Bioactive Phenolic Compounds from the Agroindustrial Waste of Colombian Mango Cultivars ‘Sugar Mango’ and ‘Tommy Atkins’—An Alternative for Their Use and Valorization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mango Waste Samples and Phenolic Extraction
2.2. Determination of Total Phenolic Content
2.3. Determination of Total Flavonoid Content
2.4. Antioxidant Activity
2.4.1. DPPH• Scavenging Activity
2.4.2. Antioxidant Activity in Food Products
2.5. Antiproliferative Activity
2.5.1. Cell Lines, Culture, and Extract Preparation
2.5.2. Resazurin Reduction Assay
2.6. Analysis of Phenolic Compounds
2.7. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic and Total Flavonoid Contents
3.2. Antioxidant Activity
3.2.1. DPPH• Scavenging Activity
3.2.2. Antioxidant Activity in Food Products
3.3. Antiproliferative Activity
3.4. Analysis of Phenolic Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruales, J.; Baenas, N.; Moreno, D.A.; Stinco, C.M.; Meléndez-Martínez, A.L.; García-Ruiz, A. Biological Active Ecuadorian Mango ‘Tommy Atkins’ Ingredients—An Opportunity to Reduce Agrowaste. Nutrients 2018, 10, 1138. [Google Scholar] [CrossRef] [PubMed]
- FAO-Food and Agriculture Organization of the United Nations FAOSTAT (2016). Available online: http://www.fao.org/faostat/es/#data/QC/visualize (accessed on 19 December 2018).
- López Hernández, M.P.; Sandoval Aldana, A.P.; Valencia Montoya, J.A. Características fisicoquímicas de la grasa de semilla de veinte cultivares de mango (Mangifera indica L.) en Colombia. Rev. Bras. Frutic. 2016, 38, 10–21. [Google Scholar] [CrossRef]
- Corrales-Bernal, A.; Maldonado, M.E.; Urango, L.A.; Franco, M.C.; Rojano, B.A. Sugar mango (Mangifera indica), variety from Colombia: Antioxidant, nutritional and sensorial characteristics. Rev. Chil. Nutr. 2014, 41, 312–318. [Google Scholar] [CrossRef]
- Ribeiro, S.M.R.; Barbosa, L.C.A.; Queiroz, J.H.; Knödler, M.; Schieber, A. Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chem. 2008, 110, 620–626. [Google Scholar] [CrossRef]
- Sogi, D.S.; Siddiq, M.; Greiby, I.; Dolan, K.D. Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods. Food Chem. 2013, 141, 2649–2655. [Google Scholar] [CrossRef] [PubMed]
- Dávila, J.A.; Hernández, V.; Castro, E.; Cardona, C.A. Economic and environmental assessment of syrup production. Colombian case. Bioresour. Technol. 2014, 161, 84–90. [Google Scholar] [CrossRef]
- Kao, T.H.; Chen, B.H. Fruits and vegetables. In Valorization of Food Processing By-Products, 1st ed.; Chandrasekaran, M., Ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 517–557. [Google Scholar]
- Herrero, M.; Sanchez-Camargo, A.; Cifuentes, A.; Ibañez, E. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction. Trends Anal. Chem. 2015, 71, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Mazzutti, S.; Gonçalves Rodrigues, L.G.; Mezzomo, N.; Venturi, V.; Ferreira, S.R.S. Integrated green-based processes using supercritical CO2 and pressurized ethanol applied to recover antioxidant compounds from cocoa (Theobroma cacao) bean hulls. J. Supercrit. Fluids 2018, 135, 52–59. [Google Scholar] [CrossRef]
- Valadez-Carmona, L.; Ortiz-Moreno, A.; Ceballos-Reyes, G.; Mendiola, J.A.; Ibáñez, E. Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. J. Supercrit. Fluids 2018, 131, 99–105. [Google Scholar] [CrossRef]
- Martins, N.; Ferreira, I.C.F.R. Wastes and by-products: Upcoming sources of carotenoids for biotechnological purposes and health-related applications. Trends Food Sci. Technol. 2017, 62, 33–48. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M.; Domínguez, R.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Shpigelman, A.; Granato, D.; Franco, D. Berries extracts as natural antioxidants in meat products: A review. Food Res. Int. 2018, 106, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-Y.; Kuo, C.-H.; Wu, C.-H.; Kuan, A.-W.; Guo, H.-R.; Lin, H.-H.; Wang, P.-K. Free Radical-Scavenging, Anti-Inflammatory, and Antibacterial Activities of Water and Ethanol Extracts Prepared from Compressional-Puffing Pretreated Mango (Mangifera indica L.) Peels. J. Food Qual. 2018, 1–13. [Google Scholar] [CrossRef]
- Imran, M.; Butt, M.S.; Anjum, F.M.; Sultan, J.I. Chemical Profiling of Different Mango Peel Varieties. Pak. J. Nutr. 2016, 12, 934–942. [Google Scholar] [CrossRef]
- Bai, X.; Lai, T.; Zhou, T.; Li, Y.; Li, X.; Zhang, H. In Vitro Antioxidant Activities of Phenols and Oleanolic Acid from Mango Peel and Their Cytotoxic Effect on A549 Cell Line. Molecules 2018, 23, 1395. [Google Scholar] [CrossRef] [PubMed]
- Prakash, D.; Upadhyay, G.; Pushpangadan, P.; Gupta, C. Antioxidant and Free Radical Scavenging Activities of Some Fruits. J. Complement. Integr. Med. 2011, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Khammuang, S.; Sarnthima, R. Antioxidant and antibacterial activities of selected varieties of Thai mango seed extract. Pak. J. Pharm. Sci. 2011, 24, 37–42. [Google Scholar]
- Maisuthisakul, P.; Gordon, M.H. Characterization and storage stability of the extract of Thai mango (Mangifera indica Linn. Cultivar Chok-Anan) seed kernels. J. Food Sci. Technol. 2014, 51, 1453–1462. [Google Scholar] [CrossRef]
- Torres-León, C.; Rojas, R.; Serna-Cock, L.; Belmares-Cerda, R.; Aguilar, C.N. Extraction of antioxidants from mango seed kernel: Optimization assisted by microwave. Food Bioprod. Process. 2017, 105, 188–196. [Google Scholar] [CrossRef]
- Siriamornpun, S.; Tangkhawanit, E.; Kaewseejan, N. Reducing retrogradation and lipid oxidation of normal and glutinous rice flours by adding mango peel powder. Food Chem. 2016, 201, 160–167. [Google Scholar] [CrossRef]
- Abdullah, A.-S.H.; Mohammed, A.S.; Abdullah, R.; Mirghani, M.E.S.; Al-Qubaisi, M. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract. BMC Complement Altern. Med. 2014, 14, 199. [Google Scholar] [CrossRef]
- Gold-Smith, F.; Fernandez, A.; Bishop, K. Mangiferin and Cancer: Mechanisms of Action. Nutrients 2016, 8, 396. [Google Scholar] [CrossRef] [PubMed]
- Hosu, A.; Cristea, V.-M.; Cimpoiu, C. Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: Prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chem. 2014, 150, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Yang, M.; Wen, H.; Chern, J. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Castro-Vargas, H.I.; Rodríguez-Varela, L.I.; Ferreira, S.R.S.; Parada-Alfonso, F. Extraction of phenolic fraction from guava seeds (Psidium guajava L.) using supercritical carbon dioxide and co-solvents. J. Supercrit. Fluids. 2010, 51, 319–324. [Google Scholar] [CrossRef]
- Castro-Vargas, H.I.; Baumann, W.; Parada-Alfonso, F. Valorization of agroindustrial wastes: Identification by LC-MS and NMR of benzylglucosinolate from papaya (Carica papaya L.) seeds, a protective agent against lipid oxidation in edible oils. Electrophoresis 2016, 37, 1930–1937. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vargas, H.I.; Benelli, P.; Ferreira, S.R.S.; Parada-Alfonso, F. Supercritical fluid extracts from tamarillo (Solanum betaceum Sendtn) epicarp and its application as protectors against lipid oxidation of cooked beef meat. J. Supercrit. Fluids 2013, 76, 17–23. [Google Scholar] [CrossRef]
- Escobar, M.L.; Aristizábal, G.F.A.; Rivera, U.A. Estudio comparativo de los métodos de resazurina y MTT en estudios de citotoxicidad en líneas celulares tumorales humanas. Vitae 2010, 17, 67–74. [Google Scholar]
- Escobar, M.L.; Aristizábal, G.F.A. Aplicación de un método fluorométrico para evaluar la proliferación celular en líneas celulares tumorales. Vitae 2010, 17, 173–180. [Google Scholar]
- Abbasi, A.M.; Guo, X.; Fu, X.; Zhou, L.; Chen, Y.; Zhu, Y.; Yan, H.; Liu, R.H. Comparative Assessment of Phenolic Content and in Vitro Antioxidant Capacity in the Pulp and Peel of Mango Cultivars. Int. J. Mol. Sci. 2015, 16, 13507–13527. [Google Scholar] [CrossRef] [Green Version]
- Patthamakanokporn, O.; Puwastien, P.; Nitithamyong, A.; Sirichakwal, P.P. Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. J. Food Compos. Anal. 2008, 21, 241–248. [Google Scholar] [CrossRef]
- Zhang, X.; Lee, F.-Z.; Eun, J.-B. Changes of phenolic compounds and pectin in Asian pear fruit during growth. Korean J. Food Sci. Tech. 2007, 39, 7–13. [Google Scholar]
- Oroian, M.; Escriche, I. Antioxidants: Characterization, natural sources, extraction and analysis. Food Res. Int. 2015, 74, 10–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, F.L.; Gan, R.Y.; Zhang, Y.; Xiao, Q.; Kuang, L.; Li, H.B. Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. Int. J. Mol. Sci. 2010, 11, 2362–2372. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fang, J.; Wei, L.; Zhang, Y.; Deng, H.; Guo, Y.; Hu, C.; Meng, Y. Decrease of microbial community diversity, biogenic amines formation, and lipid oxidation by phloretin in Atlantic salmon fillets. LWT Food Sci. Technol. 2019, 101, 419–426. [Google Scholar] [CrossRef]
- Xu, L.; Cheng, J.-R.; Liu, X.-M.; Zhu, M.-J. Effect of microencapsulated process on stability of mulberry polyphenol and oxidation property of dried minced pork slices during heat processing and storage. LWT Food Sci. Technol. 2019, 100, 62–68. [Google Scholar] [CrossRef]
- De Carli, C.; Moraes-Lovison, M.; Pinho, S.C. Production, physicochemical stability of quercetin-loaded nanoemulsions and evaluation of antioxidant activity in spreadable chicken pâtés. LWT Food Sci. Technol. 2018, 98, 154–161. [Google Scholar] [CrossRef]
- Kurtulbaş, E.; Bilgin, M.; Şahin, S. Assessment of lipid oxidation in cottonseed oil treated with phytonutrients: Kinetic and thermodynamic studies. Ind. Crops Prod. 2018, 124, 593–599. [Google Scholar] [CrossRef]
- Kazutoshi, F.; Takayuki, S. Formation of Genotoxic Dicarbonyl Compounds in Dietary Oils upon Oxidation. Lipids 2004, 39, 481–486. [Google Scholar] [CrossRef]
- Guillén-Sans, R.; Guzmán-Chozas, M. The Thiobarbituric Acid (TBA) Reaction in Foods: A Review. Crit. Ver. Food Sci. Nutr. 1998, 38, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Puravankara, D.; Boghra, V.; Sharma, R.S. Effect of antioxidant principles isolated from mango (Mangifera indica L) seed kernels on oxidative stability of buffalo ghee (butter-fat). J. Sci. Food Agric. 2000, 80, 522–526. [Google Scholar] [CrossRef]
- Timsina, B.; Nadumane, V.K. Mango seeds: A potential source for the isolation of bioactive compounds with anti-cancer activity. Int. J. Pharm. Pharm. Sci. 2015, 7, 89–95. [Google Scholar]
- Rocha, L.D.; Monteiro, M.C.; Teodoro, A.J. Anticancer Properties of Hydroxycinnamic Acids—A Review. Cancer Clin. Oncol. 2012, 1, 109–121. [Google Scholar] [CrossRef]
- Khurana, R.K.; Kaur, R.; Lohan, S.; Singh, K.K.; Singh, B. Mangiferin: A promising anticancer bioactive. Pharm. Pat. Anal. 2016, 5, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Noratto, G.D.; Bertoldi, M.C.; Krenek, K.; Talcott, S.T.; Stringheta, P.C.; Mertens-Talcott, S.U. Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties. J. Agric. Food Chem. 2010, 58, 4104–4112. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Caravaca, A.M.; López-Cobo, A.; Verardo, V.; Segura-Carretero, A.; Fernández-Gutíerrez, A. HPLC-DAD-q-TOF-MS as a powerful platform for the determination of phenolic and other polar compounds in the edible part of mango and its by-products (peel, seed, and seed husk). Electrophoresis 2016, 37, 1072–1084. [Google Scholar] [CrossRef] [PubMed]
- López-Cobo, A.; Verardo, A.; Diaz-de-Cerio, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Gómez-Caravaca, A.M. Use of HPLC- and GC-QTOF to determine hydrophilic and lipophilic phenols in mango fruit (Mangifera indica L.) and its by-products. Food Res. Int. 2017, 100, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Barreto, J.C.; Trevisan, M.T.S.; Hull, W.E.; Erben, G.; De Brito, E.S.; Pfundstein, B.; Würtele, G.; Spiegelhalder, B.; Owen, R.W. Characterization and Quantitation of Polyphenolic Compounds in Bark, Kernel, Leaves, and Peel of Mango (Mangifera indica L.). J. Agric. Food Chem. 2008, 56, 5599–5610. [Google Scholar] [CrossRef] [PubMed]
- Vithana, M.D.K.; Singh, Z.; Johnson, S.K. Levels of terpenoids, mangiferin and phenolic acids in the pulp and peel of ripe mango fruit influenced by pre-harvest spray application of FeSO4 (Fe2+), MgSO4 (Mg2+) and MnSO4 (Mn2+). Food Chem. 2018, 256, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Vithana, M.D.K.; Singh, Z.; Johnson, S.K. Cold storage temperatures and durations affect the concentrations of lupeol, mangiferin, phenolic acids and other health-promoting compounds in the pulp and peel of ripe mango fruit. Postharvest Bio. Tec. 2018, 139, 91–98. [Google Scholar] [CrossRef]
- Vithana, M.D.K.; Singh, Z.; Johnson, S.K. Harvest maturity stage affects the concentrations of health-promoting compounds: Lupeol, mangiferin and phenolic acids in the pulp and peel of ripe ‘Kensington Pride’ mango fruit. Sci. Hortic. 2019, 243, 125–130. [Google Scholar] [CrossRef]
- Silva da Veiga, A.A.; Chaves Neto, A.M.J.; Ferreira da Silva, A.B.; Herculano, A.M.; Matos Oliveira, K.R.; dos Santos Borges, R. Sugar moiety has a synergistic effect on hydroxylated xanthone for better antioxidant activity of mangiferin. Med. Chem. Res. 2018, 27, 1276–1282. [Google Scholar] [CrossRef]
- Imran, M.; Butt, M.S.; Akhtar, S.; Riaz, M.; Iqbal, M.J.; Suleria, H.A.R. Quantification of Mangiferin by High Pressure Liquid Chromatography; Physicochemical and Sensory Evaluation of Functional Mangiferin Drink. J. Food Process. Pres. 2016, 40, 760–769. [Google Scholar] [CrossRef]
- Boonnattakorn, R.; Chonhenchob, B.; Siddiq, M.; Singh, S.P. Controlled Release of Mangiferin Using Ethylene Vinyl Acetate Matrix for Antioxidant Packaging. Packag. Technol. Sci. 2015, 28, 241–252. [Google Scholar] [CrossRef]
- Jiang, L.Y.; He, S.; Pan, Y.J.; Sun, C.R. Bioassay-guided isolation and EPR-assisted antioxidant evaluation of two valuable compounds from mango peels. Food Chem. 2010, 119, 1285–1292. [Google Scholar] [CrossRef]
- Namngam, C.; Boonyuen, S.; Pinsirodom, P. Fractionation, Antioxidant and Inhibitory Activity of Thai Mango Seed Kernel Extracts. Czech J. Food Sci. 2018, 36, 8–15. [Google Scholar] [CrossRef]
Mango Waste | TPC (mg GAE/100 g Raw Material) | TFC (mg quer/100 g Raw Material) | DPPH Radical Scavenging Activity (µmol Trolox/100 g Raw Material) |
---|---|---|---|
PS | 1838.3 ± 0.01 b | 19.8 ± 0.01 d | 4480 ± 3 c |
SCS | 723.0 ± 0.14 c | 7.5 ± 0.03 e | 1970 ± 4 d |
SKS | 48.6 ± 0.09 f | 56.1 ± 0.01 a | 40 ± 0.5 g |
PT | 3553.2 ± 0.01a | 26.0 ± 0.01 c | 6280 ± 10 b |
SCT | 581.4 ± 0.01 d | 4.8 ± 0.01 f | 790 ± 6 e |
SKT | 280.3 ± 0.01 e | 34.4 ± 0.01 b | 180 ± 2 f |
Gallic acid | - | - | 27899 ± 65 a |
Hydroperoxides 1 | ||||||
Sample | Oxidation Time (days) | |||||
0 | 3 | 6 | 9 | 12 | 15 | |
Control 2 | 11.03 ax | 11.28 cx | 13.52 dx | 32.22 ay | 52.92 az | 54.69 az |
PS | 5.18 cx | 11.00 cx | 12.44 ex | 15.02 ey | 16.22 fy | 23.35 ez |
SCS | 5.55 cw | 7.40 dw | 15.55 dx | 19.70 cy | 22.90 ez | 26.15 dz |
SKS | 5.06 cv | 8.80 dw | 12.23 ex | 13.86 fx | 17.43 fy | 23.18 ez |
PT | 6.10 bv | 17.28 bw | 18.95 cw | 21.13 bx | 29.80 cy | 48.21 bz |
SCT | 5.06 cw | 8.53 dx | 21.21 by | 23.47 by | 27.12 dz | 29.31 cz |
SKT | 5.91 bv | 18.96 aw | 25.19 ax | 33.10 ay | 36.15 by | 46.53 bz |
TBHQ | 5.55 cw | 10.23 cx | 19.86 cz | 17.89 dy | 18.00 fy | 18.18 gy |
Gallic acid | 5.06 cw | 8.42 dx | 10.91 ex | 17.50 dy | 16.33 fy | 20.26 fz |
Thiobarbituric Acid Reactive Substances 3 | ||||||
Sample | Oxidation Time (days) | |||||
0 | 3 | 6 | 9 | 12 | 15 | |
Control 2 | 0.18 aw | 2.68 ax | 3.91 ay | 6.35 az | 6.05 az | 7.03 az |
PS | 0.04 cv | 0.04 ev | 0.39 ew | 0.75 gx | 1.67 fy | 2.07 ez |
SCS | 0.18 av | 1.82 bw | 2.46 bx | 4.26 by | 5.07 bz | 5.93 bz |
SKS | 0.04 cw | 0.09 ex | 1.79 cy | 1.85 dy | 2.17 dz | 2.74 dz |
PT | 0.04 cv | 0.83 dw | 1.26 cx | 1.89 dy | 2.39 dz | 2.05 ey |
SCT | 0.04 cv | 0.16 ew | 1.32 cx | 1.52 ex | 1.94 ey | 2.83 dz |
SKT | 0.04 cv | 0.85 cw | 1.37 cx | 1.73 dy | 2.20 dz | 2.07 ez |
TBHQ | 0.18 aw | 0.40 dx | 3.06 ay | 2.94 cy | 3.28 cz | 3.67 cz |
Gallic acid | 0.04 cw | 0.09 ex | 0.99 dy | 1.11 fy | 1.29 gy | 2.78 dz |
Hydroperoxides 1 | ||||
Sample | Oxidation Time (days) | |||
0 | 3 | 6 | 9 | |
Control 2 | 5.49 aw | 11.04 ax | 23.54 ay | 32.07 az |
PS | 5.38 ax | 6.91 dy | 6.55 ey | 8.12 cz |
SCS | 5.15 aw | 10.73 az | 6.18 ex | 8.47 cy |
SKS | 3.83 bx | 6.31 ey | 6.20 ey | 8.93 cz |
PT | 4.24 bw | 7.55 dx | 9.70 cy | 10.85 bz |
SCT | 3.83 bw | 6.95 dz | 6.42 ex | 7.30 dy |
SKT | 4.24 bx | 7.49 dy | 10.11 bz | 10.66 bz |
TBHQ | 5.15 ax | 4.76 fx | 5.51 ey | 6.93 dz |
Gallic acid | 3.83 bx | 8.13 cy | 8.03 dy | 10.31 bz |
Thiobarbituric Acid Reactive Substances 3 | ||||
Sample | Oxidation Time (days) | |||
0 | 3 | 6 | 9 | |
Control 2 | 0.54 ax | 0.65 by | 0.71 by | 1.16 bz |
PS | 0.17 dy | 0.14 dy | 0.31 dz | 0.28 gz |
SCS | 0.33 bx | 0.35 cx | 0.44 cy | 0.61 dz |
SKS | 0.22 cy | 0.36 cz | 0.32 dz | 0.38 fz |
PT | 0.17 dx | 1.37 ay | 1.47 ay | 1.65 az |
SCT | 0.22 cy | 0.30 cz | 0.19 ey | 0.25 gz |
SKT | 0.17 dy | 0.67 bz | 0.67 bz | 0.70 cz |
TBHQ | 0.13 ey | 0.12 dy | 0.37 cz | 0.37 fz |
Gallic acid | 0.12 ex | 0.15 dx | 0.38 cy | 0.52 ez |
Signal | Proposed Compound | Retention Time (Minutes) | [M−H]−m/z 1 | Molecular Formula | Error (ppm) | Score (%) |
---|---|---|---|---|---|---|
1 | 3-β-Galactopyrasonyl glucose | 3.998 | 341.1101 | C12H22O11 | −3.11 | 97.13 |
2 | Shikimic acid | 5.705 | 173.0451 | C7H10O5 | 2.62 | 98.82 |
3 | Quinic acid | 6.732 | 191.0562 | C7H12O6 | 0.42 | 99.47 |
4 | Galloyl glucose | 13.078 | 331.0676 | C13H16O10 | −0.89 | 99.36 |
5 | Galloyl diglucoside | 17.005 | 493.1203 | C19H26O15 | −0.42 | 99.11 |
6 | 5-O-galloylquinic acid | 19.225 | 343.0679 | C14H16O10 | −1.93 | 97.18 |
7 | NI | 23.434 | 443.1933 | - | −2.32 | - |
8 | NI | 26.002 | 183.0314 | - | −1.29 | 97.21 |
9 | Mangiferin | 27.576 | 421.0784 | C19H18O11 | 0.25 | 99.58 |
10 | Trygalloyl glucose isomer I | 28.421 | 635.0892 | C27H24O18 | 0.25 | 99.58 |
11 | Trygalloyl glucose isomer II | 28.753 | 635.0895 | C27H24O18 | −1.92 | 96.54 |
12 | Tetragalloyl glucose isomer I | 29.068 | 787.1003 | C34H28O22 | 0.13 | 99.50 |
13 | Tetragalloyl glucose isomer II | 29.383 | 787.0993 | C34H28O22 | −0.81 | 97.25 |
14 | Tetragalloyl glucose isomer III | 29.581 | 787.1003 | C34H28O22 | −0.45 | 99.36 |
15 | Pentagalloyl glucose | 29.929 | 939.1111 | C41H32O26 | 0.91 | 93.54 |
16 | Methyl digallate ester | 30.675 | 335.0425 | C15H12O9 | 0.51 | 99.06 |
17 | NI | 31.172 | 907.1197 | C41H32O24 | −1.34 | 97.26 |
18 | NI | 33.094 | 374.3275 | - | −2.40 | 95.75 |
19 | NI | 33.889 | 416.3752 | - | 2.08 | - |
20 | Anacardic acid | 46.863 | 343.2284 | C22H32O3 | - | - |
21 | Ginkgoic acid | 48.504 | 345.2447 | C22H34O3 | - | - |
22 | NI | 49.001 | 371.2610 | C24H36O3 | −1.65 | 99.30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Vargas, H.I.; Ballesteros Vivas, D.; Ortega Barbosa, J.; Morantes Medina, S.J.; Aristizabal Gutiérrez, F.; Parada-Alfonso, F. Bioactive Phenolic Compounds from the Agroindustrial Waste of Colombian Mango Cultivars ‘Sugar Mango’ and ‘Tommy Atkins’—An Alternative for Their Use and Valorization. Antioxidants 2019, 8, 41. https://doi.org/10.3390/antiox8020041
Castro-Vargas HI, Ballesteros Vivas D, Ortega Barbosa J, Morantes Medina SJ, Aristizabal Gutiérrez F, Parada-Alfonso F. Bioactive Phenolic Compounds from the Agroindustrial Waste of Colombian Mango Cultivars ‘Sugar Mango’ and ‘Tommy Atkins’—An Alternative for Their Use and Valorization. Antioxidants. 2019; 8(2):41. https://doi.org/10.3390/antiox8020041
Chicago/Turabian StyleCastro-Vargas, Henry I., Diego Ballesteros Vivas, Jenny Ortega Barbosa, Sandra Johanna Morantes Medina, Fabio Aristizabal Gutiérrez, and Fabián Parada-Alfonso. 2019. "Bioactive Phenolic Compounds from the Agroindustrial Waste of Colombian Mango Cultivars ‘Sugar Mango’ and ‘Tommy Atkins’—An Alternative for Their Use and Valorization" Antioxidants 8, no. 2: 41. https://doi.org/10.3390/antiox8020041
APA StyleCastro-Vargas, H. I., Ballesteros Vivas, D., Ortega Barbosa, J., Morantes Medina, S. J., Aristizabal Gutiérrez, F., & Parada-Alfonso, F. (2019). Bioactive Phenolic Compounds from the Agroindustrial Waste of Colombian Mango Cultivars ‘Sugar Mango’ and ‘Tommy Atkins’—An Alternative for Their Use and Valorization. Antioxidants, 8(2), 41. https://doi.org/10.3390/antiox8020041