Development and Application of Supported Ionic Liquid Membranes in Microbial Fuel Cell Technology: A Concise Overview
Abstract
:1. Introduction
2. Research Progress with Supported Ionic Liquid Membranes for Microbial Fuel Cell Applications
3. Transport Processes in Ionic Liquid Membranes and at Water/IL Interfaces
3.1. Mutual Solubility of Water and Hydrophobic Ionic Liquids
3.2. Effect of Aqueous Ions on the Mutual Solubility of Water and IL
3.3. Transport of Ionic Solutes
4. Outlook and Perspectives of SILMs in MFCs
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Hu, J.; Lee, D.J. Microbial fuel cells as pollutant treatment units: Research updates. Bioresour. Technol. 2016, 217, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Koók, L.; Rózsenberszki, T.; Nemestóthy, N.; Bélafi-Bakó, K.; Bakonyi, P. Bioelectrochemical treatment of municipal waste liquor in microbial fuel cells for energy valorization. J. Clean. Prod. 2016, 112, 4406–4412. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Shinde, V.N.; Deopurkar, R.L.; Kale, S.P.; Patil, S.A.; Pant, D. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energy 2016, 168, 706–723. [Google Scholar] [CrossRef]
- Patil, S.A.; Gildemyn, S.; Pant, D.; Zengler, K.; Logan, B.E.; Rabaey, K. A logical data representation framework for electricity-driven bioproduction processes. Biotechnol. Adv. 2015, 33, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Bakonyi, P.; Koók, L.; Kumar, G.; Tóth, G.; Rózsenberszki, T.; Nguyen, D.D.; Chang, S.W.; Zhen, G.; Bélafi-Bakó, K.; Nemestóthy, N. Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: A comprehensive update on recent progress and future prospects. J. Membr. Sci. 2018, 564, 508–522. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Liang, P.; Huang, X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011, 102, 9335–9344. [Google Scholar] [CrossRef]
- Zhou, M.; Chi, M.; Luo, J.; He, H.; Jin, T. An overview of electrode materials in microbial fuel cells. J. Power Sources 2011, 196, 4427–4435. [Google Scholar] [CrossRef]
- Baudler, A.; Schmidt, I.; Langner, M.; Greiner, A.; Schröder, U. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ. Sci. 2015, 8, 2048–2055. [Google Scholar] [CrossRef] [Green Version]
- Hindatu, Y.; Annuar, M.S.M.; Gumel, A.M. Mini-review: Anode modification for improved performance of microbial fuel cell. Renew. Sustain. Energy Rev. 2017, 73, 236–248. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, D.; Dwivedi, P.K.; Pandey, J.K.; Kim, Y.H.; Kim, G.M.; Sharma, A.; Goel, S. Application of electrochemical impedance spectroscopy in bio-fuel cell characterization: A review. Int. J. Hydrogen Energy 2014, 39, 20159–20170. [Google Scholar] [CrossRef]
- Miller, A.; Singh, L.; Wang, L.; Liu, H. Linking internal resistance with design and operation decisions in microbial electrolysis cells. Environ. Int. 2019, 126, 611–618. [Google Scholar] [CrossRef] [PubMed]
- ElMekawy, A.; Hegab, H.M.; Dominguez-Benetton, X.; Pant, D. Internal resistance of microfluidic microbial fuel cell: Challenges and potential opportunities. Bioresour. Technol. 2013, 142, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Rismani-Yazdi, H.; Carver, S.M.; Christy, A.D.; Tuovinen, O.H. Cathodic limitations in microbial fuel cells: An overview. J. Power Sources 2008, 180, 683–694. [Google Scholar] [CrossRef]
- Cristiani, P.; Carvalho, M.L.; Guerrini, E.; Daghio, M.; Santoro, C.; Li, B. Cathodic and anodic biofilms in Single Chamber Microbial Fuel Cells. Bioelectrochemistry 2013, 92, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Leong, J.X.; Daud, W.R.W.; Ghasemi, M.; Liew, K.B.; Ismail, M. Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: A comprehensive review. Renew. Sustain. Energy Rev. 2013, 28, 575–587. [Google Scholar] [CrossRef]
- Oliot, M.; Galier, S.; Roux de Balmann, H.; Bergel, A. Ion transport in microbial fuel cells: Key roles, theory and critical review. Appl. Energy 2016, 183, 1682–1704. [Google Scholar] [CrossRef]
- Daud, S.M.; Kim, B.H.; Ghasemi, M.; Daud, W.R.W. Separators used in microbial electrochemical technologies: Current status and future prospects. Bioresour. Technol. 2015, 195, 170–179. [Google Scholar] [CrossRef]
- Li, W.W.; Sheng, G.P.; Liu, X.W.; Yu, H.Q. Recent advances in the separators for microbial fuel cells. Bioresour. Technol. 2011, 102, 244–252. [Google Scholar] [CrossRef]
- Rahimnejad, M.; Bakeri, G.; Ghasemi, M.; Zirepour, A. A review on the role of proton exchange membrane on the performance of microbial fuel cell. Polym. Adv. Technol. 2014, 25, 1426–1432. [Google Scholar] [CrossRef]
- Harnisch, F.; Schröder, U. Selectivity versus mobility: Separation of anode and cathode in microbial bioelectrochemical systems. ChemSusChem 2009, 2, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Koók, L.; Nemestóthy, N.; Bakonyi, P.; Göllei, A.; Rózsenberszki, T.; Takács, P.; Salekovics, A.; Kumar, G.; Bélafi-Bakó, K. On the efficiency of dual-chamber biocatalytic electrochemical cells applying membrane separators prepared with imidazolium-type ionic liquids containing [NTf2]− and [PF6]− anions. Chem. Eng. J. 2017, 324, 296–302. [Google Scholar] [CrossRef]
- Xu, J.; Sheng, G.P.; Luo, H.W.; Li, W.W.; Wang, L.F.; Yu, H.Q. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Res. 2012, 46, 1817–1824. [Google Scholar] [CrossRef]
- Koók, L.; Nemestóthy, N.; Bakonyi, P.; Zhen, G.; Kumar, G.; Lu, X.; Su, L.; Saratale, G.D.; Kim, S.H.; Gubicza, L. Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes. Chemosphere 2017, 175, 350–355. [Google Scholar] [CrossRef]
- Noori, M.T.; Ghangrekar, M.M.; Mukherjee, C.K.; Min, B. Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation. Biotechnol. Adv. 2019, 37, 107420. [Google Scholar] [CrossRef]
- Koók, L.; Bakonyi, P.; Harnisch, F.; Kretzschmar, J.; Chae, K.J.; Zhen, G.; Kumar, G.; Rózsenberszki, T.; Tóth, G.; Nemestóthy, N.; et al. Biofouling of membranes in microbial electrochemical technologies: Causes, characterization methods and mitigation strategies. Bioresour. Technol. 2019, 279, 327–338. [Google Scholar] [CrossRef]
- Abejón, R.; Pérez-Acebo, H.; Garea, A. A bibliometric analysis of research on supported ionic liquid membranes during the 1995–2015 period: Study of the main applications and trending topics. Membranes 2017, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Anguille, S.; Bendahan, M.; Moulin, P. Ionic liquids combined with membrane separation processes: A review. Sep. Purif. Technol. 2019, 222, 230–253. [Google Scholar] [CrossRef]
- Fradler, K.R.; Michie, I.; Dinsdale, R.M.; Guwy, A.J.; Premier, G.C. Augmenting microbial fuel cell power by coupling with supported liquid membrane permeation for zinc recovery. Water Res. 2014, 55, 115–125. [Google Scholar] [CrossRef]
- Nemestóthy, N.; Bakonyi, P.; Rózsenberszki, T.; Kumar, G.; Koók, L.; Kelemen, G.; Kim, S.H.; Bélafi-Bakó, K. Assessment via the modified gompertz-model reveals new insights concerning the effects of ionic liquids on biohydrogen production. Int. J. Hydrogen Energy 2018, 43, 18918–18924. [Google Scholar] [CrossRef]
- Hernández-Fernández, F.J.; Pérez de los Ríos, A.; Mateo-Ramírez, F.; Godínez, C.; Lozano-Blanco, L.J.; Moreno, J.I.; Tomás-Alonso, F. New application of supported ionic liquids membranes as proton exchange membranes in microbial fuel cell for waste water treatment. Chem. Eng. J. 2015, 279, 115–119. [Google Scholar] [CrossRef]
- Koók, L.; Kaufer, B.; Bakonyi, P.; Rózsenberszki, T.; Rivera, I.; Buitrón, G.; Bélafi-Bakó, K.; Nemestóthy, N. Supported ionic liquid membrane based on [bmim][PF6] can be a promising separator to replace Nafion in microbial fuel cells and improve energy recovery: A comparative process evaluation. J. Membr. Sci. 2019, 570, 215–225. [Google Scholar] [CrossRef]
- Fortunato, R.; Afonso, C.A.M.; Reis, M.A.M.; Crespo, J.G. Supported liquid membranes using ionic liquids: Study of stability and transport mechanisms. J. Membr. Sci. 2004, 242, 197–209. [Google Scholar] [CrossRef]
- Fortunato, R.; Afonso, C.A.M.; Benavente, J.; Rodriguez-Castellón, E.; Crespo, J.G. Stability of supported ionic liquid membranes as studied by X-ray photoelectron spectroscopy. J. Membr. Sci. 2005, 256, 216–223. [Google Scholar] [CrossRef]
- Hernández-Fernández, F.J.; De Los Ríos, A.P.; Mateo-Ramírez, F.; Juarez, M.D.; Lozano-Blanco, L.J.; Godínez, C. New application of polymer inclusion membrane based on ionic liquids as proton exchange membrane in microbial fuel cell. Sep. Purif. Technol. 2016, 160, 51–58. [Google Scholar] [CrossRef]
- Baicha, Z.; Salar-García, M.J.; Ortiz-Martínez, V.M.; Hernández-Fernández, F.J.; de los Ríos, A.P.; Maqueda Marín, D.P.; Collado, J.A.; Tomás-Alonso, F.; El Mahi, M. On the Selective Transport of Nutrients through Polymer Inclusion Membranes Based on Ionic Liquids. Processes 2019, 7, 544. [Google Scholar] [CrossRef] [Green Version]
- Salar-García, M.J.; Ortiz-Martínez, V.M.; de los Ríos, A.P.; Hernández-Fernández, F.J. A method based on impedance spectroscopy for predicting the behavior of novel ionic liquid-polymer inclusion membranes in microbial fuel cells. Energy 2015, 89, 648–654. [Google Scholar] [CrossRef]
- Jebur, M.; Sengupta, A.; Chiao, Y.H.; Kamaz, M.; Qian, X.; Wickramasinghe, R. Pi electron cloud mediated separation of aromatics using supported ionic liquid (SIL) membrane having antibacterial activity. J. Membr. Sci. 2018, 556, 1–11. [Google Scholar] [CrossRef]
- Fu, Q.; Fukushima, N.; Maeda, H.; Sato, K.; Kobayashi, H. Bioelectrochemical analysis of a hyperthermophilic microbial fuel cell generating electricity at temperatures above 80 °C. Biosci. Biotechnol. Biochem. 2015, 79, 1200–1206. [Google Scholar] [CrossRef] [PubMed]
- Mistry, M.K.; Subianto, S.; Choudhury, N.R.; Dutta, N.K. Interfacial interactions in aprotic ionic liquid based protonic membrane and its correlation with high temperature conductivity and thermal properties. Langmuir 2009, 25, 9240–9251. [Google Scholar] [CrossRef] [PubMed]
- Samec, Z.; Langmaier, J.; Kakiuchi, T. Charge-transfer processes at the interface between hydrophobic ionic liquid and water. Pure Appl. Chem. 2009, 81, 1473–1488. [Google Scholar] [CrossRef]
- De Eulate, E.A.; Silvester, D.S.; Arrigan, D.W.M. Void-assisted ion-paired proton transfer at water-ionic liquid interfaces. Angew. Chem. Int. Ed. 2015, 54, 14903–14906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, M.A.; Hashim, M.A.; Nabi, F. Ionic liquids in supported liquid membrane technology. Chem. Eng. J. 2011, 171, 242–254. [Google Scholar] [CrossRef]
- Yao, C.; Pitner, W.R.; Anderson, J.L. Ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate anion: A new class of highly selective and ultra hydrophobic solvents for the extraction of polycyclic aromatic hydrocarbons using single drop microextraction. Anal. Chem. 2009, 81, 5054–5063. [Google Scholar] [CrossRef]
- Freire, M.G.; Santos, L.M.N.B.F.; Fernandes, A.M.; Coutinho, J.A.P.; Marrucho, I.M. An overview of the mutual solubilities of water-imidazolium-based ionic liquids systems. Fluid Phase Equilibria 2007, 261, 449–454. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, L.; Ye, Y.; Chen, L.; Qi, Z.; Freund, H.; Sundmacher, K. An overview of mutual solubility of ionic liquids and water predicted by COSMO-RS. Ind. Eng. Chem. Res. 2012, 51, 6256–6264. [Google Scholar] [CrossRef]
- O’Mahony, A.M.; Silvester, D.S.; Aldous, L.; Hardacre, C.; Compton, R.G. Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. J. Chem. Eng. Data 2008, 53, 2884–2891. [Google Scholar] [CrossRef]
- Kumar, P.; Prakash, P.; Ramya, K.R.; Venkatnathan, A. Probing translational and rotational dynamics in hydrophilic/hydrophobic anion based imidazolium ionic liquid-water mixtures. Soft Matter 2018, 14, 6109–6118. [Google Scholar] [CrossRef]
- Trindade, J.R.; Visak, Z.P.; Blesic, M.; Marrucho, I.M.; Coutinho, J.A.P.; Canongia Lopes, J.N.; Rebelo, L.P.N. Salting-out effects in aqueous ionic liquid solutions: Cloud-point temperature shifts. J. Phys. Chem. B 2007, 111, 4737–4741. [Google Scholar] [CrossRef] [Green Version]
- Najdanovic-Visak, V.; Canongia Lopes, J.N.; Visak, Z.P.; Trindade, J.; Rebelo, L.P.N. Salting-out in aqueous solutions of ionic liquids and K3PO4: Aqueous biphasic systems and salt precipitation. Int. J. Mol. Sci. 2007, 8, 736–748. [Google Scholar] [CrossRef] [Green Version]
- Zafarani-Moattar, M.T.; Hamzehzadeh, S. Salting-out effect, preferential exclusion, and phase separation in aqueous solutions of chaotropic water-miscible ionic liquids and kosmotropic salts: Effects of temperature, anions, and cations. J. Chem. Eng. Data 2010, 55, 1598–1610. [Google Scholar] [CrossRef]
- Freire, M.G.; Carvalho, P.J.; Silva, A.M.S.; Santos, L.M.N.B.F.; Rebelo, L.P.N.; Marrucho, I.M.; Coutinho, J.A.P. Ion specific effects on the mutual solubilities of water and hydrophobic ionic liquids. J. Phys. Chem. B 2009, 113, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Kalra, A.; Tugcu, N.; Cramer, S.M.; Garde, S. Salting-in and salting-out of hydrophobic solutes in aqueous salt solutions. J. Phys. Chem. B 2001, 105, 6380–6386. [Google Scholar] [CrossRef]
- Lefebvre, O.; Tan, Z.; Kharkwal, S.; Ng, H.Y. Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresour. Technol. 2012, 112, 336–340. [Google Scholar] [CrossRef]
- Tomé, L.I.N.; Varanda, F.R.; Freire, M.G.; Marrucho, I.M.; Coutinho, J.A.P. Towards an understanding of the mutual solubilities of water and hydrophobic ionic liquids in the presence of salts: The anion effect. J. Phys. Chem. B 2009, 113, 2815–2825. [Google Scholar] [CrossRef] [Green Version]
- Mazan, V.; Boltoeva, M.Y.; Tereshatov, E.E.; Folden, C.M. Mutual solubility of water and hydrophobic ionic liquids in the presence of hydrochloric acid. RSC Adv. 2016, 6, 56269–56270. [Google Scholar] [CrossRef]
- Ghareh Bagh, F.S.; Mjalli, F.S.; Hashim, M.A.; Hadj-Kali, M.K.O.; Alnashef, I.M. Solubility of sodium chloride in ionic liquids. Ind. Eng. Chem. Res. 2013, 52, 11488–11493. [Google Scholar] [CrossRef]
- Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Rahimi, Z. High power generation and COD removal in a microbial fuel cell operated by a novel sulfonated PES/PES blend proton exchange membrane. Energy 2017, 125, 427–438. [Google Scholar] [CrossRef]
- Di Palma, L.; Bavasso, I.; Sarasini, F.; Tirillò, J.; Puglia, D.; Dominici, F.; Torre, L. Synthesis, characterization and performance evaluation of Fe3O4/PES nano composite membranes for microbial fuel cell. Eur. Polym. J. 2018, 99, 222–229. [Google Scholar] [CrossRef]
- Min, B.; Cheng, S.; Logan, B.E. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 2005, 39, 1675–1686. [Google Scholar] [CrossRef] [PubMed]
- Jung, R.K.; Cheng, S.; Oh, S.E.; Logan, B.E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 2007, 41, 1004–1009. [Google Scholar]
- Tang, X.; Guo, K.; Li, H.; Du, Z.; Tian, J. Microfiltration membrane performance in two-chamber microbial fuel cells. Biochem. Eng. J. 2010, 52, 194–198. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J.R.; Cha, J.; Kim, Y.; Premier, G.C.; Kim, C. Enhanced power production of a membrane electrode assembly microbial fuel cell (MFC) using a cost effective poly [2,5-benzimidazole] (ABPBI) impregnated non-woven fabric filter. Bioresour. Technol. 2013, 128, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.C.; Sun, X.N.; Xiong, Y. A novel hybrid anion exchange membrane for high performance microbial fuel cells. RSC Adv. 2015, 5, 4659–4663. [Google Scholar] [CrossRef]
- Kondaveeti, S.; Lee, J.; Kakarla, R.; Kim, H.S.; Min, B. Low-cost separators for enhanced power production and field application of microbial fuel cells (MFCs). Electrochim. Acta 2014, 132, 434–440. [Google Scholar] [CrossRef]
- Neethu, B.; Bhowmick, G.D.; Ghangrekar, M.M. A novel proton exchange membrane developed from clay and activated carbon derived from coconut shell for application in microbial fuel cell. Biochem. Eng. J. 2019, 148, 170–177. [Google Scholar] [CrossRef]
- Oh, S.E.; Logan, B.E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol. 2006, 70, 162–169. [Google Scholar] [CrossRef]
- Ge, Z.; Li, J.; Xiao, L.; Tong, Y.; He, Z. Recovery of Electrical Energy in Microbial Fuel Cells. Environ. Sci. Technol. Lett. 2014, 1, 137–141. [Google Scholar] [CrossRef]
- Whitaker, J.; Ludley, K.E.; Rowe, R.; Taylor, G.; Howard, D.C. Sources of variability in greenhouse gas and energy balances for biofuel production: A systematic review. Gcb Bioenergy 2010, 2, 99–112. [Google Scholar] [CrossRef]
- Tiwari, B.R.; Noori, M.T.; Ghangrekar, M.M. A novel low cost polyvinyl alcohol-Nafion-borosilicate membrane separator for microbial fuel cell. Mater. Chem. Phys. 2016, 182, 86–93. [Google Scholar] [CrossRef]
- Leong, J.X.; Daud, W.R.W.; Ghasemi, M.; Ahmad, A.; Ismail, M.; Liew, K. Ben Composite membrane containing graphene oxide in sulfonated polyether ether ketone in microbial fuel cell applications. Int. J. Hydrogen Energy 2015, 40, 11604–11614. [Google Scholar] [CrossRef]
- Daud, S.M.; Daud, W.R.W.; Kim, B.H.; Somalu, M.R.; Bakar, M.H.A.; Muchtar, A.; Jahim, J.M.; Lim, S.S.; Chang, I.S. Comparison of performance and ionic concentration gradient of two-chamber microbial fuel cell using ceramic membrane (CM) and cation exchange membrane (CEM) as separators. Electrochim. Acta 2018, 259, 365–376. [Google Scholar] [CrossRef]
- Bavasso, I.; Di Palma, L.; Petrucci, E. Treatment of wastewater in H-type MFC with protonic exchange membrane: Experimental study of organic carbon and ammonium reduction with electrochemical characterization. Chem. Eng. Trans. 2016, 47, 223–228. [Google Scholar]
- Pasternak, G.; Yang, Y.; Santos, B.B.; Brunello, F.; Hanczyc, M.M.; Motta, A. Regenerated silk fibroin membranes as separators for transparent microbial fuel cells. Bioelectrochemistry 2019, 126, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Chae, K.J.; Yang, E.; Lee, M.Y.; Kim, I.S. Influence of pressurized anode chamber on ion transports and power generation of UF membrane microbial fuel cells (UF-MFCs). J. Power Sources 2015, 279, 731–736. [Google Scholar] [CrossRef]
Configuration | Inoculum | Substrate | SILM | Reference | |
---|---|---|---|---|---|
Ionic Liquid | Support Layer | ||||
Single-Chamber | Mixed Culture | Wastewater | [mtoa][Cl] | Nylon | [32] |
[omim][NTf2] | Nylon | ||||
[omim][BF4] | Nylon | ||||
[omim][PF6] | Nylon | ||||
Dual-Chamber | Mixed Culture | Acetate | [hmim][PF6] | PVDF | [25] |
[bmim][NTf2] | PVDF | ||||
Dual-Chamber | Mixed Culture | Acetate | [hmim][PF6] | PVDF | [23] |
[bmim][NTf2] | PVDF | ||||
Dual-Chamber | Mixed Culture | Acetate | [bmim][PF6] | PVDF | [33] |
Configuration | Operating Mode | Inoculum | Substrate | Membrane Type | Maximum Power Density (mW m−2 anode) | Reference |
---|---|---|---|---|---|---|
Dual-chamber | batch | Mixed culture | Acetate | Nafion 117 | 107.9 | [71] |
Dual-chamber | batch | Mixed culture | Acetate | Nafion 117 | 38.0 | [61] |
Dual-chamber | batch | Mixed culture | Acetate | Nafion 117 | 65.0 | [65] |
Dual-chamber | batch | Mixed culture | Acetate | Nafion 117 | 38.0 | [62] |
Dual-chamber | batch | Mixed culture | Acetate | Nafion 117 | 1013.0 | [72] |
Dual-chamber | batch | Mixed culture | Acetate | Nafion 117 | 118.0 | [66] |
Dual-chamber | batch | Mixed culture | Acetate | Nafion 117 | 1225.0 | [73] |
Dual-chamber | batch | Mixed culture | Acetate | Nafion 117 | 43.6 | [63] |
Dual-chamber | batch | Mixed culture | Acetate | Nafion 117 | 17.7 | [60] |
Dual-chamber | batch | Mixed culture | Acetate | Nafion 117 | 126.7 | [67] |
Dual-chamber | batch | Mixed culture | Acetate | Nafion 117 | 57.5 | [64] |
Dual-chamber | batch | Mixed culture | Acetate | Nafion 177 | 173.3 | [68] |
Dual-chamber | batch | Mixed culture | Acetate | CEM | 33.0 | [62] |
Dual-chamber | batch | Mixed culture | Acetate | CEM | 902.0 | [72] |
Dual-chamber | batch | Mixed culture | Acetate | CEM | 112.0 | [66] |
Dual-chamber | batch | Mixed culture | Acetate | CEM | 114.0 | [66] |
Dual-chamber | batch | Mixed culture | Acetate | CEM | 82.0 | [66] |
Dual-chamber | batch | Mixed culture | Acetate | CEM | 12.6 | [60] |
Dual-chamber | batch | Mixed culture | Acetate | CEM | 320.0 | [74] |
Dual-chamber | batch | Mixed culture | Acetate | CEM | 11.3 | [75] |
Dual-chamber | batch | Mixed culture | Acetate | Porous | 5.0 | [62] |
Dual-chamber | batch | Mixed culture | Acetate | Porous | 36.0 | [62] |
Dual-chamber | batch | Mixed culture | Acetate | Porous | 36.0 | [62] |
Dual-chamber | batch | Mixed culture | Acetate | Porous | 121.0 | [66] |
Dual-chamber | batch | Mixed culture | Acetate | Porous | 114.0 | [66] |
Dual-chamber | batch | Mixed culture | Acetate | Porous | 74.0 | [66] |
Dual-chamber | batch | Mixed culture | Acetate | Porous | 117.0 | [66] |
Dual-chamber | batch | Mixed culture | Acetate | Porous | 41.6 | [63] |
Dual-chamber | batch | Mixed culture | Acetate | Porous | 5.4 | [75] |
Dual-chamber | batch | Mixed culture | Acetate | Porous | 246.7 | [67] |
Dual-chamber | batch | Mixed culture | Acetate | Porous | 163.9 | [76] |
Dual-chamber | batch | Mixed culture | Acetate | Porous | 97.0 | [64] |
Dual-chamber | batch | Mixed culture | Acetate | SILM | 179.0 | [33] |
Dual-chamber | batch | Mixed culture | Acetate | SILM | 4.2 | [23] |
Dual-chamber | batch | Mixed culture | Acetate | SILM | 1.4 | [25] |
Membrane Type | Nafion | CEM | Porous | SILM |
---|---|---|---|---|
Nafion | - | 0.976 | 0.510 | 0.735 |
CEM | 0.976 | - | 0.834 | 0.895 |
Porous | 0.510 | 0.834 | - | 0.998 |
SILM | 0.735 | 0.895 | 0.998 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakonyi, P.; Koók, L.; Rózsenberszki, T.; Tóth, G.; Bélafi-Bakó, K.; Nemestóthy, N. Development and Application of Supported Ionic Liquid Membranes in Microbial Fuel Cell Technology: A Concise Overview. Membranes 2020, 10, 16. https://doi.org/10.3390/membranes10010016
Bakonyi P, Koók L, Rózsenberszki T, Tóth G, Bélafi-Bakó K, Nemestóthy N. Development and Application of Supported Ionic Liquid Membranes in Microbial Fuel Cell Technology: A Concise Overview. Membranes. 2020; 10(1):16. https://doi.org/10.3390/membranes10010016
Chicago/Turabian StyleBakonyi, Péter, László Koók, Tamás Rózsenberszki, Gábor Tóth, Katalin Bélafi-Bakó, and Nándor Nemestóthy. 2020. "Development and Application of Supported Ionic Liquid Membranes in Microbial Fuel Cell Technology: A Concise Overview" Membranes 10, no. 1: 16. https://doi.org/10.3390/membranes10010016
APA StyleBakonyi, P., Koók, L., Rózsenberszki, T., Tóth, G., Bélafi-Bakó, K., & Nemestóthy, N. (2020). Development and Application of Supported Ionic Liquid Membranes in Microbial Fuel Cell Technology: A Concise Overview. Membranes, 10(1), 16. https://doi.org/10.3390/membranes10010016