Challenges in Vaccinating Layer Hens against Salmonella Typhimurium
Abstract
:1. Introduction
2. Vaccination as a Salmonella Control Strategy
3. Salmonella Typhimurium Vaccines
3.1. Delivery Methods
3.2. Vaccine Efficacy
4. Challenges in Vaccinating Layer Hens against Salmonella Typhimurium
4.1. Does Variation in Bacterial Load on the Farm Affect Vaccine Efficacy?
4.2. Are Current Methods of Vaccine Administration Suitable for Extended Life of a Layer Hen?
4.3. Do Unique Aspects of Salmonella Typhimurium Virulence in Poultry Influence Vaccine Efficacy?
4.4. What Role Do Intestinal Immunity and the Gut Microbiota Play in Vaccine Efficacy?
4.5. Does Parasitic Infection Impact Vaccine Efficacy?
4.6. Do Maternally Derived Antibodies Play a Role?
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Li, M.; Havelaar, A.H.; Hoffmann, S.; Hald, T.; Kirk, M.D.; Torgerson, P.R.; Devleesschauwer, B. Global disease burden of pathogens in animal source foods, 2010. PLoS ONE 2019, 14, e0216545. [Google Scholar] [CrossRef] [PubMed]
- Glass, K.; Fearnley, E.; Hocking, H.; Raupach, J.; Veitch, M.; Ford, L.; Kirk, M. Bayesian source attribution of salmonellosis in South Australia. Risk Anal. 2016, 36, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, C.R.; Musto, J.; Pingault, N.; Miller, M.; Stafford, R.; Gregory, J.; Polkinghorne, B.G.; Kirk, M.D. Salmonella Typhimurium and outbreaks of egg-associated disease in Australia, 2001 to 2011. Foodborne Pathog. Dis. 2016, 13, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Threlfall, E.J.; Wain, J.; Peters, T.; Lane, C.; De Pinna, E.; Little, C.L.; Wales, A.D.; Davies, R.H. Egg-borne infections of humans with Salmonella: Not only an S. enteritidis problem. Worlds Poult. Sci. J. 2014, 70, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Painter, J.A.; Hoekstra, R.M.; Ayers, T.; Tauxe, R.V.; Braden, C.R.; Angulo, F.J.; Griffin, P.M. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 407. [Google Scholar] [CrossRef] [PubMed]
- Gormley, F.; Little, C.; Rawal, N.; Gillespie, I.; Lebaigue, S.; Adak, G. A 17-year review of foodborne outbreaks: Describing the continuing decline in England and Wales (1992–2008). Epidemiol. Infect. 2011, 139, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Ford, L.; Moffatt, C.; Fearnley, E.; Miller, M.; Gregory, J.; Sloan-Gardner, T.; Polkinghorne, B.G.; Bell, R.; Franklin, N.; Williamson, D.A. The Epidemiology of Salmonella enterica outbreaks in Australia, 2001–2016. Front. Sustain. Food Syst. 2018, 2, 86. [Google Scholar] [CrossRef]
- Gantois, I.; Ducatelle, R.; Pasmans, F.; Haesebrouck, F.; Gast, R.; Humphrey, T.J.; Van Immerseel, F. Mechanisms of egg contamination by Salmonella Enteritidis. FEMS Microbiol. Rev. 2009, 33, 718–738. [Google Scholar] [CrossRef] [Green Version]
- Gast, R.K.; Guraya, R.; Guard, J.; Holt, P.S. The relationship between the numbers of Salmonella Enteritidis, Salmonella Heidelberg, or Salmonella Hadar colonizing reproductive tissues of experimentally infected laying hens and deposition inside eggs. Avian Dis. 2011, 55, 243–247. [Google Scholar] [CrossRef]
- Okamura, M.; Kamijima, Y.; Miyamoto, T.; Tani, H.; Sasai, K.; Baba, E. Differences among six Salmonella serovars in abilities to colonize reproductive organs and to contaminate eggs in laying hens. Avian Dis. 2001, 45, 61–69. [Google Scholar] [CrossRef]
- Pande, V.V.; McWhorter, A.R.; Chousalkar, K.K. Salmonella enterica isolates from layer farm environments are able to form biofilm on eggshell surfaces. Biofouling 2016, 32, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Pande, V.V.; Devon, R.L.; Sharma, P.; McWhorter, A.R.; Chousalkar, K.K. Study of Salmonella Typhimurium infection in laying hens. Front. Microbiol. 2016, 7, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moffatt, C.R.; Musto, J.; Pingault, N.; Combs, B.; Miller, M.; Stafford, R.; Gregory, J.; Polkinghorne, B.G.; Kirk, M.D. Recovery of Salmonella enterica from Australian Layer and Processing Environments Following Outbreaks Linked to Eggs. Foodborne Pathog. Dis. 2017, 14, 478–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; De Silva, N.R.; Gargouri, N. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, S.J. The “decline and fall” of nontyphoidal Salmonella in the United Kingdom. Clin. Infect. Dis. 2013, 56, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Desin, T.S.; Köster, W.; Potter, A.A. Salmonella vaccines in poultry: Past, present and future. Expert Rev. Vaccines 2013, 12, 87–96. [Google Scholar] [CrossRef]
- Gast, R.K.; Stone, H.D.; Holt, P.S. Evaluation of the efficacy of oil-emulsion bacterins for reducing fecal shedding of Salmonella Enteritidis by laying hens. Avian Dis. 1993, 1085–1091. [Google Scholar] [CrossRef]
- Ricke, S.; Gast, R.K. Producing Safe Eggs: Microbial Ecology of Salmonella; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Chousalkar, K.; Gast, R.; Martelli, F.; Pande, V. Review of egg-related salmonellosis and reduction strategies in United States, Australia, United Kingdom and New Zealand. Crit. Rev. Microbiol. 2018, 44, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Hoiseth, S.K.; Stocker, B. Aromatic-dependent Salmonella Typhimurium are non-virulent and effective as live vaccines. Nature 1981, 291, 238. [Google Scholar] [CrossRef] [PubMed]
- Tensa, L.R.; Jordan, B.J. Comparison of the application parameters of coccidia vaccines by gel and spray. Poult. Sci. 2019, 98, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Groves, P.; Sharpe, S.; Muir, W.; Pavic, A.; Cox, J. Live and inactivated vaccine regimens against caecal Salmonella Typhimurium colonisation in laying hens. Aust. Vet. J. 2016, 94, 387–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Development of Salmonella Vaccination Strategies for the Australian Poultry Industry. Available online: http://esvc000767.wic058u.server-web.com/!Pages/Publications/Documents/DOC-DevelopmentOfSalmonellaVaccinationStrategiesForTheAustralianPoultryIndustry-JacksonUnderwood.pdf (accessed on 9 November 2020).
- Van Immerseel, F.; De Buck, J.; Pasmans, F.; Bohez, L.; Boyen, F.; Haesebrouck, F.; Ducatelle, R. Intermittent long-term shedding and induction of carrier birds after infection of chickens early posthatch with a low or high dose of Salmonella Enteritidis. Poult. Sci. 2004, 83, 1911–1916. [Google Scholar] [CrossRef] [PubMed]
- Gast, R. Paratyphoid Infections; Blackwell Publishing: Ames, IA, USA, 2008; pp. 636–655. [Google Scholar]
- McWhorter, A.R.; Chousalkar, K. A long-term efficacy trial of a live, attenuated Salmonella Typhimurium vaccine in layer hens. Front. Microbiol. 2018, 9, 1380. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Caraguel, C.; Sexton, M.; McWhorter, A.; Underwood, G.; Holden, K.; Chousalkar, K. Shedding of Salmonella Typhimurium in vaccinated and unvaccinated hens during early lay in field conditions: A randomised controlled trial. BMC Microbiol. 2018, 18, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrow, P.; Hassan, J.; Lovell, M.; Berchieri, A. Vaccination of chickens with aroA and other mutants of Salmonella typhimurium and S. enteritidis. Res. Microbiol. 1990, 141, 851–853. [Google Scholar] [CrossRef]
- Alderton, M.; Fahey, K.; Coloe, P. Humoral responses and salmonellosis protection in chickens given a vitamin-dependent Salmonella typhimurium mutant. Avian Dis. 1991, 435–442. [Google Scholar] [CrossRef]
- Azcarate-Peril, M.A.; Butz, N.; Cadenas, M.B.; Koci, M.; Ballou, A.; Mendoza, M.; Ali, R.; Hassan, H. An attenuated Salmonella enterica serovar Typhimurium strain and galacto-oligosaccharides accelerate clearance of Salmonella infections in poultry through modifications to the gut microbiome. Appl. Environ. Microbiol. 2018, 84, e02526-17. [Google Scholar] [CrossRef] [Green Version]
- Hassan, J.O.; Curtiss, R. Development and evaluation of an experimental vaccination program using a live avirulent Salmonella typhimurium strain to protect immunized chickens against challenge with homologous and heterologous Salmonella serotypes. Infect. Immun. 1994, 62, 5519–5527. [Google Scholar] [CrossRef] [Green Version]
- Carrique-Mas, J.; Breslin, M.; Snow, L.; McLaren, I.; Sayers, A.; Davies, R. Persistence and clearance of different Salmonella serovars in buildings housing laying hens. Epidemiol. Infect. 2009, 137, 837–846. [Google Scholar] [CrossRef]
- Denagamage, T.N.; Patterson, P.; Wallner-Pendleton, E.; Trampel, D.; Shariat, N.; Dudley, E.G.; Jayarao, B.M.; Kariyawasam, S. Longitudinal monitoring of successive commercial layer flocks for Salmonella enterica serovar Enteritidis. Foodborne Pathog. Dis. 2016, 13, 618–625. [Google Scholar] [CrossRef]
- Wales, A.; Breslin, M.; Carter, B.; Sayers, R.; Davies, R. A longitudinal study of environmental Salmonella contamination in caged and free-range layer flocks. Avian Pathol. 2007, 36, 187–197. [Google Scholar] [CrossRef]
- Hilbert, F.; Smulders, F.; Chopra-Dewasthaly, R.; Paulsen, P. Salmonella in the wildlife-human interface. Food Res. Int. 2012, 45, 603–608. [Google Scholar] [CrossRef]
- Wales, A.; Carrique-Mas, J.; Rankin, M.; Bell, B.; Thind, B.; Davies, R. Review of the carriage of zoonotic bacteria by arthropods, with special reference to Salmonella in mites, flies and litter beetles. Zoonoses Public Health 2010, 57, 299–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menanteau, P.; Kempf, F.; Trotereau, J.; Virlogeux-Payant, I.; Gitton, E.; Dalifard, J.; Gabriel, I.; Rychlik, I.; Velge, P. Role of systemic infection, cross contaminations and super-shedders in Salmonella carrier state in chicken. Environ. Microbiol. 2018, 20, 3246–3260. [Google Scholar] [CrossRef] [PubMed]
- McWhorter, A.R.; Chousalkar, K.K. From hatch to egg grading: Monitoring of Salmonella shedding in free-range egg production systems. Vet. Res. 2019, 50, 58. [Google Scholar] [CrossRef] [Green Version]
- McWhorter, A.R.; Chousalkar, K.K. Salmonella on Australian cage egg farms: Observations from hatching to end of lay. Food Microbiol. 2020, 87, 103384. [Google Scholar] [CrossRef]
- Chousalkar, K.; Gole, V.; Caraguel, C.; Rault, J.-L. Chasing Salmonella Typhimurium in free range egg production system. Vet. Microbiol. 2016, 192, 67–72. [Google Scholar] [CrossRef]
- Gole, V.C.; Woodhouse, R.; Caraguel, C.; Moyle, T.; Rault, J.-L.; Sexton, M.; Chousalkar, K. Dynamics of Salmonella shedding and welfare of hens in free-range egg production systems. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [Green Version]
- Matulova, M.; Havlickova, H.; Sisak, F.; Babak, V.; Rychlik, I. SPI1 defective mutants of Salmonella enterica induce cross-protective immunity in chickens against challenge with serovars Typhimurium and Enteritidis. Vaccine 2013, 31, 3156–3162. [Google Scholar] [CrossRef]
- Dos Santos, A.M.; Ferrari, R.G.; Conte-Junior, C.A. Virulence factors in Salmonella Typhimurium: The sagacity of a bacterium. Curr. Microbiol. 2019, 76, 762–773. [Google Scholar] [CrossRef]
- Dieye, Y.; Ameiss, K.; Mellata, M.; Curtiss, R. The Salmonella Pathogenicity Island (SPI) 1 contributes more than SPI2 to the colonization of the chicken by Salmonella enterica serovar Typhimurium. BMC Microbiol. 2009, 9, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimet, C.-S.; Maurer, J.J.; Berghaus, R.D.; Jordan, B.J.; da Silva, L.H.A.; Stabler, L.J.; Johnson, K.K.; Tensa, L.R.; Segovia, K.M.; França, M.S. The Contribution of Eimeria Coinfection and Intestinal Inflammation to Cecal Colonization and Systemic Spread of Salmonella Typhimurium Deficient in Tetrathionate Reductase or Type III Secretion Systems Salmonella Pathogenicity Island 1 or 2. Avian Dis. 2019, 63, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.; Hulme, S.; Barrow, P.; Wigley, P. The Salmonella pathogenicity island 1 and Salmonella pathogenicity island 2 type III secretion systems play a major role in pathogenesis of systemic disease and gastrointestinal tract colonization of Salmonella enterica serovar Typhimurium in the chicken. Avian Pathol. 2007, 36, 199–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, S.B.; Curtiss, R., III. Effect of inv mutations on Salmonella virulence and colonization in 1-day-old White Leghorn chicks. Avian Dis. 1997, 45–57. [Google Scholar] [CrossRef]
- Morgan, E.; Campbell, J.D.; Rowe, S.C.; Bispham, J.; Stevens, M.P.; Bowen, A.J.; Barrow, P.A.; Maskell, D.J.; Wallis, T.S. Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 2004, 54, 994–1010. [Google Scholar] [CrossRef]
- Troxell, B.; Petri, N.; Daron, C.; Pereira, R.; Mendoza, M.; Hassan, H.M.; Koci, M.D. Poultry body temperature contributes to invasion control through reduced expression of Salmonella pathogenicity island 1 genes in Salmonella enterica serovars Typhimurium and Enteritidis. Appl. Environ. Microbiol. 2015, 81, 8192–8201. [Google Scholar] [CrossRef] [Green Version]
- Harvey, P.; Watson, M.; Hulme, S.; Jones, M.; Lovell, M.; Berchieri, A.; Young, J.; Bumstead, N.; Barrow, P. Salmonella enterica serovar typhimurium colonizing the lumen of the chicken intestine grows slowly and upregulates a unique set of virulence and metabolism genes. Infect. Immun. 2011, 79, 4105–4121. [Google Scholar] [CrossRef] [Green Version]
- Rychlik, I.; Karasova, D.; Sebkova, A.; Volf, J.; Sisak, F.; Havlickova, H.; Kummer, V.; Imre, A.; Annamaria, S.; Bela, N. Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar Enteritidis for chickens. BMC Microbiol. 2009, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Pezoa, D.; Yang, H.-J.; Blondel, C.J.; Santiviago, C.A.; Andrews-Polymenis, H.L.; Contreras, I. The type VI secretion system encoded in SPI-6 plays a role in gastrointestinal colonization and systemic spread of Salmonella enterica serovar Typhimurium in the chicken. PLoS ONE 2013, 8, e63917. [Google Scholar] [CrossRef] [Green Version]
- Berndt, A.; Wilhelm, A.; Jugert, C.; Pieper, J.; Sachse, K.; Methner, U. Chicken cecum immune response to Salmonella enterica serovars of different levels of invasiveness. Infect. Immun. 2007, 75, 5993–6007. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.J.; Chousalkar, K.K.; McWhorter, A.R. In vitro and in vivo efficacy of a live attenuated Salmonella Typhimurium vaccine at preventing intestinal colonization in chicks. Zoonoses Public Health 2018, 65, 736–741. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Genovese, K.J.; Nisbet, D.J.; Kogut, M.H. Profile of Toll-like receptor expressions and induction of nitric oxide synthesis by Toll-like receptor agonists in chicken monocytes. Mol. Immunol. 2006, 43, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Chousalkar, K.K. Transcriptome profiling analysis of caeca in chicks challenged with Salmonella Typhimurium reveals differential expression of genes involved in host mucosal immune response. Appl. Microbiol. Biotechnol. 2020, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Agace, W.W.; McCoy, K.D. Regionalized development and maintenance of the intestinal adaptive immune landscape. Immunity 2017, 46, 532–548. [Google Scholar] [CrossRef] [Green Version]
- Fagarasan, S. Intestinal IgA synthesis: A primitive form of adaptive immunity that regulates microbial communities in the gut. In Gut-Associated Lymphoid Tissues; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Muir, W.; Bryden, W.; Husband, A. Evaluation of the efficacy of intraperitoneal immunization in reducing Salmonella Typhimurium infection in chickens. Poult. Sci. 1998, 77, 1874–1883. [Google Scholar] [CrossRef] [Green Version]
- Muir, W.; Bryden, W.; Husband, A. Immunity, vaccination and the avian intestinal tract. Dev. Comp. Immunol. 2000, 24, 325–342. [Google Scholar] [CrossRef]
- Le Bourhis, L.; Dusseaux, M.; Bohineust, A.; Bessoles, S.; Martin, E.; Premel, V.; Coré, M.; Sleurs, D.; Serriari, N.-E.; Treiner, E. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog. 2013, 9, e1003681. [Google Scholar] [CrossRef] [Green Version]
- Corbett, A.J.; Eckle, S.B.; Birkinshaw, R.W.; Liu, L.; Patel, O.; Mahony, J.; Chen, Z.; Reantragoon, R.; Meehan, B.; Cao, H. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 2014, 509, 361. [Google Scholar] [CrossRef]
- Hee, C.S.; Gao, S.; Loll, B.; Miller, M.M.; Uchanska-Ziegler, B.; Daumke, O.; Ziegler, A. Structure of a classical MHC class I molecule that binds “non-classical” ligands. PLoS Biol. 2010, 8, e1000557. [Google Scholar] [CrossRef] [Green Version]
- Ballou, A.L.; Ali, R.A.; Mendoza, M.A.; Ellis, J.; Hassan, H.M.; Croom, W.; Koci, M.D. Development of the chick microbiome: How early exposure influences future microbial diversity. Front. Vet. Sci. 2016, 3, 2. [Google Scholar] [CrossRef] [Green Version]
- Crhanova, M.; Hradecka, H.; Faldynova, M.; Matulova, M.; Havlickova, H.; Sisak, F.; Rychlik, I. Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica serovar enteritidis infection. Infect. Immun. 2011, 79, 2755–2763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.H.; Kim, S.A.; Rubinelli, P.M.; Roto, S.M.; Ricke, S.C. Microbial compositional changes in broiler chicken cecal contents from birds challenged with different Salmonella vaccine candidate strains. Vaccine 2017, 35, 3204–3208. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Chousalkar, K.K. Salmonella Typhimurium infection disrupts but continuous feeding of Bacillus based probiotic restores gut microbiota in infected hens. J. Anim. Sci. Biotechnol. 2020, 11, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauck, R. Interactions between parasites and the bacterial microbiota of chickens. Avian Dis. 2017, 61, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Leung, J.M.; Graham, A.L.; Knowles, S.C. Parasite-microbiota interactions with the vertebrate gut: Synthesis through an ecological lens. Front. Microbiol. 2018, 9, 843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgame, P.; Yap, G.S.; Gause, W.C. Effect of helminth-induced immunity on infections with microbial pathogens. Nat. Immunol. 2013, 14, 1118–1126. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-C.; Louie, S.; McCormick, B.; Walker, W.A.; Shi, H.N. Concurrent infection with an intestinal helminth parasite impairs host resistance to enteric Citrobacter rodentium and enhances Citrobacter-induced colitis in mice. Infect. Immun. 2005, 73, 5468–5481. [Google Scholar] [CrossRef] [Green Version]
- Maizels, R.M.; Yazdanbakhsh, M. Immune regulation by helminth parasites: Cellular and molecular mechanisms. Nat. Rev. Immunol. 2003, 3, 733–744. [Google Scholar] [CrossRef] [Green Version]
- Brosschot, T.P.; Reynolds, L.A. The impact of a helminth-modified microbiome on host immunity. Mucosal Immunol. 2018, 11, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Reese, T.; Wakeman, B.; Choi, H.; Hufford, M.; Huang, S.; Zhang, X.; Buck, M.; Jezewski, A.; Kambal, A.; Liu, C. Helminth infection reactivates latent γ-herpesvirus via cytokine competition at a viral promoter. Science 2014, 345, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, L.A.; Redpath, S.A.; Yurist-Doutsch, S.; Gill, N.; Brown, E.M.; van der Heijden, J.; Brosschot, T.P.; Han, J.; Marshall, N.C.; Woodward, S.E. Enteric helminths promote Salmonella coinfection by altering the intestinal metabolome. J. Infect. Dis. 2017, 215, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Chadfield, M.; Permin, A.; Nansen, P.; Bisgaard, M. Investigation of the parasitic nematode Ascaridia galli (Shrank 1788) as a potential vector for Salmonella enterica dissemination in poultry. Parasitol. Res. 2001, 87, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Ni, J.; Cao, Y.; Liu, X. Newcastle Disease Virus as a Vaccine Vector for 20 Years: A Focus on Maternally Derived Antibody Interference. Vaccines 2020, 8, 222. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Sunwoo, H.; Menninen, K.; Sim, J. In vitro studies of chicken egg yolk antibody (IgY) against Salmonella Enteritidis and Salmonella Typhimurium. Poult. Sci. 2002, 81, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Chalghoumi, R.; Thewis, A.; Beckers, Y.; Marcq, C.; Portetelle, D.; Schneider, Y.-J. Adhesion and growth inhibitory effect of chicken egg yolk antibody (IgY) on Salmonella enterica serovars Enteritidis and Typhimurium in vitro. Foodborne Pathog. Dis. 2009, 6, 593–604. [Google Scholar] [CrossRef]
- Li, X.; Yao, Y.; Wang, X.; Zhen, Y.; Thacker, P.A.; Wang, L.; Shi, M.; Zhao, J.; Zong, Y.; Wang, N. Chicken egg yolk antibodies (IgY) modulate the intestinal mucosal immune response in a mouse model of Salmonella typhimurium infection. Int. Immunopharmacol. 2016, 36, 305–314. [Google Scholar] [CrossRef]
- Kovacs-Nolan, J.; Mine, Y. Egg yolk antibodies for passive immunity. Annu. Rev. Food Sci. Technol. 2012, 3, 163–182. [Google Scholar] [CrossRef] [Green Version]
Name of Vaccine | Company | Region | Type | Vaccine Program |
---|---|---|---|---|
Vaxsafe® ST | Bioproperties Pty Ltd., Australia | Australia | Live, attenuated vaccine ΔaroA mutation | Coarse spray at one-day-old, followed by a booster in the drinking water at 14 days of age. |
AviPro® Megan® Vac 1 | Elanco Animal Health | U.S. | Live, attenuated vaccine ΔaroA mutation | 1 day of age—spray; 2 weeks of age—drinking water or spray; 16 weeks of age—drinking water or spray. |
Poulvac® ST | Zoetis | U.S. | Live, attenuated vaccine ΔaroA mutation | Use at 1 day of age by spray. A second dose should be given at 2 weeks of age in the drinking water. |
SALMUNE® | Ceva Animal Health | U.S. | Live, attenuated vaccine | Use at one-day-old using coarse spray or drinking water, a second vaccination is required at seven days of age. If chickens are maintained past seven weeks of age, a repeat vaccination is recommended. |
Salmonella Typhimurium Δcya/crp | Live, attenuated vaccine Δcya/crp mutation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, S.; McWhorter, A.R.; Andrews, D.M.; Underwood, G.J.; Chousalkar, K.K. Challenges in Vaccinating Layer Hens against Salmonella Typhimurium. Vaccines 2020, 8, 696. https://doi.org/10.3390/vaccines8040696
Jia S, McWhorter AR, Andrews DM, Underwood GJ, Chousalkar KK. Challenges in Vaccinating Layer Hens against Salmonella Typhimurium. Vaccines. 2020; 8(4):696. https://doi.org/10.3390/vaccines8040696
Chicago/Turabian StyleJia, Siyuan, Andrea R. McWhorter, Daniel M. Andrews, Gregory J. Underwood, and Kapil K. Chousalkar. 2020. "Challenges in Vaccinating Layer Hens against Salmonella Typhimurium" Vaccines 8, no. 4: 696. https://doi.org/10.3390/vaccines8040696
APA StyleJia, S., McWhorter, A. R., Andrews, D. M., Underwood, G. J., & Chousalkar, K. K. (2020). Challenges in Vaccinating Layer Hens against Salmonella Typhimurium. Vaccines, 8(4), 696. https://doi.org/10.3390/vaccines8040696