Effect of Natural Preservatives on the Nutritional Profile, Chemical Composition, Bioactivity and Stability of a Nutraceutical Preparation of Aloe arborescens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Standards and Reagents
2.3. Antioxidant Activity of the Nutraceutical Formulations
2.3.1. Thiobarbituric Acid Reactive Substances (TBARS) Analysis
2.3.2. Oxidative Hemolysis Inhibition Assay
2.4. Nutritional Profile of the Nutraceutical Formulations
2.5. Fatty Acid Profiles
2.6. Mineral and Chemical Composition of the Nutraceutical Formulations
2.6.1. Mineral Profiles
2.6.2. Free Sugars and Organic Acids
2.7. Phenolic Compounds
2.8. Microbiological Analysis
2.8.1. Contamination Procedure
2.8.2. General Sample Preparation
2.8.3. Microorganism Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Antioxidant and Nutritional Profile
3.2. Fatty Acids
3.3. Chemical Profile
3.4. Phenolic Compounds
3.5. Linear Discriminant Analysis (LDA)
3.6. Microbiological Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guphta, C.; Prakash, D. Nutraceuticals for geriatrics. J. Tradit. Complement. Med. 2015, 5, 5–14. [Google Scholar]
- Kaur, A.; Gupta, V.; Christopher, A.F.; Malik, M.A.; Bansal, P. Nutraceuticals in prevention of cataract—An evidence based approach. Saudi J. Ophthalmol. 2017, 31, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Zapata, P.J.; Navarro, D.; Guillén, F.; Castillo, S.; Martínez-Romero, D.; Valero, D.; Serrano, M. Characterisation of gels from different Aloe spp. as antifungal treatment: Potential crops for industrial applications. Ind. Crops Prod. 2013, 42, 223–230. [Google Scholar] [CrossRef]
- Akaberi, M.; Sobhani, Z.; Javadi, B.; Sahebkar, A.; Emami, S.A. Therapeutic effects of Aloe spp. in traditional and modern medicine: A review. Biomed. Pharmacother. 2016, 84, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Lucini, L.; Pellizzoni, M.; Pellegrino, R.; Molinari, G.P.; Colla, G. Phytochemical constituents and in vitro radical scavenging activity of different Aloe species. Food Chem. 2015, 170, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Nazeam, J.A.; Gad, H.A.; El-Hefnawy, H.M.; Singab, A.N.B. Chromatographic separation and detection methods of Aloe arborescens Miller constituents: A systematic review. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1058, 57–67. [Google Scholar] [CrossRef]
- Cardarelli, M.; Rouphael, Y.; Pellizzoni, M.; Colla, G.; Lucini, L. Profile of bioactive secondary metabolites and antioxidant capacity of leaf exudates from eighteen Aloe species. Ind. Crops Prod. 2017, 108, 44–51. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Natural food additives: Quo vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci. Technol. 2018, 71, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Lennerz, B.S.; Vafai, S.B.; Delaney, N.F.; Clish, C.B.; Deik, A.A.; Pierce, K.A.; Ludwig, D.S.; Mootha, V.K. Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans. Mol. Genet. Metab. 2015, 114, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruna, G.O.L.; Thais, A.C.C.; Lígia, A.C.C. Food additives and their health effects: A review on preservative sodium benzoate. African, J. Biotechnol. 2018, 17, 306–310. [Google Scholar] [CrossRef] [Green Version]
- Carocho, M.; Barreira, J.C.M.; Bento, A.; Fernández-Ruiz, V.; Morales, P.; Ferreira, I.C.F.R. Chestnut and lemon balm based ingredients as natural preserving agents of the nutritional profile in matured “Serra da Estrela” cheese. Food Chem. 2016, 204, 185–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campêlo, M.C.S.; Medeiros, J.M.S.; Silva, J.B. Natural products in food preservation*. Int. Food Res. J. 2019, 26, 41–46. [Google Scholar]
- Kerdudo, A.; Burger, P.; Merck, F.; Dingas, A.; Rolland, Y.; Michel, T.; Fernandez, X. Développement d’un ingrédient naturel: Étude de cas d’un conservateur naturel. Comptes Rendus Chim. 2016, 19, 1077–1089. [Google Scholar] [CrossRef] [Green Version]
- Ng, K.R.; Lyu, X.; Mark, R.; Chen, W.N. Antimicrobial and antioxidant activities of phenolic metabolites from flavonoid-producing yeast: Potential as natural food preservatives. Food Chem. 2019, 270, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, A.; Barros, L.; Fernandes, Â.; Carvalho, A.M.; Ferreira, I.C. Valorization of traditional foods: Nutritional and bioactive properties of Cicer arietinum L. and Lathyrus sativus L. pulses. J. Sci. Food Agric. 2015, 95, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Mandim, F.; Barros, L.; Calhelha, R.C.; Abreu, R.M.V.; Pinela, J.; Alves, M.J.; Heleno, S.; Santos, P.F.; Ferreira, I.C.F.R. Calluna vulgaris (L.) Hull: Chemical characterization, evaluation of its bioactive properties and effect on the vaginal microbiota. Food Funct. 2019, 10, 78–89. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed; AOAC: Arlington, TX, USA, 2016. [Google Scholar]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- Pinela, J.; Montoya, C.; Carvalho, A.M.; Martins, V.; Rocha, F.; Barata, A.M.; Barros, L.; Ferreira, I.C.F.R. Phenolic composition and antioxidant properties of ex-situ conserved tomato (Solanum lycopersicum L.) germplasm. Food Res. Int. 2019, 125, 108545. [Google Scholar] [CrossRef] [Green Version]
- ISO. Microbiology of food and animal feeding stuffs—Horizontal method for the enumeration of sulfite- reducing bacteria growing under anaerobic conditions. ISO 15213 2003, 1–6. [Google Scholar]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. The Health Efficacy of Aloe and Its Development and Utilization. Asian Soc. Sci. 2009, 5, 151–154. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Tolerable Upper Intake Levels for Vitamins and Mineral. 2006. Available online: https://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf (accessed on 9 June 2019).
- Alderman, M.H. Salt, blood pressure, and human health. Hypertension 2000, 36, 890–893. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Scientific Opinion on Dietary Reference Values for manganese. EFSA Panel on Dietetic Products, Nutrition and Allergies. EFSA J. 2013, 11, 3419. [Google Scholar]
- Añibarro-Ortega, M.; Pinela, J.; Barros, L.; Ciric, A.; Silva, S.P.; Coelho, E.; Mocan, A.; Calhelha, R.C.; Sokovic, M.; Coimbra, M.A.; et al. Compositional features and bioactive properties of Aloe vera leaf (filler, mucilage, and rind) and flower. Antioxidants 2019, 8, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Sayed, A.M.; Ezzat, S.M.; El Naggar, M.M.; El Hawary, S.S. In vivo diabetic wound healing effect and HPLC–DAD–ESI–MS/MS profiling of the methanol extracts of eight Aloe species. Brazilian J. Pharmacogn. 2016, 26, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Paucar-Menacho, L.M.; Martínez-Villaluenga, C.; Dueñas, M.; Frias, J.; Peñas, E. Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT—Food Sci. Technol. 2017, 76, 236–244. [Google Scholar] [CrossRef]
- Roriz, C.L.; Barros, L.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Pterospartum tridentatum, Gomphrena globosa and Cymbopogon citratus: A phytochemical study focused on antioxidant compounds. Food Res. Int. 2014, 62, 684–693. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.; Wang, Y.F.; Ge, R.L.; Shi, H.M.; Jia, C.Q.; Tu, P.F. Simultaneous analysis of multiple bioactive constituents in Rheum tanguticum Maxim. ex Balf. by high-performance liquid chromatography coupled to tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 2351–2360. [Google Scholar] [CrossRef]
- Battey, A.S.; Duffy, S.; Schaffner, D.W. Modelling mould spoilage in cold-filled ready-to-drink beverages by Aspergillus niger and Penicillium spinulosum. Food Microbiol. 2001, 18, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Carocho, M.; Barros, L.; Bento, A.; Santos-Buelga, C.; Morales, P.; Ferreira, I.C.F.R. Castanea sativa mill. Flowers amongst the most powerful antioxidant matrices: A phytochemical approach in decoctions and infusions. Biomed Res. Int. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carocho, M.; Calhelha, R.C.; Queiroz, M.J.R.P.; Bento, A.; Morales, P.; Soković, M.; Ferreira, I.C.F.R. Infusions and decoctions of Castanea sativa flowers as effective antitumor and antimicrobial matrices. Ind. Crops Prod. 2014, 62, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Baptista, R.C.; Horita, C.N.; Sant’Ana, A.S. Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: A review. Food Res. Int. 2020, 127, 108762. [Google Scholar] [CrossRef]
TBARS | OxHLIA Δt 60 min | OxHLIA Δt 120 min | Moisture (%) | Fat (g/100 g) | Proteins (g/100 g) | Ash (g/100 g) | Carbohydrates (g/100 g) | Energy (Kcal) | Energy (KJ) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
TP | Control | 4.3 ± 0.5 c | 332 ± 192 | 715 ± 419 | 67.92 ± 0.05 d | 0.06 ± 0.03 | 0.37 ± 0.01 a, b | 0.63 ± 0.02 | 98.94 ± 0.04 | 397.8 ± 0.2 | 1664.3 ± 0.8 |
Sodium Benzoate | 6.1 ± 0.9 e | 273 ± 40 | 576 ± 161 | 67.29 ± 0.06 c | 0.05 ± 0.02 | 0.42 ± 0.01 d | 0.68 ± 0.02 | 98.84 ± 0.03 | 397.8 ± 0.2 | 1664 ± 3 | |
Citric Acid | 5 ± 2 d | 381 ± 101 | 792 ± 286 | 67.1 ± 0.1 b | 0.05 ± 0.01 | 0.38 ± 0.01 c | 0.62 ± 0.02 | 98.95 ± 0.03 | 397.8 ± 0.2 | 1664 ± 3 | |
Quercetin | 0.037 ± 0.008 a | 139 ± 62 | 208 ± 99 | 66.33 ± 0.09 a | 0.04 ± 0.01 | 0.378 ± 0.009 b, c | 0.61 ± 0.01 | 98.97 ± 0.03 | 397.77 ± 0.06 | 1664.3 ± 0.8 | |
Chestnut Flower | 0.109 ± 0.005 a | 228 ± 136 | 393 ± 244 | 68.012 ± 0.07 d | 0.06 ± 0.02 | 0.362 ± 0.008 a | 0.60 ± 0.03 | 98.97 ± 0.03 | 397.8 ± 0.2 | 1664.3 ± 0.8 | |
Chestnut Extract | 0.6 ± 0.2 b | 370 ± 144 | 962 ± 377 | 71.05 ± 0.0 4e | 0.04 ± 0.02 | 0.39 ± 0.01 c | 0.557 ± 0.008 | 99.01 ± 0.01 | 397.7 ± 0.3 | 1664 ± 1 | |
p-value (n = 5) | Tukey’s HSD text | <0.001 | 0.009 | <0.001 | <0.001 | 0.016 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
ST | T0 | 2 ± 2 | 184 ± 66 | 421 ± 207 | 68 ± 1 | 0.05 ± 0.01 | 0.38 ± 0.02 | 0.61 ± 0.04 | 98.95 ± 0.06 | 397.8 ± 0.1 | 1664 ± 2 |
T30 | 3 ± 3 | 380 ± 167 | 881 ± 480 | 68 ± 1 | 0.07 ± 0.03 | 0.39 ± 0.02 | 0.61 ± 0.04 | 98.93 ± 0.07 | 397.9 ± 0.3 | 1664 ± 1 | |
T45 | 3 ± 3 | 297 ± 119 | 522 ± 198 | 68 ± 1 | 0.039 ± 0.008 | 0.38 ± 0.02 | 0.61 ± 0.04 | 98.96 ± 0.05 | 397.7 ± 0.1 | 1664 ± 2 | |
p-value (n = 15) | Tukey’s HSD test | 0.358 | <0.001 | <0.001 | 0.954 | <0.001 | 0.347 | 0.869 | <0.001 | 0.210 | 0.210 |
TP×ST (n = 90) | p-value | 0.121 | <0.001 | <0.001 | 0.954 | 0.017 | 0.169 | <0.001 | 0.001 | 0.047 | 0.047 |
C10:0 | C11:0 | C12:0 | C14:0 | C15:0 | C16:0 | C18:0 | C18:1n9c | C22:0 | SFA | MUFA | PUFA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | Control | 4.1 ± 0.5 | 6 ± 2 | 2.5 ± 0.6 | 5 ± 1 | 2.2 ± 0.7 | 38 ± 4 | 20 ± 4 | 6.3 ± 0.9 | 5 ± 1 | 88 ± 2 | 7 ± 1 | 4.1 ± 0.9 |
Sodium Benzoate | 5.5 ± 0.8 | 8 ± 2 | 2.8 ± 0.5 | 5.8 ± 0.6 | 2.0 ± 0.7 | 34 ± 1 | 19 ± 4 | 5.9 ± 0.9 | 5 ± 1 | 88 ± 2 | 7.5 ± 0.8 | 4 ± 1 | |
Citric Acid | 4 ± 1 | 5.3 ± 0.7 | 2.1 ± 0.5 | 5.8 ± 0.7 | 2.5 ± 0.4 | 39 ± 4 | 19 ± 4 | 5.8 ± 0.4 | 5 ± 2 | 89.9 ± 0.9 | 6.8 ± 0.3 | 3.1 ± 0.7 | |
Quercetin | 4 ± 1 | 6 ± 3 | 2.3 ± 0.3 | 5.4 ± 0.3 | 2.1 ± 0.3 | 38 ± 5 | 19 ± 4 | 5.5 ± 0.7 | 7 ± 2 | 89.8 ± 0.6 | 6.7 ± 0.9 | 3.4 ± 0.3 | |
Chestnut Flower | 4.3 ± 0.5 | 5.1 ± 0.9 | 1.8 ± 0.2 | 4.2 ± 0.7 | 1.5 ± 0.2 | 41 ± 3 | 20 ± 4 | 4.2 ± 0.6 | 6 ± 2 | 91.0 ± 0.9 | 5.3 ± 0.7 | 3.7 ± 0.2 | |
Chestnut Extract | 4.8 ± 0.5 | 7 ± 1 | 2.0 ± 0.4 | 5.3 ± 0.9 | 1.7 ± 0.3 | 39 ± 5 | 18 ± 3 | 5.3 ± 0.4 | 6 ± 1 | 89.9 ± 0.3 | 6.7 ± 0.2 | 3.4 ± 0.2 | |
p-value (n = 5) | Tukey’s HSD text | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.001 | <0.001 | <0.001 | <0.001 |
ST | T0 | 4.3 ± 0.9 | 6 ± 1 | 2.1 ± 0.2 | 5.5 ± 0.4 | 1.9 ± 0.5 | 38 ± 2 | 22 ± 2 | 5.6 ± 0.9 | 4.2 ± 0.8 | 89 ± 1 | 7.0 ± 0.9 | 4.0 ± 0.8 |
T30 | 4.1 ± 0.8 | 5 ± 1 | 2.1 ± 0.3 | 5.1 ± 0.6 | 1.7 ± 0.3 | 40 ± 4 | 21 ± 2 | 5 ± 1 | 5 ± 2 | 90 ± 2 | 6 ± 1 | 3.9 ± 0.7 | |
T45 | 5± 1 | 7 ± 2 | 2.5 ± 0.8 | 5 ± 1 | 2.5 ± 0.5 | 37 ± 5 | 15.6 ± 0.8 | 5.7 ± 0.6 | 7 ± 2 | 90.0 ± 0.9 | 6.9 ± 0.8 | 3.1 ± 0.5 | |
p-value (n = 15) | Tukey’s HSD test | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.124 | <0.001 | <0.001 | <0.001 | <0.001 |
TP×ST (n = 90) | p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Potassium | Sodium | Calcium | Magnesium | Manganese | Zinc | Iron | Copper | Fructose | Glucose | Trehalose | Total Sugars | Malic Acid | Citric Acid | Total Organic Acids | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type of Preservative (TP) | Control | 57 ± 5 | 71 ± 8 | 112 ± 3 | 37 ± 1 | 0.25 ± 0.01 | 0.15 ± 0.01 | 0.2 ± 0.3 | 0.05 ± 0.01 | 13.1 ± 0.7 a | 10.8 ± 0.6 | 0.23 ± 0.03 | 24 ±1 | 0.35 ± 0.03 | 0.03 ± 0.01 | 0.38 ± 0.04 |
Sodium Benzoate | 56 ± 2 | 70 ± 6 | 105 ± 3 | 34.1 ± 0.8 | 0.23 ± 0.01 | 0.15 ± 0.01 | 0.14 ± 0.08 | 0.06 ± 0.01 | 12.6 ± 0.7 a | 10.5 ± 0.9 | 0.23 ± 0.05 | 23 ± 2 | 0.31 ± 0.03 | 0.02 ± 0.01 | 0.34 ± 0.04 | |
Citric Acid | 57 ± 4 | 66 ± 3 | 109 ± 9 | 33 ± 1 | 0.25 ± 0.01 | 0.14 ± 0.01 | 0.15 ± 0.05 | 0.05 ± 0.01 | 13.3 ± 0.6 a | 11.0 ± 0.4 | 0.25 ± 0.05 | 24 ± 1 | 0.35 ± 0.06 | 0.18 ± 0.04 | 0.5 ± 0.1 | |
Quercetin | 64 ± 6 | 58 ± 7 | 101 ± 13 | 33 ± 2 | 0.23 ± 0.01 | 0.14 ± 0.01 | 0.12 ± 0.09 | 0.05 ± 0.01 | 14.5 ± 0.9 b | 11.6 ± 0.7 | 0.31 ± 0.07 | 26 ± 1 | 0.32 ± 0.05 | 0.02 ± 0.01 | 0.34 ± 0.05 | |
Chestnut Flower | 56 ± 5 | 61 ± 7 | 100 ± 15 | 33 ± 3 | 0.27 ± 0.02 | 0.13 ± 0.02 | 0.09 ± 0.01 | 0.05 ± 0.01 | 13 ± 1 a | 11 ± 1 | 0.23 ± 0.07 | 24 ± 2 | 0.37 ± 0.04 | 0.03 ± 0.01 | 0.40 ± 0.04 | |
Chestnut Extract | 50 ± 4 | 60 ± 3 | 97 ± 6 | 32 ± 2 | 0.25 ± 0.01 | 0.12 ± 0.01 | 0.07 ± 0.01 | 0.05 ± 0.01 | 13 ± 1 a | 11 ± 1 | 0.21 ± 0.04 | 24 ± 2 | 0.31 ± 001 | 0.02 ± 0.01 | 0.33 ± 0.02 | |
p-value (n = 5) | Tukey’s HSD text | 0.105 | <0.001 | <0.001 | <0.001 | <0.001 | 0.025 | <0.001 | 0.056 | 0.001 | <0.001 | 0.009 | <0.001 | <0.001 | <0.001 | <0.001 |
Shelf-Life Time (ST) | T0 | 57 ± 8 | 67 ± 15 | 105 ± 12 | 33 ± 3 | 0.25 ± 0.01 | 0.14 ± 0.02 | 0.2 ± 0.2 | 0.05 ± 0.01 | 14.1 ± 0.3 b | 11.9 ± 0.6 | 0.27 ± 0.03 | 26 ± 1 | 0.35 ± 0.05 | 0.06 ± 0.07 | 0.4 ± 0.1 |
T30 | 56 ± 5 | 68 ± 16 | 101 ± 10 | 33 ± 2 | 0.24 ± 0.02 | 0.14 ± 0.01 | 0.09 ± 0.04 | 0.05 ± 0.01 | 12.9 ± 0.3 a | 10.5 ± 0.7 | 0.24 ± 0.05 | 24 ± 1 | 0.33 ± 0.03 | 0.05 ± 0.05 | 0.37 ± 0.05 | |
T45 | 58 ± 4 | 71 ± 13 | 107 ± 8 | 35 ± 2 | 0.25 ± 0.02 | 0.14 ± 0.01 | 0.07 ± 0.01 | 0.06 ± 0.01 | 13.2 ± 0.6 a | 10.7 ± 0.9 | 0.23 ± 0.08 | 24 ± 2 | 0.33 ± 0.04 | 0.04 ± 0.05 | 0.38 ± 0.05 | |
p-value (n = 15) | Tukey’s HSD test | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.005 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
TP×ST (n = 90) | p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.005 | 0.051 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Apigenin-6,8-C-diglucoside* | Apigenin-2’’-O-rhamnose-C-hexoside* | Aloenin** | Aloin B** | Aloin A** | 2’-p-methoxycoumaroyl aloesin** | Total Phenolic Acids | Total Flavonoids | Total Aloin | Total non- Anthraquinones | Total Anthroquinones | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | Control | 0.012 ± 0.003 | 0.009 ± 0.001 | 0.08 ± 0.04 | 0.015 ± 0.003 | 0.014 ± 0.004 | 0.004 ± 0.006 | 0.005 ± 0.001 | 0.09 ± 0.04 | 0.03 ± 0.006 | 0.09 ± 0.04 | 0.12 ± 0.05 |
Sodium Benzoate | 0.009 ± 0.007 | 0.008 ± 0.001 | 0.11 ± 0.04 | 0.015 ± 0.001 | 0.013 ± 0.005 | 0.003 ± 0.002 | 0.005 ± 0.001 | 0.12 ± 0.04 | 0.03 ± 0.01 | 0.12 ± 0.04 | 0.14 ± 0.04 | |
Citric Acid | 0.01 ± 0.01 | 0.010 ± 0.001 | 0.10 ± 0.03 | 0.012 ± 0.01 | 0.011 ± 0.008 | 0.001 ± 0.001 | 0.005 ± 0.001 | 0.11 ± 0.03 | 0.02 ± 0.02 | 0.10 ± 0.03 | 0.13 ± 0.04 | |
Quercetin | 0.024 ± 0.003 | 0.02 ± 0.001 | 0.11 ± 0.02 | 0.020 ± 0.001 | 0.019 ± 0.002 | 0.009 ± 0.003 | 0.006 ± 0.001 | 0.13 ± 0.01 | 0.040 ± 0.001 | 0.12 ± 0.02 | 0.16 ± 0.01 | |
Chestnut Flower | 0.029 ± 0.002 | 0.011 ± 0.001 | 0.14 ± 0.02 | 0.015 ± 0.001 | 0.013 ± 0.006 | 0.02 ± 0.01 | 0.008 ± 0.002 | 0.16 ± 0.02 | 0.028 ± 0.009 | 0.17 ± 0.04 | 0.20 ± 0.04 | |
Chestnut Extract | 0.027 ± 0.004 | 0.011 ± 0.001 | 0.13 ± 0.03 | 0.020 ± 0.001 | 0.013 ± 0.009 | 0.01 ± 0.02 | 0.007 ± 0.001 | 0.14 ± 0.03 | 0.03 ± 0.01 | 0.15 ± 0.05 | 0.18 ± 0.06 | |
p-value (n = 5) | Tukey’s HSD text | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
ST | T0 | 0.019 ± 0.005 | 0.010 ± 0.001 | 0.15 ± 0.02 | 0.016 ± 0.001 | 0.019 ± 0.003 | 0.02 ± 0.01 | 0.006 ± 0.002 | 0.16 ± 0.02 | 0.036 ± 0.005 | 0.17 ± 0.03 | 0.21 ± 0.03 |
T30 | 0.01 ± 0.01 | 0.012 ± 0.001 | 0.10 ± 0.02 | 0.010 ± 0.001 | 0.009 ± 0.006 | 0.004 ± 0.004 | 0.005 ± 0.001 | 0.1 ± 0.02 | 0.02 ± 0.01 | 0.11 ± 0.02 | 0.13 ± 0.03 | |
T45 | 0.024 ± 0.009 | 0.012 ± 0.004 | 0.08 ± 0.02 | 0.019 ± 0.001 | 0.013 ± 0.004 | 0.004 ± 0.004 | 0.006 ± 0.001 | 0.10 ± 0.03 | 0.032 ± 0.008 | 0.09 ± 0.03 | 0.12 ± 0.03 | |
p-value (n =15) | Tukey’s HSD test | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
TP×ST (n = 90) | p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, F.A.; Carocho, M.; Heleno, S.A.; Rodrigues, P.; Dias, M.I.; Pinela, J.; Prieto, M.A.; Simal-Gandara, J.; Barros, L.; Ferreira, I.C.F.R. Effect of Natural Preservatives on the Nutritional Profile, Chemical Composition, Bioactivity and Stability of a Nutraceutical Preparation of Aloe arborescens. Antioxidants 2020, 9, 281. https://doi.org/10.3390/antiox9040281
Fernandes FA, Carocho M, Heleno SA, Rodrigues P, Dias MI, Pinela J, Prieto MA, Simal-Gandara J, Barros L, Ferreira ICFR. Effect of Natural Preservatives on the Nutritional Profile, Chemical Composition, Bioactivity and Stability of a Nutraceutical Preparation of Aloe arborescens. Antioxidants. 2020; 9(4):281. https://doi.org/10.3390/antiox9040281
Chicago/Turabian StyleFernandes, Filipa A., Márcio Carocho, Sandrina A. Heleno, Paula Rodrigues, Maria Inês Dias, José Pinela, Miguel A. Prieto, Jesus Simal-Gandara, Lillian Barros, and Isabel C. F. R. Ferreira. 2020. "Effect of Natural Preservatives on the Nutritional Profile, Chemical Composition, Bioactivity and Stability of a Nutraceutical Preparation of Aloe arborescens" Antioxidants 9, no. 4: 281. https://doi.org/10.3390/antiox9040281
APA StyleFernandes, F. A., Carocho, M., Heleno, S. A., Rodrigues, P., Dias, M. I., Pinela, J., Prieto, M. A., Simal-Gandara, J., Barros, L., & Ferreira, I. C. F. R. (2020). Effect of Natural Preservatives on the Nutritional Profile, Chemical Composition, Bioactivity and Stability of a Nutraceutical Preparation of Aloe arborescens. Antioxidants, 9(4), 281. https://doi.org/10.3390/antiox9040281