Extraction Optimization, Antioxidant Capacity and Phenolic Profiling of Extracts from Flesh, Peel and Whole Fruit of New Zealand Grown Feijoa Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Chemicals
2.3. Orthogonal Design
2.4. Total Phenolic Content Assay
2.5. Antioxidant Assays
2.6. LC-ESI-MS/MS Qualification and Quantification
2.7. Statistical Analysis
3. Results and Discussion
3.1. Optimization of Extraction Conditions by Orthogonal Design
3.2. Total Phenolic Content and Antioxidant Activity of Feijoa Extracts from Four Cultivars
3.3. Phenolic Profile of Feijoa Extracts from Four Cultivars
3.3.1. Method Validation of LC-ESI-MS/MS Under MRM Mode
3.3.2. Concentrations of Phenolic Compounds in Feijoa Extracts
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant Properties of Phenolic Compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects–A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Madamanchi, N.R.; Vendrov, A.; Runge, M.S. Oxidative Stress and Vascular Disease. Arter. Thromb. Vasc. Biol. 2005, 25, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative Stress and the Amyloid Beta Peptide in Alzheimer’s Disease. Redox Biol. 2018, 14, 450–464. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.; Moncol, J.; Izakovic, M.; Mazur, M. Free Radicals, Metals and Antioxidants in Oxidative Stress-Induced Cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Stadtman, E.R. Protein Oxidation and Aging. Science 1992, 257, 1220–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharpe, R.; Sherman, W.; Miller, E. Feijoa History and Improvement. Proc. Fla. State Hort. Soc. 1996, 106, 134–139. [Google Scholar]
- Fernandez, X.; Loiseau, A.-M.; Poulain, S.; Lizzani-Cuvelier, L.; Monnier, Y. Chemical Composition of the Essential Oil from Feijoa (Feijoa Sellowiana Berg.) Peel. J. Essent. Oil Res. 2004, 16, 274–275. [Google Scholar] [CrossRef]
- Shaw, G.J.; Allen, J.M.; Yates, M.K. Volatile Flavour Constituents in the Skin Oil from Feijoa Sellowiana. Phytochemistry 1989, 28, 1529–1530. [Google Scholar] [CrossRef]
- Hardy, P.; Michael, B. Volatile Components of Feijoa Fruits. Phytochemistry 1970, 9, 1355–1357. [Google Scholar] [CrossRef]
- Peng, Y.; Bishop, K.; Ferguson, L.; Quek, S. Screening of Cytotoxicity and Anti-Inflammatory Properties of Feijoa Extracts Using Genetically Modified Cell Models Targeting TLR2, TLR4 and NOD2 Pathways, and the Implication for Inflammatory Bowel Disease. Nutrients 2018, 10, 1188. [Google Scholar] [CrossRef]
- Elfarnini, M.; Abdel-hamid, A.A.; Achir, M.; Jamaleddine, J.; Blaghen, M. Antibacterial and Antifungal Activities of Hexane and Acetone Extracts of Sheets and Fruits of Feijoa Sellowiana O. GSC Biol. Pharm. Sci. 2018, 3, 035–044. [Google Scholar] [CrossRef]
- Nasef, N.A.; Mehta, S.; Powell, P.; Marlow, G.; Wileman, T.; Ferguson, L.R. Extracts of Feijoa inhibit Toll-like Receptor 2 Signaling and Activate Autophagy Implicating a Role in Dietary Control of IBD. PLoS ONE 2015, 10, e0130910. [Google Scholar] [CrossRef]
- Basile, A.; Conte, B.; Rigano, D.; Senatore, F.; Sorbo, S. Antibacterial and Antifungal Properties of Acetonic Extract of Feijoa Sellowiana Fruits and Its Effect on Helicobacter Pylori Growth. J. Med. Food 2010, 13, 189–195. [Google Scholar] [CrossRef]
- Bontempo, P.; Mita, L.; Miceli, M.; Doto, A.; Nebbioso, A.; De Bellis, F.; Conte, M.; Minichiello, A.; Manzo, F.; Carafa, V. Feijoa Sellowiana Derived Natural Flavone Exerts Anti-Cancer Action Displaying HDAC Inhibitory Activities. Int. J. Biochem. Cell Biol. 2007, 39, 1902–1914. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.H.; Ribeiro, D.H.B.; Micke, G.A.; Vitali, L.; Hense, H. Extraction of Bioactive Compounds from Feijoa (Acca Sellowiana (O. Berg) Burret) Peel by Low and High-Pressure Techniques. J. Supercrit. Fluids 2019, 145, 219–227. [Google Scholar] [CrossRef]
- Aoyama, H.; Sakagami, H.; Hatano, T. Three New Flavonoids, Proanthocyanidin, and Accompanying Phenolic Constituents from Feijoa Sellowiana. Biosci. Biotechnol. Biochem. 2018, 82, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Bell, T.J.; Draper, S.L.; Centanni, M.; Carnachan, S.M.; Tannock, G.W.; Sims, I.M. Characterization of Polysaccharides from Feijoa Fruits (Acca Sellowiana Berg.) and Their Utilization as Growth Substrates by Gut Commensal Bacteroides Species. J. Agric. Food Chem. 2018, 66, 13277–13284. [Google Scholar] [CrossRef]
- Tuncel, N.B.; Yılmaz, N. Optimizing the Extraction of Phenolics and Antioxidants from Feijoa (Feijoa Sellowiana, Myrtaceae). J. Food Sci. Technol. 2015, 52, 141–150. [Google Scholar] [CrossRef]
- Beyhan, O.; Bozkurt, M.; Boysal, S. Determination of Macro-Micro Nutrient Contents in Dried Fruit and Leaves and Some Pomological Characteristics of Selected Feijoa Genotypes (Feijoa Sellowiana Berg.) from Sakarya Provinces in Turkey. J. Anim. Plant Sci. 2011, 21, 251–255. [Google Scholar]
- Elmastaş, M.; Gedikli, F. Total Phenolic Compounds and Antioxidant Capacity of Leaf, Dry Fruit and Fresh Fruit of Feijoa (Acca Sellowiana, Myrtaceae). J. Med. Plants Res. 2010, 4, 1065–1072. [Google Scholar]
- Weston, R.J. Bioactive Products from Fruit of the Feijoa (Feijoa Sellowiana, Myrtaceae): A Review. Food Chem. 2010, 121, 923–926. [Google Scholar] [CrossRef]
- Pasquariello, M.S.; Mastrobuoni, F.; Di Patre, D.; Zampella, L.; Capuano, L.R.; Scortichini, M.; Petriccione, M. Agronomic, Nutraceutical and Molecular Variability of Feijoa (Acca Sellowiana (O. Berg) Burret) Germplasm. Sci. Hortic. 2015, 191, 1–9. [Google Scholar] [CrossRef]
- Mokhtari, M.; Jackson, M.D.; Brown, A.S.; Ackerley, D.F.; Ritson, N.J.; Keyzers, R.A.; Munkacsi, A.B. Bioactivity-Guided Metabolite Profiling of Feijoa (Acca Sellowiana) Cultivars Identifies 4-Cyclopentene-1, 3-Dione as a Potent Antifungal Inhibitor of Chitin Synthesis. J. Agric. Food Chem. 2018, 66, 5531–5539. [Google Scholar] [CrossRef]
- Dabbou, S.; Maatallah, S.; Castagna, A.; Guizani, M.; Sghaeir, W.; Hajlaoui, H.; Ranieri, A. Carotenoids, Phenolic Profile, Mineral Content and Antioxidant Properties in Flesh and Peel of Prunus Persica Fruits during Two Maturation Stages. Plant Foods Hum. Nutr. 2017, 72, 103–110. [Google Scholar] [CrossRef]
- Kuganesan, A.; Thiripuranathar, G.; Navaratne, A.; Paranagama, P. Antioxidant and Anti-Inflammatory Activities of Peels, Pulps and Seed Kernels of Three Common Mango (Mangifera Indical L.) Varieties in Sri Lanka. Int. J. Pharm. Sci. Res. 2017, 8, 70. [Google Scholar]
- Vieira, F.G.K.; Borges, G.D.S.C.; Copetti, C.; Di Pietro, P.F.; Da Costa Nunes, E.; Fett, R. Phenolic Compounds and Antioxidant Activity of the Apple Flesh and Peel of Eleven Cultivars Grown in Brazil. Sci. Hortic. 2011, 128, 261–266. [Google Scholar] [CrossRef]
- Wu, T.; Yan, J.; Liu, R.; Marcone, M.F.; Aisa, H.A.; Tsao, R. Optimization of Microwave-Assisted Extraction of Phenolics from Potato and Its Downstream Waste Using Orthogonal Array Design. Food Chem. 2012, 133, 1292–1298. [Google Scholar] [CrossRef]
- Chen, S.; Wu, B.-H.; Fang, J.-B.; Liu, Y.-L.; Zhang, H.-H.; Fang, L.-C.; Guan, L.; Li, S.-H. Analysis of Flavonoids from Lotus (Nelumbo Nucifera) Leaves using High Performance Liquid Chromatography/Photodiode Array Detector Tandem Electrospray Ionization Mass Spectrometry and an Extraction Method Optimized by Orthogonal Design. J. Chromatogr. A 2012, 1227, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Mandal, V.; Mohan, Y.; Hemalatha, S. Microwave Assisted Extraction of Curcumin by Sample–Solvent Dual Heating Mechanism Using Taguchi L9 Orthogonal Design. J. Pharm. Biomed. Anal. 2008, 46, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Sonmezdag, A.S.; Kelebek, H.; Selli, S. Pistachio Oil (Pistacia Vera L. Cv. Uzun): Characterization of Key Odorants in a Representative Aromatic Extract by GC-MS-Olfactometry and Phenolic Profile by LC-ESI-MS/MS. Food Chem. 2018, 240, 24–31. [Google Scholar] [CrossRef]
- Oniszczuk, A.; Olech, M. Optimization of Ultrasound-Assisted Extraction and LC-ESI–MS/MS Analysis of Phenolic Acids from Brassica Oleracea L. Var. Sabellica. Ind. Crop. Prod. 2016, 83, 359–363. [Google Scholar] [CrossRef]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, C. Characterization of Phenolic Composition in Lamiaceae Spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar] [CrossRef]
- Medina-Remón, A.; Barrionuevo-González, A.; Zamora-Ros, R.; Andres-Lacueva, C.; Estruch, R.; Martínez-González, M.-Á.; Diez-Espino, J.; Lamuela-Raventos, R.M. Rapid Folin–Ciocalteu Method Using Microtiter 96-Well Plate Cartridges for Solid Phase Extraction to Assess Urinary Total Phenolic Compounds, as a Biomarker of Total Polyphenols Intake. Anal. Chim. Acta 2009, 634, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Herald, T.J.; Gadgil, P.; Tilley, M. High-Throughput Micro Plate Assays for Screening Flavonoid Content and DPPH-Scavenging Activity in Sorghum Bran and Flour. J. Sci. Food Agric. 2012, 92, 2326–2331. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Chen, D.; Fan, M.; Quek, S.Y. UPLC-QqQ-MS/MS-Based Phenolic Quantification and Antioxidant Activity Assessment for Thinned Young Kiwifruits. Food Chem. 2019, 281, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Hu, J.; Ma, H.; Yagoub, A.E.A.; Yu, X.; Owusu, J.; Ma, H.; Qin, X. Antioxidant Peptides from Corn Gluten Meal: Orthogonal Design Evaluation. Food Chem. 2015, 187, 270–278. [Google Scholar] [CrossRef]
- Li, H.-B.; Wong, C.-C.; Cheng, K.-W.; Chen, F. Antioxidant Properties in Vitro and Total Phenolic Contents in Methanol Extracts from Medicinal Plants. LWT-Food Sci. Technol. 2008, 41, 385–390. [Google Scholar] [CrossRef]
- Sultana, M.; Verma, P.K.; Raina, R.; Prawez, S.; Dar, M. Quantitative Analysis of Total Phenolic, Flavonoids and Tannin Contents in Acetone and N-Hexane Extracts of Ageratum Conyzoides. Int. J. ChemTech Res. 2012, 4, 996–999. [Google Scholar]
- Chew, K.; Khoo, M.; Ng, S.; Thoo, Y.; Aida, W.W.; Ho, C. Effect of Ethanol Concentration, Extraction Time and Extraction Temperature on the Recovery of Phenolic Compounds and Antioxidant Capacity of Orthosiphon Stamineus Extracts. Int. Food Res. J. 2011, 18, 1427. [Google Scholar]
- Kim, H.; Moon, J.Y.; Kim, H.; Lee, D.-S.; Cho, M.; Choi, H.-K.; Kim, Y.S.; Mosaddik, A.; Cho, S.K. Antioxidant and Antiproliferative Activities of Mango (Mangifera Indica L.) Flesh and Peel. Food Chem. 2010, 121, 429–436. [Google Scholar] [CrossRef]
- Salvatore, A.; Borkosky, S.; Willink, E.; Bardon, A. Toxic Effects of Lemon Peel Constituents on Ceratitis Capitata. J. Chem. Ecol. 2004, 30, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Fattouch, S.; Caboni, P.; Coroneo, V.; Tuberoso, C.I.; Angioni, A.; Dessi, S.; Marzouki, N.; Cabras, P. Antimicrobial Activity of Tunisian Quince (Cydonia Oblonga Miller) Pulp and Peel Polyphenolic Extracts. J. Agric. Food Chem. 2007, 55, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Al-Zoreky, N. Antimicrobial Activity of Pomegranate (Punica Granatum L.) Fruit Peels. Int. J. Food Microbiol. 2009, 134, 244–248. [Google Scholar] [CrossRef]
- Piscopo, M.; Tenore, G.C.; Notariale, R.; Maresca, V.; Maisto, M.; De Ruberto, F.; Heydari, M.; Sorbo, S.; Basile, A. Antimicrobial and Antioxidant Activity of Proteins from Feijoa Sellowiana Berg. Fruit before and after in Vitro Gastrointestinal Digestion. Nat. Prod. Res. 2019. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry Phenolics and Their Antioxidant Activity. J. Agric. Food Chem. 2001, 49, 4076–4082. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-S.; Leontowicz, H.; Leontowicz, M.; Namiesnik, J.; Suhaj, M.; Cvikrová, M.; Martincova, O.; Weisz, M.; Gorinstein, S. Comparison of the Contents of Bioactive Compounds and the Level of Antioxidant Activity in Different Kiwifruit Cultivars. J. Food Compos. Anal. 2011, 24, 963–970. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Wu, T.; Liu, R.; Loewen, S.; Tsao, R. Microwave-Assisted Extraction of Phenolics with Maximal Antioxidant Activities in Tomatoes. Food Chem. 2012, 130, 928–936. [Google Scholar] [CrossRef]
- Moo-Huchin, V.M.; Moo-Huchin, M.I.; Estrada-León, R.J.; Cuevas-Glory, L.; Estrada-Mota, I.A.; Ortiz-Vázquez, E.; Betancur-Ancona, D.; Sauri-Duch, E. Antioxidant Compounds, Antioxidant Activity and Phenolic Content in Peel from Three Tropical Fruits from Yucatan, Mexico. Food Chem. 2015, 166, 17–22. [Google Scholar] [CrossRef]
- Fang, Z.; Zhang, Y.; Lü, Y.; Ma, G.; Chen, J.; Liu, D.; Ye, X. Phenolic Compounds and Antioxidant Capacities of Bayberry Juices. Food Chem. 2009, 113, 884–888. [Google Scholar] [CrossRef]
- Emmons, C.L.; Peterson, D.M. Antioxidant Activity and Phenolic Content of Oat as Affected by Cultivar and Location. Crop Sci. 2001, 41, 1676–1681. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Holcroft, D.M.; Kader, A.A. Antioxidant Activity of Pomegranate Juice and Its Relationship with Phenolic Composition and Processing. J. Agric. Food Chem. 2000, 48, 4581–4589. [Google Scholar] [CrossRef] [PubMed]
- Sun-Waterhouse, D.; Wang, W.; Waterhouse, G.I.; Wadhwa, S.S. Utilisation Potential of Feijoa Fruit Wastes as Ingredients for Functional Foods. Food Bioprocess Technol. 2013, 6, 3441–3455. [Google Scholar] [CrossRef]
- Monforte, M.T.; Lanuzza, F.; Mondello, F.; Naccari, C.; Pergolizzi, S.; Galati, E.M. Phytochemical Composition and Gastroprotective Effect of Feijoa Sellowiana Berg Fruits from Sicily. J. Coast. Life Med. 2014, 2, 14–21. [Google Scholar]
NO. | A (°C) | B | C (min) | D (Ratio) | Flesh | Peel | Whole Fruit | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TPC (mg GAE/g dw) | Antioxidant (μM TE/g dw) | TPC (mg GAE/g dw) | Antioxidant (μM TE/g dw) | TPC (mg GAE/g dw) | Antioxidant (μM TE/g dw) | ||||||||
FRAP | DPPH | FRAP | DPPH | FRAP | DPPH | ||||||||
1 | 1 (50) | 1 (30E) | 1 (30) | 1 (1:30) | 9.66 ± 0.60 | 53.39 ± 2.06 | 56.95 ± 3.16 | 31.05 ± 2.29 | 230.8 ± 21.78 | 193.68 ± 4.27 | 12.25 ± 1.56 | 82.54 ± 10.10 | 76.14 ± 8.95 |
2 | 1 | 2 (50E) | 2 (60) | 3 (1:50) | 14.58 ± 1.25 | 96.84 ± 7.10 | 86.6 ± 7.06 | 64.71 ± 0.05 | 401.63 ± 18.94 | 401.36 ± 1.43 | 22.97 ± 1.10 | 160.25 ± 6.25 | 150.96 ± 11.61 |
3 | 1 | 3 (70E) | 3 (90) | 2 (1:40) | 15.08 ± 0.65 | 97.93 ± 2.50 | 90.13 ± 2.67 | 57.19 ± 4.17 | 382.00 ± 22.00 | 360.23 ± 18.00 | 24.74 ± 2.43 | 171.82 ± 8.38 | 160.56 ± 12.93 |
4 | 2 (60) | 1 | 2 | 2 | 4.72 ± 0.03 | 27.22 ± 0.07 | 27.26 ± 0.71 | 30.18 ± 4.10 | 208.87 ± 25.28 | 198.90 ± 23.62 | 9.62 ± 1.04 | 62.55 ± 9.35 | 61.46 ± 9.69 |
5 | 2 | 2 | 3 | 1 | 11.12 ± 0.25 | 75.16 ± 2.57 | 66.74 ± 3.61 | 58.35 ± 0.26 | 386.54 ± 3.81 | 350.53 ± 0.64 | 22.84 ± 0.37 | 159.27 ± 0.17 | 148.76 ± 0.64 |
6 | 2 | 3 | 1 | 3 | 16.63 ± 1.33 | 107.24 ± 9.38 | 100.04 ± 9.51 | 59.39 ± 1.70 | 394.04 ± 9.04 | 371.89 ± 9.82 | 26.49 ± 0.75 | 179.53 ± 2.36 | 171.32 ± 2.32 |
7 | 3 (70) | 1 | 3 | 3 | 6.12 ± 0.03 | 38.80 ± 0.04 | 43.55 ± 3.47 | 20.93 ± 0.55 | 137.12 ± 5.38 | 113.50 ± 1.07 | 9.34 ± 0.05 | 56.75 ± 1.34 | 52.16 ± 0.30 |
8 | 3 | 2 | 1 | 2 | 13.77 ± 0.65 | 95.47 ± 1.61 | 84.32 ± 2.85 | 64.44 ± 2.76 | 427.00 ± 16.23 | 393.32 ± 13.48 | 25.18 ± 2.00 | 178.55 ± 11.5 | 166.06 ± 13.86 |
9 | 3 | 3 | 2 | 1 | 18.13 ± 0.26 | 110.2 ± 3.00 | 106.27 ± 2.08 | 63.41 ± 0.36 | 407.54 ± 7.15 | 365.21 ± 1.61 | 25.82 ± 0.74 | 173.34 ± 0.17 | 161.35 ± 1.98 |
Flesh | Peel | Whole Fruit | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Factors | A | B | C | D | A | B | C | D | A | B | C | D |
TPC | ||||||||||||
k1 | 13.11 | 6.83 | 13.36 | 12.97 | 50.99 | 27.39 | 51.63 | 50.94 | 19.99 | 10.40 | 21.31 | 20.31 |
k2 | 10.82 | 13.16 | 12.48 | 11.19 | 49.31 | 62.50 | 52.77 | 50.60 | 19.65 | 23.67 | 19.47 | 19.85 |
k3 | 12.67 | 16.61 | 10.77 | 12.44 | 49.59 | 60.00 | 45.49 | 48.35 | 20.12 | 25.68 | 18.97 | 19.60 |
Best level | A1 | B3 | C1 | D1 | A1 | B2 | C2 | D1 | A3 | B3 | C1 | D1 |
R | 2.28 | 9.78 | 2.58 | 1.78 | 1.68 | 35.11 | 7.28 | 2.60 | 0.47 | 15.28 | 2.34 | 0.70 |
order | BCAD | BCDA | BCDA | |||||||||
SS | 8.82 | 147.58 | 10.35 | 5.00 | 4.83 | 2302.28 | 91.93 | 11.95 | 0.35 | 413.45 | 9.08 | 0.77 |
F value | 1.76 | 29.49 * | 2.07 | 1.00 | 1.00 | 476.72 * | 19.04 * | 2.47 | 1.00 | 1183.80 * | 26.01 * | 2.20 |
FRAP | ||||||||||||
k1 | 82.72 | 39.80 | 85.36 | 79.58 | 338.14 | 193.30 | 350.61 | 341.63 | 138.20 | 67.28 | 146.87 | 138.38 |
k2 | 69.87 | 89.16 | 78.09 | 73.54 | 330.86 | 405.06 | 340.39 | 340.33 | 133.78 | 166.02 | 132.05 | 137.64 |
k3 | 81.49 | 105.12 | 70.63 | 80.96 | 323.88 | 394.53 | 301.88 | 310.93 | 136.21 | 174.90 | 129.28 | 132.18 |
Best level | A1 | B3 | C1 | D3 | A1 | B2 | C1 | D1 | A1 | B3 | C1 | D1 |
R | 12.84 | 65.32 | 14.73 | 7.42 | 14.26 | 211.75 | 48.73 | 30.70 | 4.42 | 107.62 | 17.59 | 6.21 |
order | BCAD | BCDA | BCDA | |||||||||
SS | 301.43 | 6957.74 | 325.53 | 93.44 | 305.05 | 85,440.30 | 3961.59 | 1808.47 | 29.43 | 21,409.56 | 537.00 | 68.86 |
F value | 3.23 | 74.46 * | 3.48 | 1.00 | 1.00 | 280.08 * | 12.99 | 5.93 | 1.00 | 727.53 * | 18.25 | 2.34 |
DPPH | ||||||||||||
k1 | 77.89 | 42.59 | 80.44 | 76.65 | 318.42 | 168.69 | 319.63 | 303.14 | 129.22 | 63.25 | 137.84 | 128.75 |
k2 | 64.68 | 79.22 | 73.38 | 67.24 | 307.11 | 381.74 | 321.82 | 317.48 | 127.18 | 155.26 | 124.59 | 129.36 |
k3 | 78.05 | 98.81 | 66.81 | 76.73 | 290.68 | 365.78 | 274.75 | 295.58 | 126.52 | 164.41 | 120.49 | 124.82 |
Best level | A3 | B3 | C1 | D3 | A1 | B2 | C2 | D2 | A1 | B3 | C1 | D2 |
R | 13.37 | 56.23 | 13.63 | 9.49 | 27.75 | 213.04 | 47.07 | 21.90 | 2.70 | 101.15 | 17.35 | 4.54 |
order | BCAD | BCAD | BCDA | |||||||||
SS | 353.43 | 4887.39 | 278.62 | 178.77 | 1167.79 | 84,484.49 | 4234.39 | 742.40 | 11.88 | 18,780.65 | 493.24 | 36.47 |
F value | 1.98 | 27.34 * | 1.56 | 1.00 | 1.57 | 113.80 * | 5.70 | 1.00 | 1.00 | 1581.48 * | 41.53 * | 3.07 |
Parent Ion (m/z) | Ion Mode | Daughter Ion (Energy) | Regression Equation | R2 | Linear Range (μg/mL) | LOD (μg/mL) | LOQ (μg/mL) | Precision (RSD%) | Recovery | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | Inter Day | Intra Day | ||||||||||
1 | Gallic acid | 169 | neg | 125 (10 V) | 79 (25 V) | y = 129.3914x − 2.3946 | 0.9998 | 0.055–2.198 | 0.003434 | 0.013736 | 0.76 | 3.82 | 1.08 |
2 | Procyanidin B1 | 577 | neg | 289 (15 V) | 245 (15 V) | y = 171.4361x − 43.0696 | 0.9998 | 0.165–26.376 | 0.002576 | 0.010302 | 1.51 | 3.05 | 1.02 |
3 | Epigallocatechin | 307 | pos | 139 (3 V) | 151 (11 V) | y = 286.2960x − 13.4304 | 0.9993 | 0.070–2.812 | 0.008791 | 0.035165 | 2.11 | 2.35 | 1.04 |
4 | Catechin | 289 | neg | 245 (10 V) | 203 (15 V) | y = 318.1257x + 247.7167 | 0.9963 | 0.550–65.934 | 0.002146 | 0.008585 | 4.25 | 0.42 | 0.94 |
5 | Caffeic acid | 179 | neg | 135 (10 V) | 89 (40 V) | y = 261.8032x + 8.4716 | 0.9976 | 0.275–3.294 | 0.006868 | 0.027473 | 5.30 | 0.03 | 0.96 |
6 | Procyanidin B2 | 577 | neg | 289 (15 V) | 407 (15 V) | y = 174.7724x − 41.7501 | 0.9995 | 0.110–17.584 | 0.001717 | 0.006868 | 1.88 | 0.51 | 1.04 |
7 | Epicatechin | 291 | pos | 139 (13 V) | 123 (30 V) | y = 348.7135x + 124.5464 | 0.9982 | 0.296–47.296 | 0.002309 | 0.009238 | 1.79 | 6.40 | 0.99 |
8 | Epigallocatechin gallate | 459 | pos | 139 (2 V) | 289 (23 V) | y = 125.6769x − 35.9066 | 0.9995 | 0.397–7.930 | 0.099073 | 0.396291 | 2.60 | 0.89 | 1.11 |
9 | Myricetin-3-O-galactoside | 479 | neg | 316 (20 V) | 271 (40 V) | y = 242.9794x − 20.7572 | 0.9999 | 0.110–10.990 | 0.000859 | 0.003434 | 3.10 | 1.66 | 1.02 |
10 | Myricetin-3-O-glucoside | 479 | neg | 316 (20 V) | 271 (40 V) | - | - | - | - | - | - | - | - |
11 | Epicatechin gallate | 443 | pos | 139 (20 V) | 123 (14 V) | y = 165.9345x − 27.1226 | 0.9993 | 0.101–8.088 | 0.017857 | 0.071429 | 1.51 | 7.09 | 0.94 |
12 | Ellagic acid | 301 | neg | 301 (0 V) | 284 (25 V) | y = 153.4873x + 4.6456 | 0.9978 | 0.571–11.429 | 0.003159 | 0.012637 | 0.24 | 8.73 | 1.06 |
13 | Quercetin-3-galactoside | 463 | neg | 300 (18 V) | 270 (40 V) | y = 179.8942x − 3.5259 | 0.9997 | 0.275–21.980 | 0.008585 | 0.034341 | 1.58 | 9.15 | 0.98 |
14 | Quercetin-3-rhamnoside | 447 | neg | 301 (10 V) | 300 (25 V) | y = 248.6660x + 7.2576 | 0.9989 | 0.055–10.99 | 2.15 × 10−5 | 8.59 × 10−5 | 2.81 | 7.90 | 0.98 |
15 | Quercetin | 301 | neg | 151 (20 V) | 179 (10 V) | y = 738.5890x + 27.1359 | 0.9969 | 0.055–4.396 | 0.000215 | 0.000859 | 0.71 | 3.91 | 0.94 |
16 | Flavone | 223 | pos | 121 (17 V) | 77 (33 V) | y = 85.1514x + 14.9630 | 0.9968 | 0.275–43.96 | 0.000107 | 0.000429 | 1.18 | 0.58 | 0.98 |
Flesh (μg/g dw) | Peel (μg/g dw) | Whole Fruit (μg/g dw) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds | A | U | OS | WT | A | U | OS | WT | A | U | OS | WT |
Gallic acid | 4.31 ± 0.27 ef | 3.8 ± 0.45 de | 2.42 ± 0.02 bc | 1.96 ± 0.16 ab | 5.54 ± 0.1 gh | 5.03 ± 0.09 fg | 3.92 ± 0.06 de | 6.04 ± 0.06 h | 2.56 ± 0.18 bc | 1.21 ± 0.01 a | 3.18 ± 0.12 cd | 2.67 ± 0.08 bc |
Procyanidin B1 | 473.29 ± 23.13 cd | 305.69 ± 10.22 ab | 488.87 ± 8.98 cd | 776.18 ± 36.04 e | 1195.15 ± 96.17 f | 565.16 ± 21.78 d | 1070.88 ± 21.23 f | 833.34 ± 4.78 e | 371.27 ± 19.59 bc | 203.01 ± 9.34 a | 551.58 ± 7.45 d | 721.87 ± 18.7 e |
Epigallocatechin | 3.73 ± 0.2 a | 4.3 ± 0.34 b | 6.94 ± 0.12 ab | 6.16 ± 0.35 ab | 9.16 ± 0.33 b | 20.97 ± 0.38 d | 39.26 ± 2.46 e | 13.49 ± 0.05 c | 6.18 ± 0.37 ab | 6.96 ± 1.06 ab | 9.8 ± 0.45 bc | 10.48 ± 0.2 bc |
Catechin | 651.31 ± 63.17 b | 370.48 ± 20.89 ab | 1191.82 ± 36.27 c | 1375.87 ± 30.81 cde | 1311.2 ± 88.58 cd | 698.29 ± 19.17 b | 1829.91 ± 39.67 f | 1551.65 ± 11.11 e | 608.97 ± 28.09 b | 328.07 ± 15.6 a | 1436.49 ± 31.06 de | 1428.05 ± 12.5 de |
Caffeic acid | nd | nd | nd | nd | 16.15 ± 0.56 c | 43.82 ± 4.02 e | 19.1 ± 0.89 c | 34.65 ± 0.2 d | 4.4 ± 1 ab | 9.05 ± 0.75 b | 4.36 ± 0.63 ab | 6.56 ± 0.77 ab |
Procyanidin B2 | 42.98 ± 4.06 ab | 19.86 ± 1.04 a | 57.73 ± 0.46 b | 64.71 ± 3.4 b | 338.62 ± 15.1 f | 230.43 ± 5.5 d | 317.07 ± 3.03 ef | 312.95 ± 2.46 e | 64.72 ± 3.58 b | 42.01 ± 2.44 ab | 90.83 ± 3.33 c | 106.04 ± 0.21 c |
Epicatechin | 29.33 ± 4.21 a | 76.16 ± 2.56 b | 73.42 ± 0.46 b | 73.42 ± 0.46 b | 460.32 ± 20.25 d | 691.63 ± 11.42 f | 570.24 ± 0.77 e | 570.24 ± 0.77 e | 84.78 ± 5.54 b | 167.23 ± 3.94 c | 176.8 ± 0.63 c | 176.8 ± 0.63 c |
Epigallocatechin gallate | 8.74 ± 0.17 a | 10.47 ± 0.06 ab | 12.26 ± 0.04 b | 10.41 ± 0.14 ab | 13.61 ± 0.15 b | 24.82 ± 0.9 d | 17.44 ± 0.93 c | 13.17 ± 0.62 b | 10.63 ± 0.1 ab | 11.54 ± 1.31 ab | 11.62 ± 0.46 ab | 11.3 ± 0.49 ab |
Myricetin-3-O-galactoside | nd | nd | nd | nd | nd | 5.87 ± 0.17 c | 4.04 ± 0.09 b | 3.84 ± 0.27 b | nd | 3.2 ± 0.02 a | nd | 2.81 ± 0.25 ab |
Ellagic acid | 32.54 ± 0.59 ab | 47.47 ± 5.47 bc | 21.58 ± 1.02 a | 17.66 ± 2.16 a | 164.86 ± 5.46 f | 211.68 ± 3.84 g | 120.76 ± 5.14 e | 156 ± 4.08 f | 61.32 ± 4.9 cd | 72.64 ± 3.87 d | 50.3 ± 3.89 bc | 35.09 ± 0.52 ab |
Epicatechin gallate | 23.3 ± 0.59 b | 11.75 ± 0.6 a | 25.84 ± 1.58 b | 20.13 ± 1.06 b | 165.29 ± 1.72 f | 93.56 ± 1.42 d | 116.96 ± 3.62 e | 110.67 ± 0.21 e | 40.57 ± 1.62 c | 17.92 ± 0.33 ab | 38.12 ± 1.83 c | 39.54 ± 2.19 c |
Quercetin-3-galactoside | 5.03 ± 0.33 a | 2.44 ± 0.18 a | 4.34 ± 0.26 a | 6.34 ± 0.41 a | 339.49 ± 8.13 e | 492.9 ± 4.21 g | 429.71 ± 1.51 f | 816.82 ± 7.54 h | 64.98 ± 1.49 b | 106.97 ± 7.83 c | 61.64 ± 4.9 b | 138.96 ± 0.22 d |
Quercetin-3-rhamnoside | 5.08 ± 0.21 a | 5.33 ± 0.24 a | 7.11 ± 0.03 a | 11.66 ± 0.3 bc | 41.54 ± 1.24 f | 88.11 ± 0.87 h | 58.45 ± 0.66 g | 98.89 ± 0.61 i | 10.7 ± 0.18 b | 15.82 ± 0.76 d | 14.41 ± 1.37 cd | 23.84 ± 0.96 e |
Quercetin | <0.1 | <0.1 | <0.1 | <0.1 | 30.61 ± 0.81 c | 62.74 ± 1.86 d | 34.23 ± 0.49 c | 93.05 ± 3.64 e | 3.97 ± 0.03 a | 6.28 ± 0.23 a | 4.04 ± 0.39 a | 13.93 ± 0.46 b |
Flavone | 4.07 ± 0.1 a | 1.6 ± 0.17 a | 0.52 ± 0.12 a | 4.48 ± 0.21 a | 3302.3 ± 2.68 d | 5871.1 ± 85.25 e | 3435.21 ± 6.71 d | 5846.27 ± 142.3 e | 761.69 ± 16.78 b | 1208.06 ± 13.42 c | 602.61 ± 17.45 b | 1025.49 ± 21.48 c |
Total | 1283.72 ± 93.84 b | 859.35 ± 40.67 a | 1892.86 ± 49.31 c | 2368.97 ± 73.77 c | 7393.85 ± 237.68 f | 9106.11 ± 150.02 g | 8067.18 ± 85.94 h | 10,461.08 ± 152.75 i | 2096.72 ± 72.69 c | 2199.98 ± 51.06 c | 3055.77 ± 16.33 d | 3743.43 ± 29.68 e |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Bishop, K.S.; Quek, S.Y. Extraction Optimization, Antioxidant Capacity and Phenolic Profiling of Extracts from Flesh, Peel and Whole Fruit of New Zealand Grown Feijoa Cultivars. Antioxidants 2019, 8, 141. https://doi.org/10.3390/antiox8050141
Peng Y, Bishop KS, Quek SY. Extraction Optimization, Antioxidant Capacity and Phenolic Profiling of Extracts from Flesh, Peel and Whole Fruit of New Zealand Grown Feijoa Cultivars. Antioxidants. 2019; 8(5):141. https://doi.org/10.3390/antiox8050141
Chicago/Turabian StylePeng, Yaoyao, Karen Suzanne Bishop, and Siew Young Quek. 2019. "Extraction Optimization, Antioxidant Capacity and Phenolic Profiling of Extracts from Flesh, Peel and Whole Fruit of New Zealand Grown Feijoa Cultivars" Antioxidants 8, no. 5: 141. https://doi.org/10.3390/antiox8050141
APA StylePeng, Y., Bishop, K. S., & Quek, S. Y. (2019). Extraction Optimization, Antioxidant Capacity and Phenolic Profiling of Extracts from Flesh, Peel and Whole Fruit of New Zealand Grown Feijoa Cultivars. Antioxidants, 8(5), 141. https://doi.org/10.3390/antiox8050141