Next Article in Journal
Waste Reutilization in Polymeric Membrane Fabrication: A New Direction in Membranes for Separation
Next Article in Special Issue
An Assessment of Renewable Energies in a Seawater Desalination Plant with Reverse Osmosis Membranes
Previous Article in Journal
Optimization of Membrane Protein TmrA Purification Procedure Guided by Analytical Ultracentrifugation
Previous Article in Special Issue
Performance Analysis of a Full-Scale Desalination Plant with Reverse Osmosis Membranes for Irrigation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Optimization of Energy Efficiency, Operation Costs, Carbon Footprint and Ecological Footprint with Reverse Osmosis Membranes in Seawater Desalination Plants

by
Federico Leon
*,
Alejandro Ramos
and
Sebastian O. Perez-Baez
Departamento de Ingeniería de Procesos, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
*
Author to whom correspondence should be addressed.
Membranes 2021, 11(10), 781; https://doi.org/10.3390/membranes11100781
Submission received: 16 September 2021 / Revised: 5 October 2021 / Accepted: 9 October 2021 / Published: 12 October 2021

Abstract

:
This article shows the optimization of the reverse osmosis process in seawater desalination plants, taking the example of the Canary Islands, where there are more than 320 units of different sizes, both private and public. The objective is to improve the energy efficiency of the system in order to save on operation costs as well as reduce the carbon and ecological footprints. Reverse osmosis membranes with higher surface area have lower energy consumption, as well as energy recovery systems to recover the brine pressure and introduce it in the system. Accounting for the operation, maintenance and handling of the membranes is also important in energy savings, in order to improve the energy efficiency. The energy consumption depends on the permeate water quality required and the model of the reverse osmosis membrane installed in the seawater desalination plant, as it is shown in this study.

1. Introduction

Seawater desalination in water treatment plants has evolved considerably in the last five decades, in which the desalination process and its technology have changed and become more and more profitable and efficient. Initially, the water desalination process was a thermal process, but it has been changing with scientific technological advances towards a process of reverse osmosis, which dominates the current market [1,2,3,4,5].
Following the state of the art in water desalination and the evolution of this process not only at the regional Canary level but also at national and international levels, there are now different desalination processes, such as Vapor Compression (VC), Multi-Effect Distillation (MSF), Multi-Stage Distillation (MED) and reverse osmosis, which currently account for 65% of all the processes used around the world [4,5,6,7].
The main objective is to study the improvements in seawater desalination, based on the reduction of energy consumption in the production of fresh water. Consequently, reverse osmosis is the most suitable process due to its lower energy consumption per cubic meter of water produced, and therefore it occupies a privileged position in the sector. So far, in the 21st century, research efforts in water desalination have focused on advances in reverse osmosis membranes, with higher surface area and lower energy consumption, as well as energy recovery systems to recover the brine pressure and introduce it in the system, reducing the energy consumption of the desalination process [8,9,10].
The operation, maintenance and handling of the membranes have been studied in detail, due to their importance in energy savings, detailing how to optimize all the processes in which they are involved to improve energy efficiency [7].
In the same way, we analyze data from the different seawater desalination plants we visited, obtaining data on thousands of hours of operation in many cases. We have developed techniques to improve the energy efficiency of seawater desalination membranes in strict compliance with the water quality parameters established by national and international regulations, or even by organizations such as the World Health Organization [11,12,13,14,15,16,17,18,19].
To carry out a general cost analysis of the components or elements of the plant and their operation, it is necessary to determine the direct costs, indirect costs and other considerable expenses for this purpose [20,21,22,23,24].
Among the direct costs, we can highlight the acquisition cost of the elements, both initial and replacement, and among the most significant expenses are those related to the initial capital investment, operation and maintenance [25,26,27].

2. Materials and Methods

As stated earlier, energy consumption depends on the permeate water quality required and the reverse osmosis membrane model installed in the desalination plant. Therefore, we developed a methodology, in the following equations, to calculate the permeate quality–cost ratio [15,16,17,18,19].
CEE = f1 × EE = f1 × Eb/µe = f1 × Eh/b × µe) = f1 × ρ × g × hb/(c × µb × µe)
Q = Q′/c
Ph = ρ × g × Q × hb = ρ × g × Q’/c × hb
Eh = Ph/Q′ = ρ × g × hb/c
EB = Ehb
EE = EBe
hb(año 1–5) = (1.2 × tm + 0.6) + hb(año 0)
c: Plant recovery.
ρ: Fluid density (1000 kg/m3 for water).
g: Acceleration of gravity (generally adopted: 9.81 m/s2).
hb: Manometric pump height (m).
CEE: Cost of electricity per cubic meter of water produced.
f1: Factor about the price of the electric energy consumed EUR/kWh.
Ph: Hydraulic power transmitted to water.
Pe: Power consumption.
Q′: Permeate flow rate.
Q: Feed rate.
µb: High pressure pump performance.
µe: Electrical performance of the high-pressure pump.
PB: Pump power.
EE: Electrical energy consumed per cubic meter of water produced.
EB: Total energy consumed by the pump per cubic meter of produced water.
Eh: Hydraulic energy per cubic meter of produced water.
δE: Electrical losses.
δh: Hydraulic losses.
δm: Mechanical pump losses.
hb: Pump head (m).
tm: Age of the membrane.
Figure 1 below shows the energy block diagram, which includes the electrical, hydraulic and mechanical pressure losses that occur in the process.

General Analysis of Element and Operation Costs

In this sense, and as a guide, according to data from a construction company of desalination plants in Gran Canaria with more than 100 references in the market, it should be noted that the cost of the membranes in a seawater desalination plant represents approximately 13% of the total investment in the facility’s equipment. The rest of the components (high-pressure pump, booster pump, pressure pipes, pre-treatment, etc.) represent 87% of the total amount, not including industrial profit and before taxes [1,2,28].
Table 1 and Figure 2 show all the significant variables that affect operating costs per cubic meter of water produced [3,4,5,6,7].
In this sense, it is demonstrated that the cost of energy consumption in the pumps and mainly in the high-pressure pump is by far the most significant of a seawater desalination plant, and we can reduce it considerably with the introduction of last-generation reverse osmosis membranes, which were confirmed to be suitable through the same through-plant pilots [29,30].
If the membranes are not replaced, an action that has the lowest cost of those studied, this will have a negative impact with a considerable increase in the energy consumption of the high-pressure pump, which very significantly affects the cost per m3 of water produced, as discussed below [31,32,33,34].
In Figure 3 and Figure 4, the most important issues of this model are represented, which are the costs, energy consumption, water quality and environment.
A reduction in energy consumption will have a direct impact on environmental improvement and we study this through the carbon footprint produced by these desalination plants and their ecological footprint, with the latter as a future line of action. The corresponding diagram according to Figure 4 is shown below.
To produce a quantity of water from a reverse osmosis plant, a quantity of electrical energy must be consumed, and to generate this energy in a conventional electrical network, emissions in the form of greenhouse gases are emitted.
The magnitude of these emissions depends on the set of technologies that make up the energy generation system of the electrical network to which the water production plant is connected. The energy produced by this set is often referred to as the energy mix, which tends to depend largely on the territory and energy policy [3,4].
In relation to territorial dependence, electricity networks generally have energy mixes that cause higher greenhouse gas emissions, as they generally have systems based on lower performance technologies. These electrical energy production technologies can mainly be classified as two types: Conventional and renewable [3].
Within the conventional technologies, which have a direct impact on the carbon footprint of the installations, several can be considered: Diesel engines, gas turbines, combined cycles and steam turbines, which generally have different performances and quantities of emissions. On the other hand, there are technologies based on renewable energies, such as solar photovoltaic, wind, waves, etc. [4,5].
Therefore, in order to reduce greenhouse gas emissions, it is possible to propose the generation of electrical energy necessary for water production in the same facility through hybrid energy systems. These hybrid energy systems can be composed of several types of technologies, in which the largest amount of energy from renewable sources tends to be integrated with the support of an energy storage system or conventional technology such as a diesel engine [3].
Therefore, a methodology can be proposed to achieve the stable operation of a high-efficiency diesel engine with a small integrated autonomous diesel engine and a photovoltaic solar energy generating system to power a reverse osmosis plant, thus reducing the greenhouse gas emissions associated with water production. This application would be very useful in hotel complexes, private facilities, industries, isolated areas, etc. [3].
For the specific case of seawater desalination plants in the Canary Islands, with regard to the production of seawater desalination plants, the following permeate flows can be confirmed: Gran Canaria (220,870 m3/d), Tenerife (106,034 m3/d), Fuerteventura (90,755 m3/d) and Lanzarote (87,480 m3/d). These produce a significant carbon footprint with respect to the overall footprint of each island, especially on Fuerteventura and Lanzarote. In this sense, renewable energies can make a great contribution, mainly through wind and solar photovoltaics. For example, Fuerteventura and Lanzarote are windy islands with high solar radiation all year round, which also have large areas of flat land suitable for these installations. These installations could be for the energy consumption of public desalination plants, or for those that are private, which are normally smaller and can also be self-supplied with renewable energies and a diesel engine for the security of the electricity supply at all times without resorting to the island network, as may be the case of hotels or isolated areas where the electricity network does not reach. In Gran Canaria and Tenerife, it is also possible to implement this, although the orography is more complicated throughout the year in the coastal areas where the seawater desalination plants are located, as the solar radiation and the winds are quite significant, especially in the months between June and September with sunnier days and trade winds. Therefore, the possibility of introducing renewable energies for the supply of electricity to seawater desalination plants in the Canary Islands is studied in order to reduce the carbon footprint and the ecological footprint of the sector, due to the considerable influence of the whole archipelago.
Similarly, to calculate the ecological footprint, we follow previous methodology [11,12,13,14], which is expressed in Table 2.

3. Results

Taking into account these parameters, the typical production of a seawater plant of 100,000 m3/d, Equation (7) explained above and the reverse osmosis membrane software, we obtain the common results presented in Table 3, Table 4 and Table 5.
In Table 3, there is a pressure difference essentially every year, due to the age of the membranes. At start up, in year 0, the elements are new so they need less feed pressure than in years 1 to 5. This is because fouling and scaling could damage the membranes little by little, and consequently, the feed pressure increases every year. This shows that the pressure measured in year 1 grows more in the first year, and from year 2, it is constant at 1.2 bar.
Consequently, one can observe from Figure 5 that the pressure varies over 5 years without replacing the membranes, whereas the energy consumption of the pump increases accordingly.
In Table 4, feed temperature is low (17 °C), and due to this, the feed pressure is higher than in Table 5 where the feed temperature is high (27 °C). At start up, the feed pressure is 6–7 bars higher at 17 °C than at 27 °C. After 5 years, without replacement, the pressure difference is even higher between the minimum and maximum temperature, at around 9–10 bars.
In Table 6, we show the existing seawater desalination plants in the Canary Islands, including consumption, and the introduction of renewable energies.
Table 7 shows the existing seawater desalination plants in the Canary Islands including the carbon and ecological footprints.
Figure 6 shows the most significant plants in the Canary Islands, in terms of size, that produce the largest share of the ecological footprint mentioned above. Moreover, the positions of the RO desalination plants are shown on the map, including the permeate flow of each one in the picture.
Considering the type of specific environmental impact indicators [10], the results are classified according to the non-renewable technology and island in Table 8 (2019).
Table 9 presents the above values per MW of installed power on each island.
Similarly, we can calculate the CO2 footprint per MWh taking into account the thermal consumption by technology and island in Table 10 and Table 11.

4. Conclusions

The most important conclusions obtained from this study are the following:
-
By reducing the operation costs outlined in this article, it is possible to improve the energy efficiency of the system.
-
To reduce the carbon footprint and ecological footprint, the energy consumption needs to be decreased.
-
There are different results regarding the optimization of energy efficiency and environmental footprints.
-
These conclusions of the study may serve as a tool for the decision-making processes related to improving energy efficiency in seawater reverse osmosis plants.
-
The main objective was to study the improvements in seawater desalination based on the reduction of energy consumption in the production of fresh water.
-
Reverse osmosis is the most suitable process due to its lower energy consumption per cubic meter of water produced.
-
Reverse osmosis membranes with higher surface area have lower energy consumption, as well as energy recovery systems to recover the brine pressure and introduce it in the system, reducing the energy consumption of the desalination process.
-
Considering the operation, maintenance and handling of the membranes is also important in energy savings, in order to improve energy efficiency.
-
Energy consumption depends on the permeate water quality required and the model of the reverse osmosis membrane installed in the desalination plant.

Author Contributions

F.L.: Writing—original draft, Methodology, Formal analisys, Revision; A.R.: Writing—review & editing, Methodology, Software, Revision; S.O.P.-B.: Revision, Validation, Resources. All authors have read and agreed to the published version of the manuscript.

Funding

This research was co-funded by the INTERREG V-A Cooperation, Spain-Portugal MAC (Madeira-Azores-Canarias) 2014–2020 program and the MITIMAC project (MAC2/1.1a/263).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kurihara, M. Seawater Reverse Osmosis Desalination. Membranes 2021, 11, 243. [Google Scholar] [CrossRef]
  2. Ruiz, A.; Melian-Martel, N.; Nuez, I. Short Review on Predicting Fouling in RO Desalination. Membranes 2017, 7, 62. [Google Scholar] [CrossRef] [Green Version]
  3. Leon, F.; Ramos, A.; Vaswani, J.; Mendieta, C.; Brito, S. Climate Change Mitigation Strategy through Membranes Replacement and Determination Methodology of Carbon Footprint in Reverse Osmosis RO Desalination Plants for Islands and Isolated Territories. Water 2021, 13, 293. [Google Scholar] [CrossRef]
  4. Sadhwani, J.J.; Veza, J.M. Desalination and energy consumption in Canary Islands. Desalination 2008, 221, 143–150. [Google Scholar] [CrossRef]
  5. Schallenberg-Rodriguez, J.; Veza, J.M.; Blanco-Marigorta, A. Energy efficiency and desalination in the Canary Islands. Renew. Sustain. Energy Rev. 2014, 40, 741–748. [Google Scholar] [CrossRef]
  6. Cohen, Y.; Semiat, R.; Rahardianto, A. A perspective on reverse osmosis water desalination: Quest for sustainability. AIchE J. 2017, 63, 1771–1784. [Google Scholar] [CrossRef]
  7. Frank, W.; de Fluidos, M. Hemos Tenido en Cuenta el Coste a Partir un Valor Medio de la Tarifa Industrial Actual 3.1A de OHMIA, 6th ed.; McGraw-Hill: NewYork, NY, USA, 2008; ISBN 978-84-481-6603-8. Available online: https://ohmia.es/industria/ (accessed on 20 July 2021).
  8. Burn, S.; Hoang, M.; Zarzo, D.; Olewniak, F.; Campos, E.; Bolto, B.; Barron, O. Desalination techniques—A review of the opportunities for desalination in agriculture. Desalination 2015, 364, 2–16. [Google Scholar] [CrossRef]
  9. León, F.A.; Ramos, A. Analysis of high efficiency membrane pilot testing for membrane design optimization. Desalination Water Treat. 2017, 73, 208–214. [Google Scholar] [CrossRef]
  10. Jiménez, C. Seawater temperature measured at the surface and at two depths (7 and 12 m) in one coral reef at Culebra Bay, Gulf of Papagayo. Costa Rica. Rev. Biol. Trop. 2001, 49 (Suppl. 2), 153–161. [Google Scholar]
  11. Du, Y.; Liang, X.; Liu, Y.; Xie, L.; Zhang, S. Economic, Energy, Exergo-Economic, and Environmental Analyses and Multiobjective Optimization of Seawater Reverse Osmosis Desalination Systems with Boron Removal. Ind. Eng. Chem. Res. 2019, 58, 14193–14208. Available online: http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.iecr.9b01933 (accessed on 10 July 2021). [CrossRef]
  12. Penela, A.C. Utilidad de la Huella Ecológica y del Carbono en el ámbito de la Responsablidad Social Corporativa (RSC) y el Ecoetiquetado de Bienes y Servicios. 2009. Available online: http://www.eumed.net/rev/delos/08 (accessed on 10 June 2021).
  13. Consejería de Medio Ambiente de la Junta de Andalucía. La Huella Ecológica de Andalucía, una Herramienta Para Medir la Sostenibilidad; Junta de Anadalucía: Seville, Spain, 2006. [Google Scholar]
  14. Ministerio de Medio Ambiente Medio Rural y Marino. Análisis de la Huella Ecológica de España; Ministerio de medio ambiente medio rural y marino: Madrid, Spain, 2008. [Google Scholar]
  15. Javier, L.P. Propuesta Metodológica Para la Determinación de la Huella Ecológica en el Sector Hotelero. Ph.D. Thesis, Universidad de Las Palmas de Gran Canaria, Las palmas de Gran Canaria, Spain, 2015. [Google Scholar]
  16. Dirección General de Industria y Energía. Anuario Energético de Canarias 2017; Gobierno de Canarias: Las Palmas de Gran Canaria, Spain, 2017. [Google Scholar]
  17. Jafari, M.; Vanoppen, M.; van Agtmaal, J.M.C.; Cornelissen, E.R.; Vrouwenvelder, J.S.; Verliefde, A.; van Loosdrecht, M.C.M.; Picioreanu, C. Cost of founling in full-scale reverse osmosis nanofiltration installations in the Netherlands. Desalination 2021, 500, 114865. [Google Scholar] [CrossRef]
  18. Latorre, F.J.G.; Báez, S.O.P.; Gotor, A.G. Energy performance of a reverse osmosis desalination plant operating with variable pressure and flow. Desalination 2015, 366, 146–153. [Google Scholar] [CrossRef]
  19. Koutsou, C.P.; Kritikos, E.; Karabelas, A.J.; Kostoglou, M. Analysis of Temperature effects on the specific energy consumption in reverse osmosis desalination processes. Desalination 2020, 476, 114123. [Google Scholar] [CrossRef]
  20. Avlonitis, S.A.; Kouroumbas, K.; Vlachakis, N. Energy consumption and membrane replacement cost for. Desalination 2003, 157, 151–158. [Google Scholar] [CrossRef]
  21. Elmaadawy, K.; Kotb, M.; Elkadeem, M.R.; Sharshif, S.W.; Dan, A.; Moawad, A.; Liu, B. Optimal sizing and techno-enviroeconomic feasibility assessment of large-scale reverse osmosis desalination powered with hybrid renewable energy sources. Energy Convers. Manag. 2020, 224, 113377. [Google Scholar] [CrossRef]
  22. Busch, M.; Meckols, W.E. Reducing energy consumption in seawater desalination. Desalination 2020, 165, 299–312. [Google Scholar] [CrossRef]
  23. Voutchkov, N. Energy use for membrane seawater desalination—Current status and trends. Desalination 2018, 431, 2–14. [Google Scholar] [CrossRef]
  24. Rana, M.W.; Chen, B.; Hayat, T.; Alsaedi, A. Energy consumption for water use cycles in different countries: A review. Appl. Energy 2016, 178, 868–885. [Google Scholar]
  25. Altmann, T.; Das, R. Process improvement of sea water reverse osmosis (SWRO) and subsequent decarbonization. Desalination 2021, 499, 114791. [Google Scholar] [CrossRef]
  26. Wittholz, M.K.; Neil, B.O.; Colby, C.B.; Lewis, D.M. Estimating the cost of desalination plants using a cost database. Desalination 2008, 229, 10–20. [Google Scholar] [CrossRef]
  27. Heihsel, M.; Lenzen, M.; Malik, A.; Geschke, A. The carbon footprint of desalination. An input-output analysis of seawater reverse osmosis desalination in Australia 2005–2015. Desalination 2019, 454, 71–81. [Google Scholar] [CrossRef]
  28. Giwa, A.; Akther, N.; Dufour, V.M.; Hasan, S.W. A critical review on recent polymeric and nano-enhanced membranes for reverse osmosis process. RSC Adv. 2015, 6, 8134–8163. [Google Scholar] [CrossRef]
  29. Kim, J.; Park, K.; Yang, D.R.; Hong, S. Talnsive review of energy consumption of sea water reverse osmosis desalination plants. Appl. Energy 2019, 254, 113652. [Google Scholar] [CrossRef]
  30. Alanezi, A.A.; Altaee, A.; Sharif, A.O. The effect of energy recovery device and feed flow rate on the energy efficiency of reverse osmosis process. Chem. Eng. Res. Des. 2020, 158, 12–23. [Google Scholar] [CrossRef]
  31. Gualous, H.; Bouquain, D.; Berthon, A.; Kauffmann, J.M. Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J. Power Sources 2003, 123, 86–93. [Google Scholar] [CrossRef]
  32. Brouji, H.E.; Vinassa, J.-M.; Briat, O.; Bertrand, N.; Woirgard, E. Ultracapacitors self discharge modelling using a physical description of porous electrode impedance. In Proceedings of the 2008 IEEE Vehicle Power and Propulsion Conference, Harbin, China, 3–5 September 2018. [Google Scholar]
  33. Tal, A. Addressing Desalination’s Carbon Footprint: The Israeli Experience. Water 2018, 10, 197. [Google Scholar] [CrossRef] [Green Version]
  34. Ruiz-Garcia, A.; De la Nuez, I. Feed Spacer Geometries and Permeability Coefficients. Effect on the Performance in BWRO Spriral-Wound Membrane Modules. Water 2019, 11, 152. [Google Scholar] [CrossRef] [Green Version]
Figure 1. Energy block diagram.
Figure 1. Energy block diagram.
Membranes 11 00781 g001
Figure 2. Operation costs.
Figure 2. Operation costs.
Membranes 11 00781 g002
Figure 3. Energy, exergy and economic block diagram.
Figure 3. Energy, exergy and economic block diagram.
Membranes 11 00781 g003
Figure 4. Environmental and water quality block diagram.
Figure 4. Environmental and water quality block diagram.
Membranes 11 00781 g004
Figure 5. Pressure, power, energy and cost.
Figure 5. Pressure, power, energy and cost.
Membranes 11 00781 g005
Figure 6. Most significant seawater desalination plants (2019).
Figure 6. Most significant seawater desalination plants (2019).
Membranes 11 00781 g006
Table 1. Operation costs.
Table 1. Operation costs.
Operation CostNomenclaturePercentage (%)
Membranes replacementCm4
Reagents consumptionCr11
Chemical cleaningsCq2
MaintenanceCm10
StaffCp11
Pumps energy consumptionCe62
Table 2. Average and equivalent CO2 absorption per hectare of the different surfaces of planet Earth. Surface area equivalence factors.
Table 2. Average and equivalent CO2 absorption per hectare of the different surfaces of planet Earth. Surface area equivalence factors.
Category SurficeABS. Average (tCO2/ha/Year)Surface (Millions ha)%ABS. Hectarea Equivalent (tCO2/ha/Year)Equivalence Factor (fi)
Forests19.353858.107.561.469.66
Crops8.091958.323.840.314.04
Medows and pastures2.443363.726.590.161.22
Oceans, seas, etc…0.1036,010.0070.600.070.05
Deserts0.003600.007.060.000.00
Others0.002217.064.350.000.00
Total Surface 51,007.20 2.001.00
Table 3. Pressure increases without membrane replacement at 22 °C.
Table 3. Pressure increases without membrane replacement at 22 °C.
YearPressure (bar)Power (kW)Energy (kWh/d)Cost (€/d)
066.610,023.5240,564.921,625.6
168.410,294.4247,066.722,210.1
269.610,475.0251,401.222,599.7
370.810,655.7255,735.722,989.4
472.010,836.3260,070.223,379.0
573.211,016.9264,404.723,768.7
Table 4. Pressure increases without membrane replacement at 17 °C.
Table 4. Pressure increases without membrane replacement at 17 °C.
YearPressure (bar)Power (kW)Energy (kWh/d)Cost (€/d)
069.510,460.0251,039.922,567.2
172.610,926.5262,237.523,573.8
274.411,197.4268,739.224,158.3
376.011,438.3274,518.524,677.8
477.511,664.1279,936.725,164.9
578.911,874.8284,993.625,619.5
Table 5. Pressure increases without membrane replacement at 27 °C.
Table 5. Pressure increases without membrane replacement at 27 °C.
YearPressure (bar)Power (kW)Energy (kWh/d)Cost (€/d)
062.99466.6227,200.220,424.1
165.19797.7235,146.821,138.5
266.39978.3239,481.321,528.2
367.310,128.9243,093.421,852.9
468.310,279.4246,705.522,177.6
569.210,414.9249,956.422,469.8
Table 6. Existing seawater desalination plants in the Canary Islands, consumption and solution of renewable energies. Source: FCCA 2013, REE 2020 and own elaboration.
Table 6. Existing seawater desalination plants in the Canary Islands, consumption and solution of renewable energies. Source: FCCA 2013, REE 2020 and own elaboration.
Name of the PlantProduction (m3/d)Consume (kWh/m3)IslandHabitants per PlantRenewable Solution
Cercado de Don Andrés2003.5LanzaroteIrrigationPhotovoltaic
Lanzarote III 110,0003.5Lanzarote10,541Wind
Lanzarote III 250003.5Lanzarote5271Wind
Lanzarote III 350003.5Lanzarote5271Wind
Lanzarote IV20,0003.5Lanzarote21,083Wind
Lanzarote V18,0002.4Lanzarote18,975Wind
Aeropuerto7003.04Lanzarote18,327Photovoltaic
Agua Park303.04Lanzarote500Photovoltaic
Apartamentos Ficus603.5Lanzarote120Photovoltaic
Apartamentos Puerto Tahiche1503.5Lanzarote300Photovoltaic
Apartamentos Trebol803.5Lanzarote160Photovoltaic
Ercros25003.5Lanzarote11,057Wind
Ercros22003.5Lanzarote9731Wind
Famara3503.5Lanzarote700Photovoltaic
Hotel Golf y Mar903.5Lanzarote180Photovoltaic
Hotel Gran Meliá Salinas4002.61Lanzarote800Photovoltaic
Hotel Playa Verde2503.5Lanzarote500Photovoltaic
Hotel Teguise Playa2503.5Lanzarote500Photovoltaic
La Galea1503.04Lanzarote300Photovoltaic
Lanzarote Beach Club II703.04Lanzarote140Photovoltaic
Las Arenas. Costa Teguise803.04Lanzarote160Photovoltaic
Playa Roca2503.04Lanzarote500Photovoltaic
Apartamentos Don Paco Castilla3202.61Lanzarote640Photovoltaic
Apartamentos Sol Lanzarote3502.61Lanzarote700Photovoltaic
Cdad Apartamentos CAMP 2.61LanzaroteTourismPhotovoltaic
Holiday Land S.A.30003.5Lanzarote6000Wind
Hotel Fariones Playa5003.5Lanzarote1000Photovoltaic
Hotel Playa Azul3003.5Lanzarote600Photovoltaic
Hoteles Canarios S.A. 3.5LanzaroteTourismPhotovoltaic
Iberhotel 3.5LanzaroteTourismPhotovoltaic
Zorilla403.04Lanzarote80Photovoltaic
Hotel Jameos Playa3362.61Lanzarote672Photovoltaic
La Santa Sport I2503.5Lanzarote500Photovoltaic
La Santa Sport II2503.5Lanzarote500Photovoltaic
Ria La Santa4003.5Lanzarote800Photovoltaic
Apartamentos Son Boy Family Suites5003.04Lanzarote1000Photovoltaic
Bungalows Atlantic Gardens 3.5LanzaroteTourismPhotovoltaic
Costa los Limones S.A.3503.5Lanzarote700Photovoltaic
Hotel Corbeta 3.5LanzaroteTourismPhotovoltaic
Hotel Costa Calero3243.04Lanzarote642Photovoltaic
Marina Rubicón3003.04Lanzarote600Photovoltaic
Hotel Paradise Island3003.04Lanzarote600Photovoltaic
Hotel Princesa Yaiza5003.04Lanzarote1000Photovoltaic
Hotel Rubicón Palace4503.04Lanzarote900Photovoltaic
Inalsa Sur 16003.5Lanzarote1859Photovoltaic
Inalsa Sur 212003.5Lanzarote3718Wind
Inalsa Sur 330003.5Lanzarote9294Wind
Janubio 3.04LanzaroteTourismPhotovoltaic
Lanzasur Club2003.04Lanzarote400Photovoltaic
Playa Blanca S.A. 3.5LanzaroteTourismPhotovoltaic
Club Lanzarote45003.5Lanzarote9000Wind
Apartamentos Moromar2503.5Lanzarote500Photovoltaic
Gea Fonds Numero Uno Lanzarote S.A.3.5LanzaroteTourismPhotovoltaic
Grupo Rosa10003.5Lanzarote2000Wind
Hipotels3003.5Lanzarote600Photovoltaic
Hotel Corona3003.5Lanzarote600Photovoltaic
Hotel Costa Calero S.L.3003.04Lanzarote600Photovoltaic
Hotel Sunbou5003.04Lanzarote1000Photovoltaic
Isla Lobos1003.04Lanzarote200Photovoltaic
Leas Hotel S.A. 3.5LanzaroteTourismPhotovoltaic
Niels Prahm 3.5LanzaroteTourismPhotovoltaic
Occidental Hotel Oasis2503.04Lanzarote500Photovoltaic
Playa Flamingo2003.04Lanzarote400Photovoltaic
Tjaereborg Timesharing, S.A.5003.04Lanzarote1000Photovoltaic
Empresa Mixta de Aguas de Antigua, S.L.48003.04Fuerteventura11,948Wind
Grupo Turístico Barceló, S.L.2403.5Fuerteventura480Photovoltaic
Aguas Cristóbal Franquis, S.L.12003.5Fuerteventura2400Wind
Anjoca Canarias, S.A.30003.5Fuerteventura6000Wind
Ramiterra, S.L.30003.04Fuerteventura6000Wind
Inver Canary Dos, S.L.3003.04Fuerteventura600Photovoltaic
Suministros de Agua de La Oliva, S.A.90003.04Fuerteventura17,920Wind
Consorcio Abastecimiento de Aguas a Fuerteventura40003.04Fuerteventura7964Wind
Parque de Ocio y Cultura (BAKU) 13003.04Fuerteventura600Photovoltaic
Parque de Ocio y Cultura (BAKU) 2903.04Fuerteventura180Photovoltaic
RIU Palace Tres Islas1003.5Fuerteventura200Photovoltaic
RIU Oliva Beach4003.5Fuerteventura800Photovoltaic
Nombredo, S.L.5003.5Fuerteventura1000Photovoltaic
Consorcio Abastecimiento de Aguas a Fuerteventura44003.5Fuerteventura20,539Wind
Puertito de la Cruz603.5Fuerteventura120Photovoltaic
Vinamar, S.A.36003.5Fuerteventura7200Wind
Fuercan, S.L. Cañada del Rio I20003.5Fuerteventura4000Wind
Fuercan, S.L. Cañada del Rio II10003.04Fuerteventura2000Wind
Fuercan, S.L. Cañada del Rio III20003.04Fuerteventura4000Wind
Club Aldiana2003.5Fuerteventura400Photovoltaic
Erwin Sick303.5Fuerteventura60Photovoltaic
Esquinzo Urbanización II12003.5Fuerteventura2400Wind
Esquinzo Urbanización III12003.5Fuerteventura2400Wind
Hotel Sol Élite Los Gorriones 14003.5Fuerteventura800Photovoltaic
Hotel Sol Élite Los Gorriones 24003.5Fuerteventura800Photovoltaic
Stella Canaris I3003.5Fuerteventura600Photovoltaic
Stella Canaris II3003.5Fuerteventura600Photovoltaic
Stella Canaris III2503.5Fuerteventura500Photovoltaic
Hotel H 10 Playa Esmeralda.2503.5Fuerteventura500Photovoltaic
Hotel “Club Paraíso Playa”3003.5Fuerteventura600Photovoltaic
Urbanización Costa Calma.1103.5Fuerteventura220Photovoltaic
Urbanización Tierra Dorada.1203.5Fuerteventura240Photovoltaic
Zoo-Parque La Lajita.13003.5Fuerteventura500Wind
Apartamentos Esmeralda Maris1203.5Fuerteventura240Photovoltaic
Hotel H10 Tindaya2803.5Fuerteventura560Photovoltaic
Aparthotels Morasol803.5Fuerteventura160Photovoltaic
Consorcio Abastecimiento de Aguas a Fuerteventura36,5003.5Fuerteventura39,382Wind
Aeropuerto5003.5Fuerteventura15,439Photovoltaic
GranTarajal40003.5Fuerteventura14,791Wind
Sotavento, S.A.29253.5Fuerteventura5850Wind
Arucas-Moya I10,0003.5Gran Canaria45,419Wind
Granja experimental5003.5Gran CanariaIrrigationPhotovoltaic
Granja experimental5003.5Gran CanariaIrrigationPhotovoltaic
Comunidad Fuentes de Quintanilla8003.04Gran CanariaIrrigationPhotovoltaic
Granja experimental5003.5Gran CanariaIrrigationPhotovoltaic
Gáldar-Agaete I30003.5Gran Canaria16,199Wind
Gáldar II70003.04Gran Canaria37,799Wind
Agragua15,0003.5Gran CanariaIrrigationWind
Guía I50003.5Gran Canaria6962Wind
Guía II50002.61Gran Canaria6962Wind
Félix Santiago Melián50002.61Gran CanariaIrrigationWind
Las Palmas III65,0003.5Gran Canaria307,545Wind
Las Palmas IV15,0002.61Gran Canaria70,972Wind
BAXTER S.A.1003.5Gran Canaria200Photovoltaic
El Corte Inglés, S.A.3003.5Gran Canaria3000Photovoltaic
Anfi del Mar I2503.5Gran Canaria500Photovoltaic
Anfi del Mar II2503.5Gran Canaria500Photovoltaic
AQUALING20003.04Gran Canaria4000Wind
Puerto Rico40003.04Gran Canaria8000Wind
Puerto Rico I40003.04Gran Canaria8000Wind
Hotel Taurito4003.04Gran Canaria800Photovoltaic
Hotel Costa Meloneras3003.04Gran Canaria600Photovoltaic
Hotel Villa del Conde5003.04Gran Canaria1000Photovoltaic
Bahia Feliz6003.5Gran Canaria1200Photovoltaic
Bonny80003.5Gran CanariaIrrigationWind
Maspalomas I Mar14,5003.5Gran Canaria19,572Wind
Maspalomas II25,2003.04Gran Canaria34,016Wind
UNELCO II6003.5Gran CanariaIndustrialPhotovoltaic
Ayto. San Nicolas50003.04Gran Canaria7608Wind
Asociación de agricultores de la Aldea54003.04Gran CanariaIrrigationWind
Sureste III80003.5Gran Canaria133,846Wind
Aeropuerto I10003.5Gran Canaria24,791Wind
Salinetas16,0003.5Gran Canaria102,424Wind
Aeropuerto II5003.5Gran Canaria12,396Photovoltaic
Hoya León15003.5Gran CanariaIrrigationWind
Bco. García Ruiz10003.5Gran CanariaIrrigationWind
Mando Aéreo de Canarias10003.5Gran Canaria3000Wind
UNELCO I10003.5Gran CanariaIndustrialWind
Anfi del Mar15003.04Gran Canaria3000Wind
Norcrost. S.A.1703.04Gran Canaria340Photovoltaic
Adeje Arona30,0003.04Tenerife126,728Wind
Gran Hotel Anthelia Park 3.04TenerifeTourismPhotovoltaic
La Caleta (Ayto. Adeje)10,0003.04Tenerife20,000Wind
UTE Tenerife Oeste14,0002.16Tenerife40,000Wind
Hotel Sheraton La Caleta 3.04TenerifeTourismPhotovoltaic
Hotel Gran Tacande 3.04TenerifeTourismPhotovoltaic
Hotel Rocas de Nivaria. Playa Paraíso3.04TenerifeTourismPhotovoltaic
Hotel Bahía del Duque. Costa Adeje3.04TenerifeTourismPhotovoltaic
Siam Park 3.04TenerifeTourismPhotovoltaic
Tenerife-Sol S. A. 3.04TenerifeTourismPhotovoltaic
Hotel Conquistador, P. de Las Américas3.04TenerifeTourismPhotovoltaic
Arona Gran Hotel, Los Cristianos 3.04TenerifeTourismPhotovoltaic
Bonny S.A., Finca El Fraile. 3.04TenerifeTourismPhotovoltaic
El Toscal, La Estrella (C. Regantes Las Galletas)3.04TenerifeTourismPhotovoltaic
Complejo Mare Nostrum, P. Las Américas3.04TenerifeTourismPhotovoltaic
Hotel Villa Cortés 3.04TenerifeTourismPhotovoltaic
Buenavista Golf, S.A. 3.04TenerifeTourismPhotovoltaic
Rural Teno 3.04TenerifeAgrícolaPhotovoltaic
Ropa Rent, S.A. (P.I. Güímar) 3.04TenerifeIndustrialPhotovoltaic
Unelco6003.5TenerifeIndustrialPhotovoltaic
I.T.E.R. Cabildo de Tenerife143.5TenerifeIndustrialPhotovoltaic
C.T. en P.I. de Granadilla 3.5TenerifeIndustrialPhotovoltaic
Bonny S.A., Finca El Confital. 3.5TenerifeIrrigationPhotovoltaic
Polígono Industrial de Granadilla (portátil)3.5TenerifeIndustrialPhotovoltaic
UTE Desalinizadora de Granadilla14,0003.04Tenerife50,146Wind
Guia de ISORA Hoya de la leña 3.5TenerifeTourismPhotovoltaic
Club Campo Guía de Isora, Abama3.5TenerifeTourismPhotovoltaic
Hotel Meliá Palacio de Isora, Alcalá.3.5TenerifeTourismPhotovoltaic
Loro Parque 3.5TenerifeTourismPhotovoltaic
Santa Cruz I20,0003.04Tenerife204,856Wind
Recinto Portuario Santa Cruz (portátil)3.04TenerifeIndustrialPhotovoltaic
CEPSA10003.04TenerifeIndustrialWind
Hotel Playa la Arena 3.04TenerifeTourismPhotovoltaic
Hotel Jardín Tecina20003.04La Gomera4000Wind
La Restinga5003.5El Hierro297Photovoltaic
La Restinga12003.04El Hierro712Wind
El Cangrejo12003.04El Hierro2478Wind
El Cangrejo12003.04El Hierro2478Wind
El Golfo13503.04El Hierro4093Wind
Table 7. Existing seawater desalination plants in the Canary Islands. Source: FCCA 2013 and REE 2020.
Table 7. Existing seawater desalination plants in the Canary Islands. Source: FCCA 2013 and REE 2020.
Name of the PlantProduction (m3/d)Consume (kWh/m3)Economic Cost (€/m3)Carbon Footprint (tCO2/m3)Ecological Footprint (ha/Year/tCO2/m3)
Cercado de Don Andrés2003.50.0404482890.00210.00105
Lanzarote III 110,0003.50.0404482890.00210.00105
Lanzarote III 250003.50.0404482890.00210.00105
Lanzarote III 350003.50.0404482890.00210.00105
Lanzarote IV20,0003.50.0404482890.00210.00105
Lanzarote V18,0002.40.027735970.0015660.00072
Aeropuerto7003.040.0351322280.0018240.000912
Agua Park303.040.0351322280.0018240.000912
Apartamentos Ficus603.50.0404482890.00210.00105
Apartamentos Puerto Tahiche1503.50.0404482890.00210.00105
Apartamentos Trebol803.50.0404482890.00210.00105
Ercros25003.50.0404482890.00210.00105
Ercros22003.50.0404482890.00210.00105
Famara3503.50.0404482890.00210.00105
Hotel Golf y Mar903.50.0404482890.00210.00105
Hotel Gran Meliá Salinas4002.610.0301628670.0015660.000783
Hotel Playa Verde2503.50.0404482890.00210.00105
Hotel Teguise Playa2503.50.0404482890.00210.00105
La Galea1503.040.0351322280.0018240.000912
Lanzarote Beach Club II703.040.0351322280.0018240.000912
Las Arenas, Costa Teguise803.040.0351322280.0018240.000912
Playa Roca2503.040.0351322280.0018240.000912
Apartamentos Don Paco Castilla3202.610.0301628670.0015660.000783
Apartamentos Sol Lanzarote3502.610.0301628670.0015660.000783
Cdad Apartamentos CAMP 2.610.0301628670.0015660.000783
Holiday Land S.A.30003.50.0404482890.00210.00105
Hotel Fariones Playa5003.50.0404482890.00210.00105
Hotel Playa Azul3003.50.0404482890.00210.00105
Hoteles Canarios S.A. 3.50.0404482890.00210.00105
Iberhotel 3.50.0404482890.00210.00105
Zorilla403.040.0351322280.0018240.000912
Hotel Jameos Playa3362.610.0301628670.0015660.000783
La Santa Sport I2503.50.0404482890.00210.00105
La Santa Sport II2503.50.0404482890.00210.00105
Ria La Santa4003.50.0404482890.00210.00105
Apartamentos Son Boy Family Suites5003.040.0351322280.0018240.000912
Bungalows Atlantic Gardens 3.50.0404482890.00210.00105
Costa los Limones S.A.3503.50.0404482890.00210.00105
Hotel Corbeta 3.50.0404482890.00210.00105
Hotel Costa Calero3243.040.0351322280.0018240.000912
Marina Rubicón3003.040.0351322280.0018240.000912
Hotel Paradise Island3003.040.0351322280.0018240.000912
Hotel Princesa Yaiza5003.040.0351322280.0018240.000912
Hotel Rubicón Palace4503.040.0351322280.0018240.000912
Inalsa Sur 16003.50.0404482890.00210.00105
Inalsa Sur 212003.50.0404482890.00210.00105
Inalsa Sur 330003.50.0404482890.00210.00105
Janubio 3.040.0351322280.0018240.000912
Lanzasur Club2003.040.0351322280.0018240.000912
Playa Blanca S.A. 3.50.0404482890.00210.00105
Club Lanzarote45003.50.0404482890.00210.00105
Apartamentos Moromar2503.50.0404482890.00210.00105
Gea Fonds Numero Uno Lanzarote S.A.3.53.50.0016234940.0021
Grupo Rosa10003.50.0404482890.00210.00105
Hipotels3003.50.0404482890.00210.00105
Hotel Corona3003.50.0404482890.00210.00105
Hotel Costa Calero S.L.3003.040.0351322280.0018240.000912
Hotel Sunbou5003.040.0351322280.0018240.000912
Isla Lobos1003.040.0351322280.0018240.000912
Leas Hotel S.A. 3.50.0404482890.00210.00105
Niels Prahm 3.50.0404482890.00210.00105
Occidental Hotel Oasis2503.040.0351322280.0018240.000912
Playa Flamingo2003.040.0351322280.0018240.000912
Tjaereborg Timesharing, S.A.5003.040.0351322280.0018240.000912
Empresa Mixta de Aguas de Antigua, S.L.48003.040.0351322280.0018240.000912
Grupo Turístico Barceló, S.L.2403.50.0404482890.00210.00105
Aguas Cristóbal Franquis, S.L.12003.50.0404482890.00210.00105
Anjoca Canarias, S.A.30003.50.0404482890.00210.00105
Ramiterra, S.L.30003.040.0351322280.0018240.000912
Inver Canary Dos, S.L.3003.040.0351322280.0018240.000912
Suministros de Agua de La Oliva, S.A.90003.040.0351322280.0018240.000912
Consorcio Abastecimiento de Aguas a Fuerteventura40003.040.0351322280.0018240.000912
Parque de Ocio y Cultura BAKU 1 3003.040.0351322280.0018240.000912
Parque de Ocio y Cultura BAKU 2 903.040.0351322280.0018240.000912
RIU Palace Tres Islas1003.50.0404482890.00210.00105
RIU Oliva Beach4003.50.0404482890.00210.00105
Nombredo, S.L.5003.50.0404482890.00210.00105
Consorcio Abastecimiento de Aguas a Fuerteventura44003.50.0404482890.00210.00105
Puertito de la Cruz603.50.0404482890.00210.00105
Vinamar, S.A.36003.50.0404482890.00210.00105
Fuercan, S.L. Cañada del Rio I20003.50.0404482890.00210.00105
Fuercan, S.L. Cañada del Rio II10003.040.0351322280.0018240.000912
Fuercan, S.L. Cañada del Rio III20003.040.0351322280.0018240.000912
Club Aldiana2003.50.0404482890.00210.00105
Erwin Sick303.50.0404482890.00210.00105
Esquinzo Urbanización II12003.50.0404482890.00210.00105
Esquinzo Urbanización III12003.50.0404482890.00210.00105
Hotel Sol Élite Los Gorriones 14003.50.0404482890.00210.00105
Hotel Sol Élite Los Gorriones 24003.50.0404482890.00210.00105
Stella Canaris I 3003.50.0404482890.00210.00105
Stella Canaris II3003.50.0404482890.00210.00105
Stella Canaris III2503.50.0404482890.00210.00105
Hotel H 10 Playa Esmeralda.2503.50.0404482890.00210.00105
Hotel “Club Paraíso Playa”3003.50.0404482890.00210.00105
Urbanización Costa Calma.1103.50.0404482890.00210.00105
Urbanización Tierra Dorada.1203.50.0404482890.00210.00105
Zoo-Parque La Lajita.13003.50.0404482890.00210.00105
Apartamentos Esmeralda Maris1203.50.0404482890.00210.00105
Hotel H10 Tindaya2803.50.0404482890.00210.00105
Aparthotels Morasol803.50.0404482890.00210.00105
Consorcio Abastecimiento de Aguas a Fuerteventura36,5003.50.0404482890.00210.00105
Aeropuerto5003.50.0404482890.00210.00105
GranTarajal40003.50.0404482890.00210.00105
Sotavento, S.A.29253.50.0404482890.00210.00105
Arucas-Moya I10,0003.50.0404482890.00210.00105
Granja experimental5003.50.0404482890.00210.00105
Granja experimental5003.50.0404482890.00210.00105
Comunidad Fuentes de Quintanilla8003.040.0351322280.0018240.000912
Granja experimental5003.50.0404482890.00210.00105
Gáldar-Agaete I30003.50.0404482890.00210.00105
Gáldar II70003.040.0351322280.0018240.000912
Agragua15,0003.50.0404482890.00210.00105
Guía I50003.50.0404482890.00210.00105
Guía II50002.610.0301628670.0015660.000783
Félix Santiago Melián50002.610.0301628670.0015660.000783
Las Palmas III65,0003.50.0404482890.00210.00105
Las Palmas IV15,0002.610.0301628670.0015660.000783
BAXTER S.A.1003.50.0404482890.00210.00105
El Corte Inglés, S.A. 3003.50.0404482890.00210.00105
Anfi del Mar I2503.50.0404482890.00210.00105
Anfi del Mar II2503.50.0404482890.00210.00105
AQUALING20003.040.0351322280.0018240.000912
Puerto Rico I40003.040.0351322280.0018240.000912
Puerto Rico II40003.040.0351322280.0018240.000912
Hotel Taurito4003.040.0351322280.0018240.000912
Hotel Costa Meloneras3003.040.0351322280.0018240.000912
Hotel Villa del Conde5003.040.0351322280.0018240.000912
Bahia Feliz6003.50.0404482890.00210.00105
Bonny80003.50.0404482890.00210.00105
Maspalomas I Mar14,5003.50.0404482890.00210.00105
Maspalomas II25,2003.040.0351322280.0018240.000912
UNELCO II6003.50.0404482890.00210.00105
Ayto. San Nicolas50003.040.0351322280.0018240.000912
Asociación de agricultores de la Aldea54003.040.0351322280.0018240.000912
Sureste III80003.50.0404482890.00210.00105
Aeropuerto I10003.50.0404482890.00210.00105
Salinetas16,0003.50.0404482890.00210.00105
Aeropuerto II5003.50.0404482890.00210.00105
Hoya León15003.50.0404482890.00210.00105
Bco. García Ruiz10003.50.0404482890.00210.00105
Mando Aéreo de Canarias10003.50.0404482890.00210.00105
UNELCO I10003.50.0404482890.00210.00105
Anfi del Mar15003.040.0351322280.0018240.000912
Norcrost, S.A.1703.040.0351322280.0018240.000912
Adeje Arona30,0003.040.0351322280.0018240.000912
Gran Hotel Anthelia Park 3.040.0351322280.0018240.000912
La Caleta (Ayto. Adeje) 3.040.0351322280.0018240.000912
Hotel Sheraton La Caleta 2.160.0351322280.0018240.000912
Hotel Gran Tacande 3.040.0351322280.0018240.000912
Hotel Rocas de Nivaria, Playa Paraíso3.043.040.001410120.001824
Hotel Bahía del Duque, Costa Adeje3.043.040.001410120.001824
Siam Park 3.040.0351322280.0018240.000912
Tenerife-Sol S. A. 3.040.0351322280.0018240.000912
Hotel Conquistador, P. de Las Américas3.043.040.001410120.001824
Arona Gran Hotel, Los Cristianos 3.040.0351322280.0018240.000912
Bonny S.A., Finca El Fraile. 3.040.0351322280.0018240.000912
El Toscal, La Estrella (C. Regantes Las Galletas)3.043.040.001410120.001824
Complejo Mare Nostrum, P. Las Américas3.043.040.001410120.001824
Hotel Villa Cortés 3.040.0351322280.0018240.000912
Buenavista Golf S.A, 3.040.0351322280.0018240.000912
Rural Teno 3.040.0351322280.0018240.000912
Ropa Rent, S.A. (P.I. Güímar) 3.040.0351322280.0018240.000912
Unelco6003.040.0404482890.00210.00105
I.T.E.R. Cabildo de Tenerife143.50.0404482890.00210.00105
C.T. en P.I. de Granadilla 3.50.0404482890.00210.00105
Bonny S.A., Finca El Confital. 3.50.0404482890.00210.00105
Polígono Industrial de Granadilla (portatil)3.53.50.0016234940.0021
Guia de ISORA Hoya de la leña 3.50.0404482890.00210.00105
Club Campo Guía de Isora, Abama3.53.040.0016234940.0021
Hotel Meliá Palacio de Isora, Alcalá3.53.50.0016234940.0021
Loro Parque 3.50.0404482890.00210.00105
Santa Cruz I20,0003.50.0351322280.0018240.000912
Recinto Portuario Santa Cruz (portátil)3,043.50.001410120.001824
CEPSA10003.040.0351322280.0018240.000912
Hotel Playa la Arena 3.040.0351322280.0018240.000912
Hotel Jardín Tecina20003.040.0351322280.0018240.000912
La Restinga5003.040.0404482890.00210.00105
La Restinga12003.040.0351322280.0018240.000912
El Cangrejo12003.50.0351322280.0018240.000912
El Cangrejo12003.040.0351322280.0018240.000912
El Golfo13503.040.0351322280.0018240.000912
Table 8. Carbon footprint according to the technological structure of the generation parks that uses oil products in the Canary Islands, broken down by islands (2017) [15].
Table 8. Carbon footprint according to the technological structure of the generation parks that uses oil products in the Canary Islands, broken down by islands (2017) [15].
CO2 Footprint per Non-Renewable Technology in Canaries (tCO2)
TechnologyGran CanariaTenerifeLanzaroteFuerteventuraLa PalmaLa GomeraEl Hierro
Vapor Turbine274,429279,289550,15434,9597268,27368,688.2248,276
Diesel Motor110,730193,18839,88850,48314,360--
Gas Turbine1,270,0581,110,153-----
Combined Cycle1,175,2131,162,741-----
Table 9. Carbon footprint by installed power according to the technological structure of the generation park that uses oil products in the Canary Islands, broken down by islands (2017) [15].
Table 9. Carbon footprint by installed power according to the technological structure of the generation park that uses oil products in the Canary Islands, broken down by islands (2017) [15].
CO2 Carbon Footprint per Power Installed of Non-Renewable Technology in Canaries (tCO2/MW)
TechnologytCO2/MW
Vapor Turbine3240
Diesel Motor638
Gas Turbine4175
Combined Cycle2545
Table 10. CO2 footprint of each non-renewable technology per MWh in the Canary Islands (tCO2/MWh) (2017) [16].
Table 10. CO2 footprint of each non-renewable technology per MWh in the Canary Islands (tCO2/MWh) (2017) [16].
CO2 Footprint of Each Non-Renewable Technology per MWh in Canarias (tCO2/MWh)
TechnologyGran CanariaTenerifeLanzaroteFuerteventuraLa PalmaLa GomeraEl Hierro
Diesel Motor0.2246210.2049290.1517370.123290.2155320.1683560.364811
Gas Turbine0.1788540.1703680.2786810.0450572.49432600
Vapor Turbine0.1452610.13476500000
Combined Cycle0.1751150.16245700000
Table 11. Percentages of water consumption by islands and sectors (%) (2017) [15].
Table 11. Percentages of water consumption by islands and sectors (%) (2017) [15].
Water Consumes in Canarias per Sectors (%)
ConsumeLanzaroteFuerteventuraGran CanariaTenerifeLa GomeraEl HierroLa Palma
Urban26%29%32%27%9%23%8%
Touristic40%48%11%10%9%3%2%
Industrial3%4%4%5%0%1%0%
Irrigation23%11%43%49%69%63%77%
Losses7%9%9%9%13%9%13%
Total100%100%100%100%100%100%100%
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Leon, F.; Ramos, A.; Perez-Baez, S.O. Optimization of Energy Efficiency, Operation Costs, Carbon Footprint and Ecological Footprint with Reverse Osmosis Membranes in Seawater Desalination Plants. Membranes 2021, 11, 781. https://doi.org/10.3390/membranes11100781

AMA Style

Leon F, Ramos A, Perez-Baez SO. Optimization of Energy Efficiency, Operation Costs, Carbon Footprint and Ecological Footprint with Reverse Osmosis Membranes in Seawater Desalination Plants. Membranes. 2021; 11(10):781. https://doi.org/10.3390/membranes11100781

Chicago/Turabian Style

Leon, Federico, Alejandro Ramos, and Sebastian O. Perez-Baez. 2021. "Optimization of Energy Efficiency, Operation Costs, Carbon Footprint and Ecological Footprint with Reverse Osmosis Membranes in Seawater Desalination Plants" Membranes 11, no. 10: 781. https://doi.org/10.3390/membranes11100781

APA Style

Leon, F., Ramos, A., & Perez-Baez, S. O. (2021). Optimization of Energy Efficiency, Operation Costs, Carbon Footprint and Ecological Footprint with Reverse Osmosis Membranes in Seawater Desalination Plants. Membranes, 11(10), 781. https://doi.org/10.3390/membranes11100781

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop