A New Activated Sludge Model with Membrane Separation–Implications for Sewage and Textile Effluent
Abstract
:1. Introduction
2. Conceptual Basis
2.1. Particle Size Distribution
2.2. Effective Filtration Size
2.3. Modified COD Fractionation
3. Mass Balance and MASM Structure for Organic Carbon Removal
4. Implementation of MASM for Textile Wastewater
4.1. Evaluation Rationale
4.2. Selection of Wastewater Characteristics
5. Results
5.1. Fate of Soluble Hydrolysable COD
5.2. Activated Sludge Configurations with Different HRT Levels
5.3. Activated Sludge Configurations Adjusted to Same HRT Levels
5.4. Effluent Quality
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AS | Activated sludge system |
ASM | Activated sludge model |
bH | Heterotrophic decay rate (1/d) |
COD | Chemical oxygen demand (mg/L) |
CSTR | Continuous stirred tank reactor |
fS | Residual soluble metabolic fraction of endogenous biomass |
fX | Residual particulate metabolic fraction of endogenous biomass |
HRT | Hydrolic retention time (day) |
khs | Maximum hydrolysis rate for soluble COD (1/d) |
KhS | Hydrolysis half saturation constant for soluble COD (g COD/g COD) |
khX | Maximum hydrolysis rate for particulate COD (1/d) |
KhX | Hydrolysis half saturation constant for particulate COD (g COD/g COD) |
KS | Half saturation constant for growth (g COD/g COD) |
MAS | Activated sludge system with membrane separation |
MASM | Model for activated sludge system with a membrane module |
MBR | Membrane Bioreactor |
Maximum heterotrophic growth rate (1/d) | |
MLSS | Mixed liquor suspended solids (mg/L) |
PSHC | Amount of soluble hydrolysable COD captured in sludge (kg COD/d) |
SH | Soluble hydrolysable COD (mg/L) |
SHC | Captured soluble hydrolysable COD (mg/L) |
SHE | Soluble hydrolysable COD in the effluent (mg/L) |
SI | Soluble inert COD (mg/L) |
SIC | Captured soluble inert COD (mg/L) |
SO | Dissolved oxygen concentration (mg/L) |
SP | Soluble inert microbial product (mg COD/L) |
SRT | Sludge retention time (d) |
SS | Soluble readily biodegradable COD (mg/L) |
WWTP | Wastewater treatment plant |
XH | Active biomass concentration (mg COD/L) |
XI | Particulate inert COD (mg/L) |
XP | Particulate inert microbial product (mg/L) |
XS | Slowly biodegredable COD (mg/L) |
XSS | Settlable COD (mg/L) |
References
- Gujer, W.; Henze, M.; Mino, T.; Matsuo, T.; Wentzel, M.C.; Marais, G.V.R. The activated sludge model no. 2: Biological phosphorus removal. Water Sci. Technol. 1995, 31, 1–11. [Google Scholar] [CrossRef]
- Van Loosdrecht, M.; Hao, X.; Jetten, M.; Abma, W. Use of Anammox in urban wastewater treatment. Water Supply 2004, 4, 87–94. [Google Scholar] [CrossRef]
- Yağcı, N.; Pala-Özkok, I.; Sarıalioğlu, F.; Allı, B.; Artan, N.; Orhon, D.; Sözen, S.; Yağci, N. Respirometric anatomy of the OSA process: Microbial basis of enhanced sludge reduction mechanism. J. Chem. Technol. Biotechnol. 2018, 93, 3462–3471. [Google Scholar] [CrossRef]
- Eikelboom, D. Filamentous organisms observed in activated sludge. Water Res. 1975, 9, 365–388. [Google Scholar] [CrossRef]
- Ovez, S.; Orhon, D. Microbial Ecology of Bulking and Foaming Activated Sludge Treating Tannery Wastewater. J. Environ. Sci. Health Part A 2005, 40, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Brindle, K.; Stephenson, T. The application of membrane biological reactors for the treatment of wastewaters. Biotechnol. Bioeng. 1996, 49, 601–610. [Google Scholar] [CrossRef]
- Duan, L.; Moreno-Andrade, I.; Huang, C.-L.; Xia, S.; Hermanowicz, S.W. Effects of short solids retention time on microbial community in a membrane bioreactor. Bioresour. Technol. 2009, 100, 3489–3496. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Gao, W.; Meng, F.; Liao, B.-Q.; Leung, K.-T.; Zhao, L.; Chen, J.; Hong, H. Membrane Bioreactors for Industrial Wastewater Treatment: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 677–740. [Google Scholar] [CrossRef]
- Ekama, G.A.; Dold, P.L.; Marais, G.V.R. Procedures for Determining Influent COD Fractions and the Maximum Specific Growth Rate of Heterotrophs in Activated Sludge Systems. Water Sci. Technol. 1986, 18, 91–114. [Google Scholar] [CrossRef]
- Gujer, W.; Henze, M.; Mino, T.; Van Loosdrecht, M. Activated Sludge Model No. 3. Water Sci. Technol. 1999, 39, 183. [Google Scholar] [CrossRef]
- Krishna, C.; Van Loosdrecht, M.C. Substrate flux into storage and growth in relation to activated sludge modeling. Water Res. 1999, 33, 3149–3161. [Google Scholar] [CrossRef]
- Karahan-Gül, Ö.; Van Loosdrecht, M.C.M.; Orhon, D. Modification of activated sludge model no. 3 considering direct growth on primary substrate. Water Sci. Technol. 2003, 47, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Henze, M. Characterization of Wastewater for Modelling of Activated Sludge Processes. Water Sci. Technol. 1992, 25, 1–15. [Google Scholar] [CrossRef]
- Orhon, D.; Çokgör, E.U.; Sözen, S. Dual hydrolysis model of the slowly biodegradable substrate in activated sludge systems. Biotechnol. Tech. 1998, 12, 737–741. [Google Scholar] [CrossRef]
- Insel, G.; Sözen, S.; Yucel, A.B.; Gökçekuş, H.; Orhon, D. Assessment of anoxic volume ratio based on hydrolysis kinetics for effective nitrogen removal: Model evaluation. J. Chem. Technol. Biotechnol. 2019, 94, 1739–1751. [Google Scholar] [CrossRef]
- Ng, A.N.; Kim, A.S. A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters. Desalination 2007, 212, 261–281. [Google Scholar] [CrossRef]
- Fenu, A.; Guglielmi, G.; Jimenez, J.; Spèrandio, M.; Saroj, D.; Lesjean, B.; Brepols, C.; Thoeye, C.; Nopens, I. Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: A critical review with special regard to MBR specificities. Water Res. 2010, 44, 4272–4294. [Google Scholar] [CrossRef]
- Orhon, D. Evolution of the activated sludge process: The first 50 years. J. Chem. Technol. Biotechnol. 2015, 90, 608–640. [Google Scholar] [CrossRef]
- Sophonsiri, C.; Morgenroth, E. Chemical composition associated with different particle size fractions in municipal, industrial, and agricultural wastewaters. Chemosphere 2004, 55, 691–703. [Google Scholar] [CrossRef]
- Dulekgurgen, E.; Doğruel, S.; Karahan, Ö.; Orhon, D. Size distribution of wastewater COD fractions as an index for biodegradability. Water Res. 2006, 40, 273–282. [Google Scholar] [CrossRef]
- Hocaoglu, S.M.; Orhon, D. Fate of soluble residual organics in membrane bioreactor. J. Membr. Sci. 2010, 364, 65–74. [Google Scholar] [CrossRef]
- Doǧruel, S.; Köktuna, M.; Cokgor, E.U.; Sözen, S.; Orhon, D. Particle size distribution based evaluation of biodegradation and treatability for leachate from organic waste. J. Chem. Technol. Biotechnol. 2011, 86, 1364–1373. [Google Scholar] [CrossRef]
- Doğruel, S.; Cokgor, E.U.; Ince, O.; Sözen, S.; Orhon, D. Potential of ultrafiltration for organic matter removal in the polymer industry effluent based on particle size distribution analysis. Environ. Sci. Pollut. Res. 2013, 20, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Hocaoglu, S.M.; Atasoy, E.; Baban, A.; Orhon, D. Modeling biodegradation characteristics of grey water in membrane bioreactor. J. Membr. Sci. 2013, 429, 139–146. [Google Scholar] [CrossRef]
- Ravndal, K.T.; Opsahl, E.; Bagi, A.; Kommedal, R. Wastewater characterisation by combining size fractionation, chemical composition and biodegradability. Water Res. 2018, 131, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Karahan, Ö.; Dogruel, S.; Dulekgurgen, E.; Orhon, D. COD fractionation of tannery wastewaters—Particle size distribution, biodegradability and modeling. Water Res. 2008, 42, 1083–1092. [Google Scholar] [CrossRef]
- Dialynas, E.; Diamadopoulos, E. The effect of biomass adsorption on the removal of selected pharmaceutical compounds in an immersed membrane bioreactor system. J. Chem. Technol. Biotechnol. 2011, 87, 232–237. [Google Scholar] [CrossRef]
- Hocaoglu, S.M.; Orhon, D. Particle Size Distribution Analysis of Chemical Oxygen Demand Fractions with Different Biodegradation Characteristics in Black Water and Gray Water. Clean Soil Air Water 2013, 41, 1044–1051. [Google Scholar] [CrossRef]
- Noyan, K.; Allı, B.; Taş, D.O.; Sözen, S.; Orhon, D. Relationship between COD particle size distribution, COD fractionation and biodegradation characteristics in domestic sewage. J. Chem. Technol. Biotechnol. 2017, 92, 2142–2149. [Google Scholar] [CrossRef]
- Barker, D.J.; Stuckey, D.C. A review of soluble microbial products (SMP) in wastewater treatment systems. Water Res. 1999, 33, 3063–3082. [Google Scholar] [CrossRef]
- Sözen, S.; Teksoy-Başaran, S.; Ergal, I.; Karaca, C.; Allı, B.; Razbonyalı, C.; Ubay-Çokgör, E.; Orhon, D. A novel process maximizing energy conservation potential of biological treatment: Super-fast membrane bioreactor. J. Membr. Sci. 2018, 545, 337–347. [Google Scholar] [CrossRef]
- Hocaoglu, S.M.; Orhon, D. Fate of proteins and carbohydrates in membrane bioreactor operated at high sludge age. J. Environ. Sci. Health Part A 2010, 45, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Başaran, S.T.; Aysel, M.; Kurt, H.; Ergal, I.; Akarsubaşı, A.; Yağcı, N.; Doğruel, S.; Çokgör, E.U.; Keskinler, B.; Sözen, S.; et al. Kinetic characterization of acetate utilization and response of microbial population in super fast membrane bioreactor. J. Membr. Sci. 2014, 455, 392–404. [Google Scholar] [CrossRef]
- Orhon, D.; Sözen, S.; Basaran, S.T.; Alli, B. Super fast membrane bioreactor—transition to extremely low sludge ages for waste recycle and reuse with energy conservation. Desalination Water Treat. 2015, 57, 21160–21172. [Google Scholar] [CrossRef]
- Shin, H.-S.; Kang, S.-T. Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times. Water Res. 2003, 37, 121–127. [Google Scholar] [CrossRef]
- Kang, S.; Lee, W.; Chae, S.; Shin, H. Positive roles of biofilm during the operation of membrane bioreactor for water reuse. Desalination 2007, 202, 129–134. [Google Scholar] [CrossRef]
- Özgün; Özlem, K.; Özkök, I.P.; Kutay, C.; Orhon, D. Characteristics and biodegradability of olive mill wastewaters. Environ. Technol. 2015, 37, 1–9. [Google Scholar] [CrossRef]
- Orhon, D.; Cokgor, E.U.; Insel, G.; Karahan, O.; Katipoglu, T.; Katipoglu-Yazan, T. Validity of Monod kinetics at different sludge ages—Peptone biodegradation under aerobic conditions. Bioresour. Technol. 2009, 100, 5678–5686. [Google Scholar] [CrossRef]
- Karahan-Gül, Özlem; Artan, N.; Orhon, D.; Henze, M.; Van Loosdrecht, M.C.M. Experimental Assessment of Bacterial Storage Yield. J. Environ. Eng. 2002, 128, 1030–1035. [Google Scholar] [CrossRef]
- Katipoglu-Yazan, T.; Pala-Ozkok, I.; Ubay-Cokgor, E.; Orhon, D. Acute impact of erythromycin and tetracycline on the kinetics of nitrification and organic carbon removal in mixed microbial culture. Bioresour. Technol. 2013, 144, 410–419. [Google Scholar] [CrossRef]
- Katipoglu-Yazan, T.; Merlin, C.; Pons, M.-N.; Ubay-Cokgor, E.; Orhon, D. Chronic impact of sulfamethoxazole on the metabolic activity and composition of enriched nitrifying microbial culture. Water Res. 2016, 100, 546–555. [Google Scholar] [CrossRef]
- Germirli, F.; Orhon, D.; Artan, N. Assessment of the Initial Inert Soluble COD in Industrial Wastewaters. Water Sci. Technol. 1991, 23, 1077–1086. [Google Scholar] [CrossRef]
- Orhon, D.; Karahan, O.; Sozen, S. The effect of residual microbial products on the experimental assessment of the particulate inert COD in wastewaters. Water Res. 1999, 33, 3191–3203. [Google Scholar] [CrossRef]
- Roeleveld, P.; Van Loosdrecht, M. Experience with guidelines for wastewater characterisation in The Netherlands. Water Sci. Technol. 2002, 45, 77–87. [Google Scholar] [CrossRef]
- Tas, D.O.; Karahan, Ö.; Insel, G.; Övez, S.; Orhon, D.; Spanjers, H. Biodegradability and Denitrification Potential of Settleable Chemical Oxygen Demand in Domestic Wastewater. Water Environ. Res. 2009, 81, 715–727. [Google Scholar] [CrossRef]
- Gernaey, K.V.; van Loosdrecht, M.C.; Henze, M.; Lind, M.; Jørgensen, S.B. Activated sludge wastewater treatment plant modelling and simulation: State of the art. Environ. Model. Softw. 2004, 19, 763–783. [Google Scholar] [CrossRef]
- Orhon, D.; Artan, N. Modeling of Activated Sludge Systems; Technomic Publishing Inc: Lancaster, UK, 1994. [Google Scholar]
- Allı, B.; Insel, G.; Sözen, S.; Orhon, D. A novel modeling approach for evaluating microbial mechanism and design of contact stabilization process. J. Chem. Technol. Biotechnol. 2018, 93, 1121–1136. [Google Scholar] [CrossRef]
- Orhon, D.; Artan, N.; Cimsit, Y. The concept of soluble residual product formation in the modelling of activated sludge. Water Sci. Technol. 1989, 21, 339–350. [Google Scholar] [CrossRef]
- Orhon, D.; Babuna, F.G.; Karahan, O. Industrial Wastewater Treatment by Activated Sludge; IWA Publishing: London, UK, 2009. [Google Scholar]
- Sumo® Wastewater Process Simulator, Dynamita Process Modeling, Nyons, France, 2018. Available online: http://www.dynamita.com/the-sumo/ (accessed on 29 May 2021).
- Modelling of activated sludge for textile wastewaters. Water Sci. Technol. 1998, 38, 9–17. [CrossRef]
- Yildiz, G.; Insel, G.; Cokgor, E.U.; Orhon, D. Biodegradation kinetics of the soluble slowly biodegradable substrate in polyamide carpet finishing wastewater. J. Chem. Technol. Biotechnol. 2018, 83, 34–40. [Google Scholar] [CrossRef]
Model Components → Process ↓ | SI | SIC | XI | SS | SH | XS | SO | XP | SP | XSS | SHC | XH | Process Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Growth of XH | 1 | XH | |||||||||||
Hydrolysis of SH | 1 | −1 | XH | ||||||||||
Hydrolysis of SHC | 1 | −1 | XH | ||||||||||
Hydrolysis of XS | 1 | −1 | XH | ||||||||||
Hydrolysis of XSS | −1 | 1 | XH | ||||||||||
Decay | −(1 − fS − fX) | fX | fS | −1 | bHXH | ||||||||
Parameter | COD | COD | COD | COD | COD | COD | SO | COD | COD | COD | COD | Cell COD |
Parameters | Textile [29] | Domestic [20] |
---|---|---|
Total COD (mg/L), CT1 | 1340 | 415 |
Total soluble COD (mg/L), ST1 | 965 | 120 |
Total particulate COD (mg/L), XT1 | 375 | 295 |
Readily biodegradable COD (mg/L), SS1 | 280 | 40 |
Total soluble hydrolysable COD (mg/L), SHT1 | 460 | 62 |
Influent soluble hydrolysable COD (mg/L), SH1 | 100 | 15 |
Captured soluble hydrolysable COD (mg/L), SHC1 | 360 | 47 |
Total soluble inert COD (mg/L), SIT1 | 225 | 18 |
Influent soluble inert COD (mg/L), SI1 | 135 | 10 |
Captured soluble inert COD (mg/L), SIC1 | 90 | 8 |
Total particulate hydrolysable COD (mg/L), XST1 | 360 | 253 |
Influent particulate hydrolysable COD (mg/L), XS1 | 162 | 113 |
Settleable biodegradable COD (mg/L), XSS1 | 198 | 140 |
Total particulate inert COD (mg/L), XIT1 | 15 | 42 |
Influent particulate inert COD (mg/L), XI1 | 7 | 19 |
Settleable inert COD (mg/L), XIS1 | 8 | 23 |
KS | bH | khS | KhS | khX | KhX | References | ||
---|---|---|---|---|---|---|---|---|
4.1 | 5 | 0.18 | 3 | 0.05 | 1 | 0.5 | [52] | |
5.3 | 5 | 0.14 | 3 | 0.05 | 1 | 0.2 | [52] | |
3.6 | 15 | 0.14 | 0.8 | 0.05 | 0.5 | 0.15 | [52] | |
- | - | - | 2.5 | 0.4 | 0.1 | 0.5 | [14] | |
6 | 1 | 0.1 | 3.5 | 0.04 | 0.72 | 0.04 | [53] | |
Selected for model | 3.6 | 15 | 0.14 | 2.45 | 0.09 | 0.68 | 0.28 |
Textile Wastewater | ASM1 | MASM | |||||
---|---|---|---|---|---|---|---|
SRT (d) | HRT (h) | SHE (mg/L) | SH Removal (%) | HRT (h) | SHE (mg/L) | SH Removal (%) | |
Superfast | 1 | 3.6 | 95 | 79 | 1.8 | 33 | 67 |
2 | 5.8 | 42 | 91 | 2.7 | 23 | 77 | |
High rate | 3 | 8.6 | 20 | 96 | 3.6 | 18 | 82 |
4 | 10.8 | 13 | 97 | 4.7 | 13 | 87 | |
Conventional | 6 | 14.4 | 5.5 | 99 | 6.5 | 8 | 92 |
8 | 16.6 | 4 | 99 | 7.2 | 7 | 93 |
Textile Wastewater | ASM1 | MASM | ||||
---|---|---|---|---|---|---|
SRT (d) | HRT (h) | SHE (mg/L) | SH Removal (%) | SHE (mg/L) | SH Removal (%) | |
Superfast | 1 | 3.6 | 95 | 79 | 18 | 82 |
2 | 5 | 50 | 89 | 12 | 88 | |
High rate | 3 | 7.2 | 27 | 94 | 8 | 92 |
4 | 10.8 | 11 | 98 | 5 | 95 | |
Conventional | ||||||
6 | 14.4 | 6.7 | 99 | 3.5 | 97 | |
8 | 17.3 | 3.6 | 99 | 3.2 | 97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orhon, D.; Yucel, A.B.; Insel, G.; Duba, S.; Olmez-Hanci, T.; Solmaz, B.; Sözen, S. A New Activated Sludge Model with Membrane Separation–Implications for Sewage and Textile Effluent. Membranes 2021, 11, 589. https://doi.org/10.3390/membranes11080589
Orhon D, Yucel AB, Insel G, Duba S, Olmez-Hanci T, Solmaz B, Sözen S. A New Activated Sludge Model with Membrane Separation–Implications for Sewage and Textile Effluent. Membranes. 2021; 11(8):589. https://doi.org/10.3390/membranes11080589
Chicago/Turabian StyleOrhon, Derin, Ayse Begum Yucel, Guclu Insel, Seyda Duba, Tugba Olmez-Hanci, Bulent Solmaz, and Seval Sözen. 2021. "A New Activated Sludge Model with Membrane Separation–Implications for Sewage and Textile Effluent" Membranes 11, no. 8: 589. https://doi.org/10.3390/membranes11080589
APA StyleOrhon, D., Yucel, A. B., Insel, G., Duba, S., Olmez-Hanci, T., Solmaz, B., & Sözen, S. (2021). A New Activated Sludge Model with Membrane Separation–Implications for Sewage and Textile Effluent. Membranes, 11(8), 589. https://doi.org/10.3390/membranes11080589