Phytochemicals and Antioxidant Activity of Korean Black Soybean (Glycine max L.) Landraces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Agricultural Traits
2.2. Phytochemical Analysis
2.3. Analysis of Antioxidant Activities
2.4. Data Analysis
3. Results
3.1. Agricultural Traits of 172 KBSLs
3.2. Content of Phytochemicals in 172 KBSLs
3.3. Antioxidant Activities of 172 KBSLs
3.4. Correlations between Six Phytochemicals in 172 Korean Black Soybean Landraces
3.5. PCA Analysis
3.6. Clustering Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kim, H.G.; Kim, G.W.; Oh, H.; Yoo, S.Y.; Kim, Y.O.; Oh, M.S. Influence of roasting on the antioxidant activity of small black soybean (Glycine max L. Merrill). LWT Food Sci. Technol. 2011, 44, 992–998. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kim, K.-S. Functional and Chemical Composition of Hwanggumkong, Yakong and Huktae. Korean Soc. Food Cook. Sci. 2005, 21, 844–849. [Google Scholar]
- Diaz-Batalla, L.; Widholm, J.M.; Fahey, G.C., Jr.; Castano-Tostado, E.; Paredes-Lopez, O. Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.). J. Agric. Food Chem. 2006, 54, 2045–2052. [Google Scholar] [CrossRef] [PubMed]
- Bellaloui, N. Soybean Seed Phenol, Lignin, and Isoflavones and Sugars Composition Altered by Foliar Boron Application in Soybean under Water Stress. Food Nutr. Sci. 2012, 3, 579–590. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Liu, Z.; Hong, H.; Ma, Y.; Tian, L.; Li, X.; Li, Y.-H.; Guan, R.; Guo, Y.; Qiu, L.-J. Identification and Validation of Loci Governing Seed Coat Color by Combining Association Mapping and Bulk Segregation Analysis in Soybean. PLoS ONE 2016, 11, e0159064. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Chang, S.K. Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. J. Agric. Food Chem. 2008, 56, 8365–8373. [Google Scholar] [CrossRef] [PubMed]
- Correa, C.R.; Li, L.; Aldini, G.; Carini, M.; Oliver Chen, C.Y.; Chun, H.-K.; Cho, S.-M.; Park, K.-M.; Russell, R.M.; Blumberg, J.B.; et al. Composition and stability of phytochemicals in five varieties of black soybeans (Glycine max). Food Chem. 2010, 123, 1176–1184. [Google Scholar] [CrossRef]
- Dajanta, K.; Apichartsrangkoon, A.; Chukeatirote, E. Antioxidant Properties and Total Phenolics of Thua Nao (a Thai Fermented Soybean) as Affected by Bacillus-fermentation. J. Microb. Biochem. Technol. 2011, 3, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Bai, W. Bioactive phytochemicals. Crit. Rev. Food Sci. Nutr. 2019, 59, 827–829. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.B. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit Rev. Food Sci. Nutr. 2007, 57, 1874–1905. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, C.F.; Liu, B.; Lin, L.; Sarker, S.D.; Nahar, L.; Yu, H.; Cao, H.; Xiao, J. Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends Food Sci. Technol. 2018, 72, 1–12. [Google Scholar] [CrossRef]
- Gololo, S.S. Potential Adverse Effects of Alteration of Phytochemical Accumulation in Fruits and Vegetables; IntechOpen: London, UK, 2018. [Google Scholar]
- Willcox, J.K.; Ash, S.L.; Catignani, G.L. Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 2004, 44, 275–295. [Google Scholar] [CrossRef] [PubMed]
- Mossi, A.J.; Cansian, R.L.; Carvalho, A.Z.; Dariva, C.; Oliveira, J.V.; Mazutti, M.; Filho, I.N.; Echeverrigaray, S. Extraction and characterization of volatile compounds in Maytenus ilicifolia, using high-pressure CO2. Fitoterapia 2004, 75, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, J.; Arner, E.S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001, 31, 1287–1312. [Google Scholar] [CrossRef]
- Ajila, C.M.; Prasada Rao, U.J. Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Mangifera indica L. peel extract. Food Chem. Toxicol. 2008, 46, 303–309. [Google Scholar] [CrossRef]
- Cho, G.-T.; Lee, J.; Moon, J.-K.; Yoon, M.-S.; Baek, H.-J.; Kang, J.-H.; Kim, T.-S.; Paek, N.-C. Genetic Diversity and Population Structure of Korean Soybean Landrace (Glycine max (L.) Merr.). J. Crop. Sci. Biotechnol. 2008, 11, 83–90. [Google Scholar]
- Lee, C.; Choi, M.-S.; Kim, H.-T.; Yun, H.-T.; Lee, B.; Chung, Y.-S.; Kim, R.W.; Choi, H.-K. Soybean [Glycine max (L.) Merrill]: Importance as A Crop and Pedigree Reconstruction of Korean Varieties. Plant Breed. Biotechnol. 2015, 3, 179–196. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H. Uses of Korean landrace soybean. Bull. Korean Acad. Nativ. Species 2003, 8, 15–36. [Google Scholar]
- Villa, T.C.C.; Maxted, N.; Scholten, M.; Ford-Lloyd, B. Defining and identifying crop landraces. Plant Genet. Resour. 2005, 3, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, S.L.; Ceccarelli, S.; Blair, M.W.; Upadhyaya, H.D.; Are, A.K.; Ortiz, R. Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci. 2016, 21, 31–42. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, J.-R.; Ma, K.-H.; Cho, Y.-H.; Lee, G.-A.; Chung, J.-W. Anthocyanin and Isoflavone Contents in Korean Black Soybean Landraces and their Antioxidant Activities. Plant Breed. Biotechnol. 2016, 4, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Tanumihardjo, S.A. An integrated approach to evaluate food antioxidant capacity. J. Food Sci. 2007, 72, R159–R165. [Google Scholar] [CrossRef]
- R Statistical Software. Available online: http://www.r-project.org (accessed on 3 March 2020).
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Paleontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Hoisington, D.; Khairallah, M.; Reeves, T.; Ribaut, J.-M.; Skovmand, B.; Taba, S.; Warburton, M. Plant genetic resources: What can they contribute toward increased crop productivity? Proc. Natl. Acad. Sci. USA 1999, 96, 5937–5943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sthapit, B.R.; Rao, V.R. Consolidating Community’s Role in Local Crop Development by Promoting Farmer innovation to Maximize the Use of Local Crop Diversity for the Well-Being of People; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2009; pp. 669–676. [Google Scholar]
- Allard, R.W. Genetic basis of the evolution of adaptedness in plants. Euphytica 1996, 92, 1–11. [Google Scholar] [CrossRef]
- Frankel, O.H.; Brown, A.H.D.; Burdon, J.J. The Conservation of Plant Biodiversity; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Merillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Phommalath, S.; Teraishi, M.; Yoshikawa, T.; Saito, H.; Tsukiyama, T.; Nakazaki, T.; Tanisaka, T.; Okumoto, Y. Wide genetic variation in phenolic compound content of seed coats among black soybean cultivars. Breed. Sci. 2014, 64, 409–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukamoto, C.; Shimada, S.; Igita, K.; Kudou, S.; Kokubun, M.; Okubo, K.; Kitamura, K. Factors Affecting Isoflavone Content in Soybean Seeds: Changes in Isoflavones, Saponins, and Composition of Fatty Acids at Different Temperatures during Seed Development. J. Agric. Food Chem. 1995, 43, 1184–1192. [Google Scholar] [CrossRef]
- Yamane, T.; Jeong, S.T.; Goto-Yamamoto, N.; Koshita, Y.; Kobayashi, S. Effects of Temperature on Anthocyanin Biosynthesis in Grape Berry Skins. Am. J. Enol. Vitic. 2006, 57, 54–59. [Google Scholar]
- Cohen, S.D.; Tarara, J.M.; Kennedy, J.A. Assessing the impact of temperature on grape phenolic metabolism. Anal. Chim. Acta 2008, 621, 57–67. [Google Scholar] [CrossRef]
- KMA. Available online: http://www.kma.go.kr (accessed on 28 January 2020).
- Kim, J.A.; Jung, W.S.; Chun, S.C.; Yu, C.Y.; Ma, K.H.; Gwag, J.G.; Chung, I.M. A correlation between the level of phenolic compounds and the antioxidant capacity in cooked-with-rice and vegetable soybean (Glycine max L.) varieties. Eur. Food Res. Technol. 2006, 224, 259–270. [Google Scholar] [CrossRef]
- Cho, K.M.; Ha, T.J.; Lee, Y.B.; Seo, W.D.; Kim, J.Y.; Ryu, H.W.; Jeong, S.H.; Kang, Y.M.; Lee, J.H. Soluble phenolics and antioxidant properties of soybean (Glycine max L.) cultivars with varying seed coat colours. J. Funct. Foods 2013, 5, 1065–1076. [Google Scholar] [CrossRef]
- Moharram, A.H.; Youssef, M.M. Methods for Determining the Antioxidant Activity: A Review. Alex J. Food Sci. Technol. 2014, 11, 31–42. [Google Scholar]
- Singh, S.; Singh, R.P. In Vitro Methods of Assay of Antioxidants: An Overview. Food Rev. Int. 2008, 24, 392–415. [Google Scholar] [CrossRef]
- Todd, J.J.; Vodkin, L.O. Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol. 1993, 102, 663–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramarathnam, N.; Osawa, T.; Namiki, M.; Kawakishi, S. Chemical studies on novel rice hull antioxidants. 2. Identification of isovitexin, a C-glycosyl flavonoid. J. Agric. Food Chem. 1989, 37, 316–319. [Google Scholar] [CrossRef]
- Zhang, R.F.; Zhang, F.X.; Zhang, M.W.; Wei, Z.C.; Yang, C.Y.; Zhang, Y.; Tang, X.J.; Deng, Y.Y.; Chi, J.W. Phenolic Composition and Antioxidant Activity in Seed Coats of 60 Chinese Black Soybean (Glycine max L. Merr.) Varieties. J. Agric. Food Chem. 2011, 59, 5935–5944. [Google Scholar] [CrossRef]
- Lee, L.-S.; Choi, E.-J.; Kim, C.-H.; Kim, Y.-B.; Kum, J.-S.; Park, J.-D. Quality Characteristics and Antioxidant Properties of Black and Yellow Soybeans. Korean J. Food Sci. Technol. 2014, 46, 757–761. [Google Scholar] [CrossRef] [Green Version]
- Upadhyaya, H.D.; Reddy, K.N.; Gowda, C.L.L.; Singh, S. Identification and evaluation of vegetable type pigeonpea (Cajanus cajan (L.) Millsp.) in the world germplasm collection at ICRISAT genebank. Plant Genet. Resour. 2010, 8, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, A.R. The need for characterisation and evaluation of germplasm: Kiwifruit as an example. Euphytica 2007, 154, 371–382. [Google Scholar] [CrossRef]
- Van Treuren, R.; Van Hintum, T.J.L. Marker-Assisted Reduction of Redundancy in Germplasm Collections: Genetic and Economics Aspects; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2004; pp. 139–149. [Google Scholar]
Year | Min | Max | Mean | SD | Skewness | Kurtosis | CV(%) | ||
---|---|---|---|---|---|---|---|---|---|
Agricultural Traits | DF 1 (day) | 2012 | 49 | 79 | 62.6 | 6.6 | 0.029 | −0.409 | 10.6 |
2015 | 56 | 70 | 61.0 | 3.2 | 0.687 | −0.476 | 5.2 | ||
DM (day) | 2012 | 108 | 160 | 139.5 | 10.4 | −0.559 | 0.153 | 7.4 | |
2015 | 115 | 146 | 138.2 | 8.5 | −1.000 | −0.169 | 6.1 | ||
SW (g) | 2012 | 10.3 | 40.0 | 26.5 | 8.1 | −0.260 | −0.580 | 30.5 | |
2015 | 9.7 | 54.8 | 28.7 | 8.5 | −0.338 | 0.316 | 29.7 | ||
Anthocyanin (mg/100 g dried seed coat) | D3G | 2012 | 0 | 273.0 | 92.7 | 65.5 | 0.636 | −0.172 | 70.7 |
2015 | 0 | 320.5 | 98.4 | 56.3 | 0.790 | 1.095 | 57.2 | ||
C3G | 2012 | 12.2 | 2042.7 | 509.4 | 378.8 | 1.140 | 1.259 | 74.4 | |
2015 | 51.9 | 1498.3 | 511.6 | 355.9 | 0.678 | −0.549 | 69.6 | ||
Pt3G | 2012 | 0.0 | 158.7 | 17.8 | 17.4 | 3.850 | 25.386 | 97.7 | |
2015 | 0.0 | 434.2 | 18.5 | 34.4 | 10.502 | 126.198 | 185.8 | ||
Isoflavone (mg/100 g dried seeds) | Daidzin | 2012 | 14.1 | 108.7 | 48.2 | 18.5 | 0.526 | 0.066 | 38.4 |
2015 | 4.6 | 81.0 | 25.3 | 13.6 | 1.618 | 4.280 | 53.5 | ||
Glycitin | 2012 | 0.8 | 43.2 | 14.7 | 8.6 | 0.839 | 0.635 | 58.2 | |
2015 | 0.4 | 19.9 | 3.8 | 2.8 | 2.078 | 7.158 | 72.1 | ||
Genestin | 2012 | 15.6 | 115.6 | 54.1 | 20.0 | 0.650 | 0.134 | 36.9 | |
2015 | 5.2 | 56.7 | 30.0 | 10.9 | 0.017 | −0.167 | 36.2 | ||
Antioxidant activity | DPPH (IC 50) | 2012 | 63.2 | 311.1 | 108.0 | 45.3 | 1.514 | 2.705 | 42.0 |
2015 | 16.4 | 154.6 | 59.5 | 29.7 | 0.940 | 0.588 | 49.8 | ||
ABTS (mg AAE/g) | 2012 | 1.1 | 7.0 | 5.0 | 1.2 | −0.600 | −0.183 | 23.7 | |
2015 | 2.0 | 8.3 | 4.9 | 1.6 | 0.392 | −0.790 | 32.2 | ||
TPC (mg GAE/g) | 2012 | 2.8 | 13.0 | 7.1 | 2.3 | 0.425 | −0.426 | 32.0 | |
2015 | 0.8 | 12.9 | 7.2 | 2.6 | −0.176 | −0.543 | 36.4 | ||
FRAP (mg AAE/g) | 2012 | 0.3 | 2.5 | 1.1 | 0.5 | 0.628 | 0.022 | 42.7 | |
2015 | 0.3 | 3.1 | 1.1 | 0.6 | 1.106 | 0.589 | 56.2 |
Year (Y) | Genotype (G) | Interaction (G x Y) | ||
---|---|---|---|---|
Agricultural Traits | DF 1 (day) | 13.1 *** | 2.2 *** | - |
DM (day) | 3.3 ns | 2.9 *** | - | |
SW (g) | 52.5 *** | 16.2 *** | - | |
Anthocyanin | D3G (mg/100 g) | 60.8 *** | 89.1 *** | 60.7 *** |
C3G (mg/100 g) | 0.6 ns | 269.9 *** | 85.49 *** | |
Pt3G (mg/100 g) | 23.8 *** | 321.6 *** | 235.1 *** | |
Isoflavone | Daidzin (mg/100 g) | 26906 *** | 198 *** | 117.2 *** |
Glycitin (mg/100 g) | 47810 *** | 220.3 *** | 159.1 *** | |
Genestin (mg/100 g) | 27837 *** | 135.4 *** | 152.7 *** | |
Antioxidant activity | DPPH (IC 50) | 21647 *** | 149.3 *** | 151 *** |
ABTS (mg AAE/g) | 1.6 ns | 10.6 *** | 3.9 *** | |
TPC (mg GAE/g) | 7.93 ** | 112.4 *** | 18.8 *** | |
FRAP (mg AAE/g) | 60.32 *** | 322.2 *** | 218.4 *** |
D3G 1 | C3G | Pt3G | Daidzin | Glycitin | Genestin | DPPH | ABTS | TPC | FRAP | DF | DM | |
C3G | 0.461 *** | |||||||||||
Pt3G | 0.414 *** | 0.287 *** | ||||||||||
Daidzin | 0.045 | 0.049 | 0.179 * | |||||||||
Glycitin | 0.025 | −0.069 | 0.159 * | 0.651 *** | ||||||||
Genestin | 0.007 | 0.214 ** | 0.172 * | 0.554 *** | 0.362 *** | |||||||
DPPH | −0.293 *** | −0.194 * | −0.111 | 0.019 | 0.004 | −0.041 | ||||||
ABTS | 0.199 ** | 0.307 *** | 0.083 | −0.047 | −0.064 | 0.154 * | −0.247 *** | |||||
TPC | 0.133 | 0.358 *** | 0.02 | −0.074 | −0.065 | −0.011 | 0.054 | 0.471 *** | ||||
FRAP | 0.199 ** | 0.381 *** | 0.055 | −0.088 | −0.024 | 0.141 | −0.182 * | 0.777 *** | 0.533 *** | |||
DF | 0.185 * | 0.436 *** | 0.253 *** | 0.104 | 0.015 | 0.288 *** | −0.062 | 0.198 *** | 0.173 * | 0.195 * | ||
DM | 0.169 * | 0.445 *** | 0.241 *** | 0.296 *** | 0.085 | 0.332 *** | 0.023 | 0.153 * | 0.123 | 0.181 * | 0.704 *** | |
SW | 0 | 0.145 | −0.062 | 0.175 * | −0.195 * | 0.283 *** | 0.109 | −0.12 | −0.083 | −0.105 | −0.015 | 0.264 *** |
Parameter | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
Eigenvalue | 1.813 | 1.526 | 1.235 | 1.187 | 1.028 |
% variance | 25.3% | 17.9% | 11.7% | 10.8% | 8.1% |
Cumulative variability | 25.3% | 43.2% | 54.9% | 65.8% | 73.9% |
D3G 1 | 0.281 | 0.069 | 0.110 | 0.507 | −0.116 |
C3G | 0.411 | 0.063 | −0.186 | 0.167 | −0.068 |
Pt3G | 0.248 | −0.127 | 0.145 | 0.453 | 0.167 |
Daidzin | 0.151 | −0.507 | 0.248 | −0.167 | −0.094 |
Glycitin | 0.080 | −0.393 | 0.502 | −0.151 | 0.190 |
Genestin | 0.253 | −0.382 | 0.063 | −0.236 | −0.293 |
DPPH | 0.134 | 0.150 | 0.353 | 0.342 | −0.417 |
ABTS | 0.346 | 0.310 | 0.189 | −0.272 | −0.157 |
TPC | 0.270 | 0.286 | −0.013 | −0.336 | 0.170 |
FRAP | 0.354 | 0.329 | 0.151 | −0.304 | −0.096 |
DF | 0.359 | −0.107 | −0.278 | 0.066 | 0.402 |
DM | 0.361 | −0.229 | −0.354 | −0.004 | 0.199 |
SW | 0.041 | −0.212 | −0.479 | −0.064 | −0.621 |
Group | No. acc. | D3G 1 (mg/100 g) | C3G (mg/100 g) | Pt3G (mg/100 g) | Daidzin (mg/100 g) | Glycitin (mg/100 g) | Genestin (mg/100 g) |
---|---|---|---|---|---|---|---|
1 | 47 | 97.7a 2 | 514b | 22.7a | 51.0a | 13.7a | 47.4a |
2 | 42 | 107.6a | 816.2a | 21.6a | 33.6b | 6.7c | 48.2a |
3 | 48 | 104.6a | 440.7b | 17.2ab | 28.2c | 7.1c | 35.9b |
4 | 35 | 65.7b | 234.6c | 9.2b | 33.1b | 9.3b | 36.1b |
DPPH (IC50) | ABTS (mg AAE/g) | TPC (mg GAE/g) | FRAP (mg AAE/g) | DF (day) | DM (day) | SW (g) | |
1 | 80.2b | 4.7b | 6.9b | 0.9c | 63.4b | 142.8a | 26.8b |
2 | 77.9b | 5.5a | 8.0a | 1.4a | 65.0a | 145.1a | 33.5a |
3 | 67.6a | 5.4a | 7.4ab | 1.2b | 61.2c | 135.9b | 22.9c |
4 | 80.2b | 4.1c | 6.1c | 0.8c | 56.6d | 130.1c | 28.0b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.J.; Baek, D.-Y.; Lee, G.-A.; Cho, G.-T.; So, Y.-S.; Lee, J.-R.; Ma, K.-H.; Chung, J.-W.; Hyun, D.Y. Phytochemicals and Antioxidant Activity of Korean Black Soybean (Glycine max L.) Landraces. Antioxidants 2020, 9, 213. https://doi.org/10.3390/antiox9030213
Lee KJ, Baek D-Y, Lee G-A, Cho G-T, So Y-S, Lee J-R, Ma K-H, Chung J-W, Hyun DY. Phytochemicals and Antioxidant Activity of Korean Black Soybean (Glycine max L.) Landraces. Antioxidants. 2020; 9(3):213. https://doi.org/10.3390/antiox9030213
Chicago/Turabian StyleLee, Kyung Jun, Da-Young Baek, Gi-An Lee, Gyu-Taek Cho, Yoon-Sup So, Jung-Ro Lee, Kyung-Ho Ma, Jong-Wook Chung, and Do Yoon Hyun. 2020. "Phytochemicals and Antioxidant Activity of Korean Black Soybean (Glycine max L.) Landraces" Antioxidants 9, no. 3: 213. https://doi.org/10.3390/antiox9030213
APA StyleLee, K. J., Baek, D. -Y., Lee, G. -A., Cho, G. -T., So, Y. -S., Lee, J. -R., Ma, K. -H., Chung, J. -W., & Hyun, D. Y. (2020). Phytochemicals and Antioxidant Activity of Korean Black Soybean (Glycine max L.) Landraces. Antioxidants, 9(3), 213. https://doi.org/10.3390/antiox9030213