Removal of Ionic Dyes by Nanofiber Membrane Functionalized with Chitosan and Egg White Proteins: Membrane Preparation and Adsorption Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Modification of PAN Nanofiber Membranes
2.3. Characterization of Nanofiber Membranes
2.4. Effect of Operating Parameters on the Adsorption of Dye Molecules
2.5. Equilibrium Isotherm and Kinetic of Dye Adsorption
2.6. Desorption Studies
3. Results and Discussion
3.1. Characterization of Nanofiber Membranes
3.2. Effect of Coupling pH and Loaded Concentration of CEW on Dye Adsorption
3.3. Effect of pH on Dye Adsorption
3.4. Equilibrium Isotherm Studies
3.5. Kinetic Adsorption Studies
3.6. Desorption Studies
3.7. Remarks on Protein Modified Nanofiber Membrane for Dye Waste Treatment
Type of Adsorbent | qmax (mg/g) | qmax (μmol/g) | Reference |
---|---|---|---|
AO7 | |||
P-COOH-CS-CEW Nanofiber membrane | 329 | 939 | This work |
Magnetic graphene/chitosan | 43 | 122 | [2] |
Canola stalk | 25 | 72 | [49] |
Spent brewery grains | 30 | 87 | [52] |
Untreated sugarcane bagasse | 28 | 80 | [56] |
Azolla rongpong | 77 | 220 | [51] |
Beech wood sawdust | 5 | 14 | [57] |
Bottom ash | 4 | 12 | [48] |
TBO | |||
P-COOH-CS-CEW Nanofiber membrane | 317 | 1037 | This work |
P-COOH-BSA Nanofiber membrane | 435 | 1422 | [42] |
P-COOH-CEW Nanofiber membrane | 546 | 1785 | [43] |
Mesoporous silica | 57 | 186 | [8] |
Magnetic multi-walled carbon nanotube | 53 | 174 | [12] |
Almond shell (Prunus dulcis) | 73 | 239 | [15] |
Water-insoluble starch sulfate | 27 | 88 | [47] |
Gypsum | 28 | 92 | [14] |
Turkish zeolite | 64 | 210 | [10] |
Polysulphone-COOH Nanofiber membrane | 116 | 380 | [40] |
Silica-iron oxide nanoparticles | 37 | 121 | [58] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Sheshmani, S.; Ashori, A.; Hasanzadeh, S. Removal of Acid Orange 7 from aqueous solution using magnetic graphene/chitosan: A promising nano-adsorbent. Int. J. Biol. Macromol. 2014, 68, 218–224. [Google Scholar] [CrossRef]
- Ali, H. Biodegradation of Synthetic Dyes—A Review. Water Air Soil Pollut. 2010, 213, 251–273. [Google Scholar] [CrossRef]
- Donia, A.M.; Atia, A.A.; Al-amrani, W.A.; El-Nahas, A.M. Effect of structural properties of acid dyes on their adsorption behaviour from aqueous solutions by amine modified silica. J. Hazard. Mater. 2009, 161, 1544–1550. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Basu, J.K.; Ghar, R.N. Studies on adsorption of p-nitrophenol on charred saw-dust. Sep. Purif. Technol. 2001, 21, 227–235. [Google Scholar] [CrossRef]
- Guibal, E.; Roussy, J. Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan). React. Funct. Polym. 2007, 67, 33–42. [Google Scholar] [CrossRef]
- Kornaros, M.; Lyberatos, G. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. J. Hazard. Mater. 2006, 136, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Melendez-Ortiz, H.I.; Puente-Urbina, B.; Mercado-Silva, J.A.; Garcia-Uriostegui, L. Adsorption performance of mesoporous silicas towards a cationic dye. Influence of mesostructure on adsorption capacity. Int. J. Appl. Ceram. Technol. 2019, 16, 1533–1543. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Gao, D.W.; Gao, C.T.; Wei, Q.F.; Cai, Y.B.; Xu, J.; Liu, X.Y.; Xu, Y. Removal of a Cationic Dye by Adsorption/Photodegradation Using Electrospun PAN/O-MMT Composite Nanofibrous Membranes Coated with TiO2. Int. J. Photoenergy 2012, 2012, 680419. [Google Scholar]
- Firouzjaei, M.D.; Afkhami, F.A.; Esfahani, M.R.; Turner, C.H.; Nejati, S. Experimental and molecular dynamics study on dye removal from water by a graphene oxide-copper-metal organic framework nanocomposite. J. Water Process Eng. 2020, 34, 101180. [Google Scholar] [CrossRef]
- Khumalo, N.P.; Vilakati, G.D.; Mhlanga, S.D.; Kuvarega, A.T.; Mamba, B.B.; Li, J.X.; Dlamini, D.S. Dual-functional ultrafiltration nano-enabled PSf/PVA membrane for the removal of Congo red dye. J. Water Process Eng. 2019, 31, 100878. [Google Scholar] [CrossRef]
- Minisy, I.M.; Zasonska, B.A.; Petrovsky, E.; Veverka, P.; Sedenkova, I.; Hromadkova, J.; Bober, P. Poly(p-phenylenediamine)/maghemite composite as highly effective adsorbent for anionic dy e removal. React. Funct. Polym. 2020, 146, 104436. [Google Scholar] [CrossRef]
- Shittu, I.; Edathil, A.A.; Alsaeedi, A.; Al-Asheh, S.; Polychronopoulou, K.; Banat, F. Development of novel surfactant functionalized porous graphitic carbon as an efficient adsorbent for the removal of methylene blue dye from aqueous solutions. J. Water Process Eng. 2019, 28, 69–81. [Google Scholar] [CrossRef]
- Singh, R.; Pal, D.; Mathur, A.; Singh, A.; Krishnan, M.A.; Chattopadhyay, S. An efficient pH sensitive hydrogel, with biocompatibility and high reusability for removal of methylene blue dye from a queous solution. React. Funct. Polym. 2019, 144, 104346. [Google Scholar] [CrossRef]
- Wang, W.L.; Yang, X.X.; Yu, B.L.; Lin, J.M.; Cai, X.L. Synthesis of acid-resistant superparamagnetic conjugated porous polymers for fast and efficient removal of organic dye from aqueous media. React. Funct. Polym. 2020, 149, 104518. [Google Scholar] [CrossRef]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef]
- Gupta, V.K.; Suhas. Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef] [PubMed]
- Royer, B.; Cardoso, N.F.; Lima, E.C.; Vaghetti, J.C.P.; Simon, N.M.; Calvete, T.; Veses, R.C. Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions-Kinetic and equilibrium study. J. Hazard. Mater. 2009, 164, 1213–1222. [Google Scholar] [CrossRef]
- Pacheco-Palencia, L.A.; Duncan, C.E.; Talcott, S.T. Phytochemical composition and thermal stability of two commercial acai species, Euterpe oleracea and Euter pe precatoria. Food Chem. 2009, 115, 1199–1205. [Google Scholar] [CrossRef]
- Safa, Y.; Bhatti, H.N. Kinetic and thermodynamic modeling for the removal of Direct Red-31 and Direct Orange-26 dyes from aqueous solutions by rice husk. Desalination 2011, 272, 313–322. [Google Scholar] [CrossRef]
- Cardoso, N.F.; Lima, E.C.; Calvete, T.; Pinto, I.S.; Amavisca, C.V.; Fernandes, T.H.M.; Pinto, R.B.; Alencar, W.S. Application of Aqai Stalks As Biosorbents for the Removal of the Dyes Reactive Black 5 and Reactive Orange 16 from Aqueous Solution. J. Chem. Eng. Data 2011, 56, 1857–1868. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Moghadam, B.H.; Abatari, M.H.M.; Haghi, A.K. On the production optimization of polyacrylonitrile electrospun nanofiber. Bulg. Chem. Commun. 2013, 45, 178–190. [Google Scholar]
- Mahmoodi, N.M. Surface modification of magnetic nanoparticle and dye removal from ternary systems. J. Ind. Eng. Chem. 2015, 27, 251–259. [Google Scholar] [CrossRef]
- Nasreen, S.A.; Sundarrajan, S.; Nizar, S.A.; Balamurugan, R.; Ramakrishna, S. Advancement in electrospun nanofibrous membranes modification and their application in water treatment. Membranes 2013, 3, 266–284. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, S.; Muthumanickkam, A.; Imayathamizhan, N.M. An effective removal of methylene blue dye using polyacrylonitrile yarn waste/graphene oxide nanofibrous composite. Int. J. Environ. Sci. Technol. 2015, 12, 3499–3508. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Wang, L.; Ran, J.R.; Zhao, J.Y.; Tao, M.L.; Zhang, W.Q. Highly selective removal of cationic dyes from water by acid-base regulated anionic functionalized polyacrylonitrile fiber: Fast adsorption, low detection limit, reusability. React. Funct. Polym. 2020, 146, 104394. [Google Scholar] [CrossRef]
- Yazdi, M.G.; Ivanic, M.; Mohamed, A.; Uheida, A. Surface modified composite nanofibers for the removal of indigo carmine dye from polluted water. RSC Adv. 2018, 8, 24588–24598. [Google Scholar] [CrossRef] [Green Version]
- Akbari, A.; Sheshdeh, F.J.; Jabbari, V. Novel nanofiberous membrane fabricated via electrospinning of wastage fuzzes of mechanized carpet used for dye removal of the carpet dyeing wastewater. J. Environ. Sci. Health Part A 2012, 47, 847–853. [Google Scholar] [CrossRef]
- Li, C.; Lou, T.; Yan, X.; Long, Y.Z.; Cui, G.; Wang, X. Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal. Int. J. Biol. Macromol. 2018, 106, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, N.M.; Mokhtari-Shourijeh, Z. Preparation of PVA-chitosan Blend Nanofiber and Its Dye Removal Ability from Colored Wastewater. Fiber Polym. 2015, 16, 1861–1869. [Google Scholar] [CrossRef]
- Qi, F.F.; Qian, L.L.; Liu, J.J.; Li, X.Q.; Lu, L.G.; Xu, Q. A high-throughput nanofibers mat-based micro-solid phase extraction for the determination of cationic dyes in wastewater. J. Chromatogr. A 2016, 1460, 24–32. [Google Scholar] [CrossRef]
- Yue, X.X.; Huang, J.W.; Jiang, F.; Li, H.; Chen, Y.Y. Synthesis and characterization of cellulose-based adsorbent for removal of anionic and cationic dyes. J. Eng. Fiber Fabr. 2019, 14, 1558925019828194. [Google Scholar] [CrossRef] [Green Version]
- Ashori, A.; Cordeiro, N.; Faria, M.; Hamzeh, Y. Effect of chitosan and cationic starch on the surface chemistry properties of bagasse paper. Int. J. Biol. Macromol. 2013, 58, 343–348. [Google Scholar] [CrossRef]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res. 2001, 35, 613–618. [Google Scholar] [CrossRef]
- Crini, G.; Badot, P.M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci. 2008, 33, 399–447. [Google Scholar] [CrossRef]
- Mine, Y. Recent Advances in the Understanding of Egg-White Protein Functionality. Trends Food Sci. Technol. 1995, 6, 225–232. [Google Scholar] [CrossRef]
- Ng, I.S.; Song, C.P.; Ooi, C.W.; Tey, B.T.; Lee, Y.H.; Chang, Y.K. Purification of lysozyme from chicken egg white using nanofiber membrane immobilized with Reactive Orange 4 dye. Int. J. Biol. Macromol. 2019, 134, 458–468. [Google Scholar] [CrossRef]
- Wang, S.S.; Yang, S.M.; Hsin, A.; Chang, Y.K. Dye-Affinity Nanofibrous Membrane for Adsorption of Lysozyme: Preparation and Performance Evaluation. Food Technol. Biotechnol. 2018, 56, 40–50. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Lee, H.Y.; Ahn, D.U. Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents—A review. Poult. Sci. 2013, 92, 3292–3299. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.W.; Kotaki, M.; Ramarkrishna, S. Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning: A novel affinity membrane. J. Membr. Sci. 2006, 272, 179–187. [Google Scholar] [CrossRef]
- Yang, M.C.; Lin, W.C. Surface modification and blood compatibility of polyacrylonitrile membrane with immobilized chitosan–heparin conjugate. J. Polym. Res. 2002, 9, 201–206. [Google Scholar] [CrossRef]
- Huong, D.T.M.; Chai, W.S.; Show, P.L.; Lin, Y.L.; Chiu, C.Y.; Tsai, S.L.; Chang, Y.K. Removal of cationic dye waste by nanofiber membrane immobilized with waste proteins. Int. J. Biol. Macromol. 2020, 164, 3873–3884. [Google Scholar] [CrossRef]
- Pakalapati, H.; Show, P.L.; Chang, J.H.; Liu, B.L.; Chang, Y.K. Removal of dye waste by weak cation-exchange nanofiber membrane immobilized with waste egg white proteins. Int. J. Biol. Macromol. 2020, 165, 2494–2507. [Google Scholar] [CrossRef] [PubMed]
- Shimada, I.; Takahagi, T.; Fukuhara, M.; Morita, K.; Ishitani, A. Ft-Ir Study of the Stabilization Reaction of Polyacrylonitrile in the Production of Carbon-Fibers. J. Polym. Sci. Part A Polym. Chem. 1986, 24, 1989–1995. [Google Scholar] [CrossRef]
- Travlou, N.A.; Kyzas, G.Z.; Lazaridis, N.K.; Deliyanni, E.A. Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir 2013, 29, 1657–1668. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Agarwal, G.P. Interactions of proteins with immobilized metal ions: A comparative analysis using various isotherm models. Anal. Biochem. 2001, 288, 126–140. [Google Scholar] [CrossRef]
- Guo, L.; Li, G.Y.; Liu, J.S.; Ma, S.M.; Zhang, J.F. Kinetic and Equilibrium Studies on Adsorptive Removal of Toluidine Blue by Water-Insoluble Starch Sulfate. J. Chem. Eng. Data 2011, 56, 1875–1881. [Google Scholar] [CrossRef]
- Gupta, V.K.; Mittal, A.; Gajbe, V.; Mittal, J. Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: Bottom ash and de-oiled soya. Ind. Eng. Chem. Res. 2006, 45, 1446–1453. [Google Scholar] [CrossRef]
- Hamzeh, Y.; Ashori, A.; Azadeh, E.; Abdulkhani, A. Removal of Acid Orange 7 and Remazol Black 5 reactive dyes from aqueous solutions using a novel biosorbent. Mater. Sci. Eng. C 2012, 32, 1394–1400. [Google Scholar] [CrossRef]
- Lim, C.K.; Bay, H.H.; Neoh, C.H.; Aris, A.; Majid, Z.A.; Ibrahim, Z. Application of zeolite-activated carbon macrocomposite for the adsorption of Acid Orange 7: Isotherm, kinetic and thermodynamic studies. Environ. Sci. Pollut. Res. 2013, 20, 7243–7255. [Google Scholar] [CrossRef]
- Padmesh, T.V.N.; Vijayaraghavan, K.; Sekaran, G.; Velan, M. Application of Azolla rongpong on biosorption of acid red 88, acid green 3, acid orange 7 and acid blue 15 from synthetic solutions. Chem. Eng. J. 2006, 122, 55–63. [Google Scholar] [CrossRef]
- Silva, J.P.; Sousa, S.; Rodrigues, J.; Antunes, H.; Porter, J.J.; Goncalves, I.; Ferreira-Dias, S. Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains. Sep. Purif. Technol. 2004, 40, 309–315. [Google Scholar] [CrossRef]
- Xu, Y.; Li, X.; Xiang, H.F.; Zhang, Q.Q.; Wang, X.X.; Yu, M.; Hao, L.Y.; Long, Y.Z. Large-Scale Preparation of Polymer Nanofibers for Air Filtration by a New Multineedle Electrospinning Device. J. Nanomater. 2020, 2020, 4965438. [Google Scholar] [CrossRef]
- Zhu, F.; Zheng, Y.M.; Zhang, B.G.; Dai, Y.R. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. J. Hazard. Mater. 2021, 401, 123608. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.; Sharafoddinzadeh, D.; Mokhtari, F.; Esfandarani, M.S.; Karami, S. Electrospun nanofibers for efficient adsorption of heavy metals from water and wastewater. Clean Technol. Recycl. 2021, 1, 1–33. [Google Scholar] [CrossRef]
- Mukund, M.; Siddharth, S.; Mayank, S.; Kumar, G.C.; Shanthi, V. Study of operational parameters and kinetics of biosorption of Acid Orange 7 by untreated sugarcane bagasse. J. Chem. Pharm. Res. 2013, 5, 523–531. [Google Scholar]
- Izadyar, S.; Rahimi, M. Use of beech wood sawdust for adsorption of textile dyes. Pak. J. Biol. Sci. 2007, 10, 287–293. [Google Scholar] [CrossRef]
- Seema, J.; Garg, V.K.; Jyoti, S.; Kadirvelu, K. Removal of toulidine Blue O Dye from aqueous solution by silica-iron oxide nanoparticle. Mater. Focus 2018, 7, 140–146. [Google Scholar]
Langmuir | Freundlich | Langmuir–Freundlich | ||||||
---|---|---|---|---|---|---|---|---|
qmax,cal (mg/mL) | KL (mg/mL) | R2 | nF | KF (mg/mL) | R2 | nLF | KLF (mg/mL) | R2 |
329.36 | 0.038 | 0.998 | 7.016 | 286.7 | 0.986 | 0.419 | 4.396 | 0.961 |
317.16 | 0.107 | 0.998 | 6.442 | 251.4 | 0.968 | 213.3 | 1.682 | 0.811 |
Kinetic Model | Pseudo Second-Order Model | Pseudo First-Order Model | ||||
---|---|---|---|---|---|---|
AO7 (mg/mL) | qexp (mg/g) | q2,cal (mg/g) | k2 (g/mg·min) | R2 | k1 (1/min) | R2 |
1 | 250.35 | 237.03 | 7.37 × 10−3 | 0.9994 | 2.03 × 10−3 | 0.0181 |
2 | 285.76 | 280.01 | 2.50 × 10−3 | 0.9989 | 3.94 × 10−3 | 0.0430 |
3 | 337.75 | 345.12 | 2.70 × 10−3 | 0.9995 | 2.74 × 10−3 | 0.0183 |
TBO (mg/mL) | qexp (mg/g) | q2,cal (mg/g) | k2 (g/mg·min) | R2 | k1 (1/min) | R2 |
1 | 113.56 | 106.98 | 9.06 × 10−3 | 0.9963 | 5.10 × 10−3 | 0.0536 |
2 | 263.85 | 286.88 | 1.29 × 10−4 | 0.9725 | 3.51 × 10−3 | 0.0129 |
3 | 304.33 | 318.01 | 2.45 × 10−4 | 0.9921 | 8.28 × 10−3 | 0.0874 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-S.; Ooi, C.W.; Show, P.L.; Hoe, B.C.; Chai, W.S.; Chiu, C.-Y.; Wang, S.S.-S.; Chang, Y.-K. Removal of Ionic Dyes by Nanofiber Membrane Functionalized with Chitosan and Egg White Proteins: Membrane Preparation and Adsorption Efficiency. Membranes 2022, 12, 63. https://doi.org/10.3390/membranes12010063
Chen Y-S, Ooi CW, Show PL, Hoe BC, Chai WS, Chiu C-Y, Wang SS-S, Chang Y-K. Removal of Ionic Dyes by Nanofiber Membrane Functionalized with Chitosan and Egg White Proteins: Membrane Preparation and Adsorption Efficiency. Membranes. 2022; 12(1):63. https://doi.org/10.3390/membranes12010063
Chicago/Turabian StyleChen, Yue-Sheng, Chien Wei Ooi, Pau Loke Show, Boon Chin Hoe, Wai Siong Chai, Chen-Yaw Chiu, Steven S.-S. Wang, and Yu-Kaung Chang. 2022. "Removal of Ionic Dyes by Nanofiber Membrane Functionalized with Chitosan and Egg White Proteins: Membrane Preparation and Adsorption Efficiency" Membranes 12, no. 1: 63. https://doi.org/10.3390/membranes12010063
APA StyleChen, Y. -S., Ooi, C. W., Show, P. L., Hoe, B. C., Chai, W. S., Chiu, C. -Y., Wang, S. S. -S., & Chang, Y. -K. (2022). Removal of Ionic Dyes by Nanofiber Membrane Functionalized with Chitosan and Egg White Proteins: Membrane Preparation and Adsorption Efficiency. Membranes, 12(1), 63. https://doi.org/10.3390/membranes12010063