...] Read more.
In this review, special emphasis will be placed on red grape polyphenols for their antioxidant and anti-inflammatory activities. Therefore, their capacity to inhibit major pathways responsible for activation of oxidative systems and expression and release of proinflammatory cytokines and chemokines will be discussed. Furthermore, regulation of immune cells by polyphenols will be illustrated with special reference to the activation of T regulatory cells which support a tolerogenic pathway at intestinal level. Additionally, the effects of red grape polyphenols will be analyzed in obesity, as a low-grade systemic inflammation. Also, possible modifications of inflammatory bowel disease biomarkers and clinical course have been studied upon polyphenol administration, either in animal models or in clinical trials. Moreover, the ability of polyphenols to cross the blood–brain barrier has been exploited to investigate their neuroprotective properties. In cancer, polyphenols seem to exert several beneficial effects, even if conflicting data are reported about their influence on T regulatory cells. Finally, the effects of polyphenols have been evaluated in experimental models of allergy and autoimmune diseases. Conclusively, red grape polyphenols are endowed with a great antioxidant and anti-inflammatory potential but some issues, such as polyphenol bioavailability, activity of metabolites, and interaction with microbiota, deserve deeper studies. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
13 pages, 318 KiB  
Review
Phenolic Antioxidants in Aerial Parts of Wild Vaccinium Species: Towards Pharmaceutical and Biological Properties
by Oana-Crina Bujor, Corneliu Tanase and Mona Elena Popa
Antioxidants 2019, 8(12), 649; https://doi.org/10.3390/antiox8120649 - 16 Dec 2019
Cited by 31 | Viewed by 4243
Abstract
Phenolic compounds are a widespread group of secondary metabolites found in all plants, representing the most desirable antioxidants due to their potential to be used as additives in the food industry (inhibition of lipid oxidation), and in cosmetology and medicine (protection against oxidative [...] Read more.
Phenolic compounds are a widespread group of secondary metabolites found in all plants, representing the most desirable antioxidants due to their potential to be used as additives in the food industry (inhibition of lipid oxidation), and in cosmetology and medicine (protection against oxidative stress). In recent years, demand for the identification of edible sources rich in phenolic antioxidants, as well as the development of new natural plant products to be used as dietary supplements or pharmaceuticals, has been a great preoccupation. At present, from the “circular economy” perspective, there is an increased interest to use agricultural waste resources to produce high-value compounds. Vaccinium leaves and stems are considered essentially an agro-waste of the berry industry. Scientific studies have shown that phenolic compounds were found in a markedly higher content in the leaves and stems of Vaccinium plants than in the fruits, in agreement with the strongest biological and antioxidant activities displayed by these aerial parts compared to fruits. This paper aims to review the current state of the art regarding the phenolic antioxidants from leaves and stems of two wild Vaccinium species, bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.), as promising natural resources with pharmaceutical and biological activity. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
33 pages, 1151 KiB  
Review
Bee Collected Pollen and Bee Bread: Bioactive Constituents and Health Benefits
by Rodica Mărgăoan, Mirela Stranț, Alina Varadi, Erkan Topal, Banu Yücel, Mihaiela Cornea-Cipcigan, Maria G. Campos and Dan C. Vodnar
Antioxidants 2019, 8(12), 568; https://doi.org/10.3390/antiox8120568 - 20 Nov 2019
Cited by 105 | Viewed by 16109
Abstract
Bee products were historically used as a therapheutic approach and in food consumption, while more recent data include important details that could validate them as food supplements due to their bioproperties, which support their future use as medicines. In this review data, data [...] Read more.
Bee products were historically used as a therapheutic approach and in food consumption, while more recent data include important details that could validate them as food supplements due to their bioproperties, which support their future use as medicines. In this review data, data collected from bee pollen (BP) and bee bread (BB) essays will be discussed and detailed for their nutritional and health protective properties as functional foods. Dietary antioxidants intake derived from BP and BB have been associated with the prevention and clinical treatment of multiple diseases. The beneficial effects of BP and BB on health result from the presence of multiple polyphenols which possess anti-inflammatory properties, phytosterols and fatty acids, which play anticancerogenic roles, as well as polysaccharides, which stimulate immunological activity. From the main bioactivity studies with BP and BB, in vitro studies and animal experiments, the stimulation of apoptosis and the inhibition of cell proliferation in multiple cell lines could be one of the major therapeutic adjuvant effects to be explored in reducing tumor growth. Tables summarizing the main data available in this field and information about other bio-effects of BP and BB, which support the conclusions, are provided. Additionally, a discussion about the research gaps will be presented to help further experiments that complete the tree main World Health Organization (WHO) Directives of Efficiency, Safety and Quality Control for these products. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

53 pages, 2568 KiB  
Review
The Odyssey of Bioactive Compounds in Avocado (Persea americana) and Their Health Benefits
by Deep Jyoti Bhuyan, Muhammad A. Alsherbiny, Saumya Perera, Mitchell Low, Amrita Basu, Okram Abemsana Devi, Mridula Saikia Barooah, Chun Guang Li and Konstantinos Papoutsis
Antioxidants 2019, 8(10), 426; https://doi.org/10.3390/antiox8100426 - 24 Sep 2019
Cited by 133 | Viewed by 44084
Abstract
Persea americana, commonly known as avocado, has recently gained substantial popularity and is often marketed as a “superfood” because of its unique nutritional composition, antioxidant content, and biochemical profile. However, the term “superfood” can be vague and misleading, as it is often [...] Read more.
Persea americana, commonly known as avocado, has recently gained substantial popularity and is often marketed as a “superfood” because of its unique nutritional composition, antioxidant content, and biochemical profile. However, the term “superfood” can be vague and misleading, as it is often associated with unrealistic health claims. This review draws a comprehensive summary and assessment of research performed in the last few decades to understand the nutritional and therapeutic properties of avocado and its bioactive compounds. In particular, studies reporting the major metabolites of avocado, their antioxidant as well as bioavailability and pharmacokinetic properties, are summarized and assessed. Furthermore, the potential of avocado in novel drug discovery for the prevention and treatment of cancer, microbial, inflammatory, diabetes, and cardiovascular diseases is highlighted. This review also proposes several interesting future directions for avocado research. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

16 pages, 1927 KiB  
Review
The Modern Use of an Ancient Plant: Exploring the Antioxidant and Nutraceutical Potential of the Maltese Mushroom (Cynomorium Coccineum L.)
by Paolo Zucca, Sidonie Bellot and Antonio Rescigno
Antioxidants 2019, 8(8), 289; https://doi.org/10.3390/antiox8080289 - 7 Aug 2019
Cited by 14 | Viewed by 5991
Abstract
In the continuous scientific search for new safe and effective drugs, there has recently been a rediscovery of natural substances as a potential reservoir of innovative therapeutic solutions for human health, with the prospect of integrating with and sometimes replacing conventional drugs. Cynomorium [...] Read more.
In the continuous scientific search for new safe and effective drugs, there has recently been a rediscovery of natural substances as a potential reservoir of innovative therapeutic solutions for human health, with the prospect of integrating with and sometimes replacing conventional drugs. Cynomorium coccineum subsp. coccineum is a holoparasitic plant well known in ethnopharmacology, although its current use as a curative remedy is reported only in some ethnic groups of North Africa and the Arabian Peninsula. Often known as ‘Maltese mushroom’ due to its unique appearance and the absence of chlorophyll, C. coccineum is present in almost all of the Mediterranean Basin. It is only recently that a few research groups have begun to look for confirmation of some of its traditional uses to highlight previously unknown biological activities. Here, we review the recent scientific findings on the plant’s phytochemistry and the most significant descriptions of some of its antioxidant and biological activities (antimicrobial, anticancer, pro-erectile, and anti-tyrosinase enzyme) both in vivo and in vitro. Some of these may be promising from the perspective of food and cosmetic formulations. The purpose of this review is to provide an initial impetus to those who, in the foreseeable future, will want to increase the knowledge and possible applications of this plant full of history, charm, and mystery. Full article
(This article belongs to the Special Issue Phenolic Profiling and Antioxidant Capacity in Plants)
Show Figures

Graphical abstract

Back to TopTop