Hollow-Fiber RO Membranes Fabricated via Adsorption of Low-Charge Poly(vinyl alcohol) Copolymers
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis and Characterization of CPVA Copolymers
2.3. Adsorption Measurements of CPVA on Hollow-Fiber Supports
2.4. Fabrication of Cross-Linked CPVA (XCPVA)-Modified Hollow-Fiber Membranes
2.5. SEM and TEM Observation of Membrane Structures
2.6. Membrane Surface Roughness Analyzed by AFM
2.7. Zeta Potentials of Polymeric Film Surfaces
2.8. Membrane Performance Tests
3. Results and Discussion
3.1. Characterization of Hollow-Fiber Membrane Supports
3.2. Characterization of CPVA Copolymer
3.3. Adsorption Behavior of CPVA on Anionic SPN-20 Hollow-Fiber Surfaces
3.4. Analysis of XCPVA Layer by AFM and TEM
3.5. Zeta Potential of PPO, SPN-20, and Cross-Linked CPVA Surfaces
3.6. Separation Performance of XCPVA Hollow-Fiber Membrane
3.7. Alkaline Resistance of XCPVA-Modified Hollow-Fiber Membrane
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Memb. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Geise, G.M.; Lee, H.-S.; Miller, D.J.; Freeman, B.D.; McGrath, J.E.; Paul, D.R. Water purification by membranes: The role of polymer science. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1685–1718. [Google Scholar] [CrossRef]
- Do, V.T.; Tang, C.Y.; Reinhard, M.; Leckie, J.O. Effects of chlorine exposure conditions on physiochemical properties and performance of a polyamide membrane-mechanisms and implications. Environ. Sci. Technol. 2012, 46, 13184–13192. [Google Scholar] [CrossRef]
- Gohil, J.M.; Suresh, A.K. Chlorine attack on reverse osmosis membranes: Mechanisms and mitigation strategies. J. Memb. Sci. 2017, 541, 108–126. [Google Scholar] [CrossRef]
- Fujiwara, N.; Matsuyama, H. Elimination of biological fouling in seawater reverse osmosis desalination plants. Desalination 2008, 227, 295–305. [Google Scholar] [CrossRef]
- Bruening, M.L.; Dotzauer, D.M.; Jain, P.; Ouyang, L.; Baker, G.L. Creation of Functional Membranes Using Polyelectrolyte Multilayers and Polymer Brushes. Langmuir 2008, 24, 7663–7673. [Google Scholar] [CrossRef]
- Saren, Q.; Qiu, C.Q.; Tang, C.Y. Synthesis and Characterization of Novel Forward Osmosis Membranes based on Layer-by-Layer Assembly. Environ. Sci. Technol. 2011, 45, 5201–5208. [Google Scholar] [CrossRef]
- Qiu, C.; Qi, S.; Tang, C.Y. Synthesis of high flux forward osmosis membranes by chemically crosslinked layer-by-layer polyelectrolytes. J. Memb. Sci. 2011, 381, 74–80. [Google Scholar] [CrossRef]
- Duong, P.H.H.; Zuo, J.; Chung, T.S. Highly crosslinked layer-by-layer polyelectrolyte FO membranes: Understanding effects of salt concentration and deposition time on FO performance. J. Memb. Sci. 2013, 427, 411–421. [Google Scholar] [CrossRef]
- Liu, C.; Shi, L.; Wang, R. Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42− in feed water. J. Memb. Sci. 2015, 486, 169–176. [Google Scholar] [CrossRef]
- de Grooth, J.; Oborný, R.; Potreck, J.; Nijmeijer, K.; de Vos, W.M. The role of ionic strength and odd-even effects on the properties of polyelectrolyte multilayer nanofiltration membranes. J. Memb. Sci. 2015, 475, 311–319. [Google Scholar] [CrossRef]
- Elshof, M.G.; de Vos, W.M.; de Grooth, J.; Benes, N.E. On the long-term pH stability of polyelectrolyte multilayer nanofiltration membranes. J. Memb. Sci. 2020, 615, 118532. [Google Scholar] [CrossRef]
- Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997, 277, 1232–1237. [Google Scholar] [CrossRef]
- Dubas, S.T.; Schlenoff, J.B. Factors Controlling the Growth of Polyelectrolyte Multilayers. Macromolecules 1999, 32, 8153–8160. [Google Scholar] [CrossRef]
- Menne, D.; Üzüm, C.; Koppelmann, A.; Wong, J.E.; van Foeken, C.; Borre, F.; Dähne, L.; Laakso, T.; Pihlajamäki, A.; Wessling, M. Regenerable polymer/ceramic hybrid nanofiltration membrane based on polyelectrolyte assembly by layer-by-layer technique. J. Memb. Sci. 2016, 520, 924–932. [Google Scholar] [CrossRef]
- Hierrezuelo, J.; Szilagyi, I.; Vaccaro, A.; Borkovec, M. Probing Nanometer-Thick Polyelectrolyte Layers Adsorbed on Oppositely Charged Particles by Dynamic Light Scattering. Macromolecules 2010, 43, 9108–9116. [Google Scholar] [CrossRef]
- Van de Steeg, H.G.M.; Cohen Stuart, M.A.; De Keizer, A.; Bijsterbosch, B.H. Polyelectrolyte adsorption: A subtle balance of forces. Langmuir 1992, 8, 2538–2546. [Google Scholar] [CrossRef]
- Durand-Piana, G.; Lafuma, F.; Audebert, R. Flocculation and adsorption properties of cationic polyelectrolytes toward Na-montmorillonite dilute suspensions. J. Colloid Interface Sci. 1987, 119, 474–480. [Google Scholar] [CrossRef]
- Wang, T.K.; Audebert, R. Adsorption of cationic copolymers of acrylamide at the silica—water interface: Hydrodynamic layer thickness measurements. J. Colloid Interface Sci. 1988, 121, 32–41. [Google Scholar] [CrossRef]
- Fatehi, P.; Xiao, H. Adsorption characteristics of cationic-modified poly (vinyl alcohol) on cellulose fibers-A qualitative analysis. Colloids Surf. A Physicochem. Eng. Asp. 2008, 327, 127–133. [Google Scholar] [CrossRef]
- Ohkame, T.; Shibuya, M.; Nakagawa, K.; Shintani, T.; Matsuyama, H.; Yoshioka, T. Thin-film composite hollow-fiber nanofiltration membranes prepared from benzonitrile containing disulfonated poly(arylene ether sulfone) random copolymers coated onto polyphenylene oxide support membranes. J. Memb. Sci. 2021, 631, 119336. [Google Scholar] [CrossRef]
- Hanna, R.J. Synthesis of Chemically Uniform Copolymers: Rapid Calculation of Monomer Addition. Ind. Eng. Chem. 1957, 49, 208–209. [Google Scholar] [CrossRef]
- Moritani, T.; Yamauchi, J. Functional modification of poly(vinyl alcohol) by copolymerization III. Modification with cationic monomers. Polymer 1998, 39, 559–572. [Google Scholar] [CrossRef]
- Bolto, B.; Tran, T.; Hoang, M.; Xie, Z. Crosslinked poly(vinyl alcohol) membranes. Prog. Polym. Sci. 2009, 34, 969–981. [Google Scholar] [CrossRef]
- Plakas, K.V.; Karabelas, A.J. Removal of pesticides from water by NF and RO membranes—A review. Desalination 2012, 287, 255–265. [Google Scholar] [CrossRef]
- Damtie, M.M.; Woo, Y.C.; Kim, B.; Hailemariam, R.H.; Park, K.D.; Shon, H.K.; Park, C.; Choi, J.S. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review. J. Environ. Manag. 2019, 251, 109524. [Google Scholar] [CrossRef]
- Haddad, M.; Ohkame, T.; Bérubé, P.R.; Barbeau, B. Performance of thin-film composite hollow fiber nanofiltration for the removal of dissolved Mn, Fe and NOM from domestic groundwater supplies. Water Res. 2018, 145, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, N.A.; Prádanos, P.; Palacio, L.; Pagliero, C.; Marchese, J.; Hernández, A. Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes: Characterisation of polyethersulfone UF membranes with dopes containing different PVP. J. Memb. Sci. 2001, 187, 227–237. [Google Scholar] [CrossRef]
- Abbrent, S.; Greenbaum, S. Recent progress in NMR spectroscopy of polymer electrolytes for lithium batteries. Curr. Opin. Colloid Interface Sci. 2013, 18, 228–244. [Google Scholar] [CrossRef]
- Yan, H.; Miao, X.; Xu, J.; Pan, G.; Zhang, Y.; Shi, Y.; Guo, M.; Liu, Y. The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes. J. Memb. Sci. 2015, 475, 504–510. [Google Scholar] [CrossRef]
- Lin, L.; Lopez, R.; Ramon, G.Z.; Coronell, O. Investigating the void structure of the polyamide active layers of thin-film composite membranes. J. Memb. Sci. 2016, 497, 365–376. [Google Scholar] [CrossRef]
- Fujioka, T.; O’Rourke, B.E.; Michishio, K.; Kobayashi, Y.; Oshima, N.; Kodamatani, H.; Shintani, T.; Nghiem, L.D. Transport of small and neutral solutes through reverse osmosis membranes: Role of skin layer conformation of the polyamide film. J. Memb. Sci. 2018, 554, 301–308. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Thérien-Aubin, H.; Ben-Sasson, M.; Ober, C.K.; Nielsen, M.; Elimelech, M. Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes. J. Mater. Chem. B 2014, 2, 1724–1732. [Google Scholar] [CrossRef]
- Pang, R.; Zhang, K. High-flux polyamide reverse osmosis membranes by surface grafting 4-(2-hydroxyethyl)morpholine. RSC Adv. 2017, 7, 40705–40710. [Google Scholar] [CrossRef] [Green Version]
- Möckel, D.; Staude, E.; Dal-Cin, M.; Darcovich, K.; Guiver, M. Tangential flow streaming potential measurements: Hydrodynamic cell characterization and zeta potentials of carboxylated polysulfone membranes. J. Memb. Sci. 1998, 145, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Zangi, R.; Engberts, J.B.F.N. Physisorption of hydroxide ions from aqueous solution to a hydrophobic surface. J. Am. Chem. Soc. 2005, 127, 2272–2276. [Google Scholar] [CrossRef] [Green Version]
- Solutions, D.W. FilmTecTM Reverse Osmosis Membranes Technical Manual. 2021. Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/45-D01504-en.pdf (accessed on 7 December 2021).
- Kamp, J.; Emonds, S.; Wessling, M. Designing tubular composite membranes of polyelectrolyte multilayer on ceramic supports with nanofiltration and reverse osmosis transport properties. J. Memb. Sci. 2021, 620, 118851. [Google Scholar] [CrossRef]
- Bowen, W.R.; Mohammad, A.W. Characterization and prediction of nanofiltration membrane performance-A general assessment. Chem. Eng. Res. Des. 1998, 76, 885–893. [Google Scholar] [CrossRef]
- Shin, M.G.; Choi, W.; Park, S.J.; Jeon, S.; Hong, S.; Lee, J.H. Critical review and comprehensive analysis of trace organic compound (TOrC) removal with polyamide RO/NF membranes: Mechanisms and materials. Chem. Eng. J. 2022, 427, 130957. [Google Scholar] [CrossRef]
- Ang, W.S.; Lee, S.; Elimelech, M. Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes. J. Memb. Sci. 2006, 272, 198–210. [Google Scholar] [CrossRef]
- Al-Amoudi, A.; Lovitt, R.W. Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Memb. Sci. 2007, 303, 4–28. [Google Scholar] [CrossRef]
- Creber, S.A.; Vrouwenvelder, J.S.; van Loosdrecht, M.C.M.; Johns, M.L. Chemical cleaning of biofouling in reverse osmosis membranes evaluated using magnetic resonance imaging. J. Memb. Sci. 2010, 362, 202–210. [Google Scholar] [CrossRef]
Outer/Inner Diameter (μm) | Pure Water Permeance (L∙m−2∙h−1∙bar−1) | NaCl Rejection 1 (%) | MWCO 2 (Da) |
---|---|---|---|
250/150 | 3.9 | 54 | 890 |
No. | Solute | Molecular Weight | Stokes Diameter [40] (nm) |
---|---|---|---|
1 | Ethanol | 46.1 | 0.42 |
2 | 2-propanol | 60.1 | 0.46 |
3 | Glycerol | 92.1 | 0.55 |
4 | Glucose | 180.2 | 0.72 |
5 | Sucrose | 342.3 | 0.92 |
6 | Raffinose | 504.4 | 1.08 |
7 | α-cyclodextrin | 972.9 | 1.40 |
8 | γ-cyclodextrin | 1297.1 | 1.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohkame, T.; Minegishi, K.; Sugihara, H.; Nakagawa, K.; Shintani, T.; Matsuyama, H.; Yoshioka, T. Hollow-Fiber RO Membranes Fabricated via Adsorption of Low-Charge Poly(vinyl alcohol) Copolymers. Membranes 2021, 11, 981. https://doi.org/10.3390/membranes11120981
Ohkame T, Minegishi K, Sugihara H, Nakagawa K, Shintani T, Matsuyama H, Yoshioka T. Hollow-Fiber RO Membranes Fabricated via Adsorption of Low-Charge Poly(vinyl alcohol) Copolymers. Membranes. 2021; 11(12):981. https://doi.org/10.3390/membranes11120981
Chicago/Turabian StyleOhkame, Takashi, Kazushi Minegishi, Hideki Sugihara, Keizo Nakagawa, Takuji Shintani, Hideto Matsuyama, and Tomohisa Yoshioka. 2021. "Hollow-Fiber RO Membranes Fabricated via Adsorption of Low-Charge Poly(vinyl alcohol) Copolymers" Membranes 11, no. 12: 981. https://doi.org/10.3390/membranes11120981
APA StyleOhkame, T., Minegishi, K., Sugihara, H., Nakagawa, K., Shintani, T., Matsuyama, H., & Yoshioka, T. (2021). Hollow-Fiber RO Membranes Fabricated via Adsorption of Low-Charge Poly(vinyl alcohol) Copolymers. Membranes, 11(12), 981. https://doi.org/10.3390/membranes11120981